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Eigenspannungen und vorgespannter Beton
Allgemeine, vereinfachte Berechnungsweise
Von Ing. Dr. PIERRE LARDY, Zürich

Das aktuelle Problem der Berechnung der Biegungsspannungen

in einem Eisenbetonbalken mit vorgespannten
Armierungen kann folgendermassen formuliert werden: Gegeben sei
ein symmetrischer Eisenbetonquerschnitt mit den Armierungen
Fei, Fei Fem, deren zugehörige Vorspannungen mit oei,
oe3, aem bezeichnet Seien. Es sollen die Biegungsspannungen
im Beton sowie die endgültigen Eisenzugspannungen aei, aea

aem unter Berücksichtigung des Schwindens und der
Plastizität bestimmt werden.

In der bisherigen Berechnungsweise1) zerfällt die Berechnung

in mehrere Stufen. Für jede gegebene vorgespannte Eisenlage

Fei, F^, • • • • Fem* sowie für das Schwinden werden die
Spannungszustände getrennt berechnet und am Schluss super-
poniert. Infolge Schwinden und Plastizität des Betons sowie der
elastischen Deformation des Querschnittes geht die ursprüngliche

Vorspannung, z. B. aei, auf den Wert ae
aei wird aus der Elastizitätsbedingung:

< aei zurück;

B„ 8j k Ob

Eb
(worin s, Schwindmass für Beton, k Plastizitätsfaktor)
für die Faser Fel gefunden, sobald o_ dort bekannt ist. Aus den
bekannten Gleichgewichtsbedingungen

JadF 0 und JasdF 0
sowie aus der Hypothese von Navier-Bernoulli folgt die
Spannungsverteilung im Beton und in den Eisen. Diese Berechnungsweise

ist mühsam und unübersichtlich; denn für jede Bereifes
nungsstufe sind der «ideelle Querschnitt», der «ideelle Schvviiilsj
punkt» und das «ideelle Trägheitsmoment» verschieden.

Im Folgenden soll gezeigt werden, dass sich diese
Berechnungsweise wesentlich vereinfachen lässt, indem die ganze
Berechnung in einer einzigen Berechnungsstufe durchgeführt werden

kann, die einfach und übersichtlich ist und sich im
allgemeinsten Fall der Eigenspannungen anwenden lässt. Wesentlich
und neu ist dabei für die Anwendung auf den vorgespannten
Beton, dass das Schwinden und die Plastizität in dieser
vereinfachten Berechnungsweise voll berücksichtigt werden.

Einige einfache Ueberlegungen seien vorausgeschickt; dabei
gelten Druckspannungen, sowie Faserverkürzungen als positiv,
Zugspannungen und Faserverlängerungen als negativ. Wir
betrachten eine am linken Ende eingespannte Faser von der Länge
1, vom Querschnitt F, dem Elastizitätsmodul-? und dem Schwindmass

e > 0. Das Schwindmass s bedeutet, dass die Faser die
Tendenz hat, sich zu verkürzen um das Mass 1 s. Beim «freien»,
d. h. ungestörten Schwinden verkürzt sich die Faser um 6 le,
bleibt dabei aber spannungslos.

Nun kann man sich die tatsächliche Verkürzung 3 dadurch
entstanden denken, dass man eine fiktive, nicht existierende
Normalkraft N' als äussere Druckkraft auf die Faser wirken
lässt und die Verkürzung S als elastische Deformation infolge
dieser Druckkraft auffasst. Die entsprecl||ide fiktive Normal¬

ip
Spannung o' ist gleich aus dem Hooke'schen Gesetz folgt

E e oder a' -. sE und daraus die.äjlktive Normalkraft N- zu

N' M bEF

8 «'
Es ist -=- gleich der tatsächlichen

Dabei sind die tatsächlichen Spannungen o gleich Null; o'

existiert ebensowenig wie N'.

Dehnung s.
') Siehe Hoyer: «Der Stahlsaitenbeton» und neuerdings Moersch: «Der

Spannbetonträger>-, 1943. Hoyer gibt die Berechnung mit Superposition
der Spannungszustände an. während Moersch, wie der Verfasser dieser
Arbeit, mit einer fiktiven Resultierenden rechnet. Sowohl bei Moersch
wie bei Hoyer sind das Schwinden und die Plastizität in den angegebenen
Berechnungsweisen nicht einbezogen; Moersch berücksichtigt das Schwinden

durch einen konstanten Abzug an den Vorspannungen. Im Gegensatz
dazu behandelt Prof. Dr. M. Ritter in seiner Vorlesung «Ausgewählte
Kapitel der Baustatik und des Massivbaues» das Problem der Vorspannung

unter voller Berücksichtigung des Schwindens und der Plastizität.

an der Deformation der Faser gleich ist (im Sinne einer

Für den Fall, dass das Schwinden aus irgendeinem Grunde
z. T. oder ganz verfiindert wird, entstehen in der Faser
Spannungen a, die von Null verschieden sind. Die Verkürzung ist
dann kleiner, weil sich das Schwinden nicht voll auswirken
kann; es treten deshalb Zugspannungen a < 0 auf, deren Anteil

o
~W

Verkleinerung der Verkürzung). Die tatsächlich auftretende
Verkürzung ö wird dann:

e + -°- (<?<f,da_<0)
Analog kann wieder eine fiktive Normalkraft N< als äussere
Kraft eingeführt werden, die ö erzeugt. Es folgt:

(Die Berechnung von N' würde whier die nähere Kenntnis der
«Verhinderung» der Verkürzung erfordern.) Die beiden Grenzfälle

a _= 0 sowie — 0 (N' 0 und a — eE) brauchen
E

keine weitere Erläuterung.
Einen Schritt weiter führt die Betrachtung des Zusammenwirkens

von zwei Fasern der Länge 1 mit den zugehörigen Werten
M E1m'1 bzw. s2, E2, F2. % und s_ seien > 0 (Verkürzungen).
Voraussetzung ist, dass beide Fasern aneinander «haften»; die
Bewegimg der Endquerschnitte am freien Ende ist dann für
beide Fasern dieselbe, nämlich eine Verkürzung S. (Es wird
hier von der Verdrehung abgesehen.) Beide Fasern hindern sich
gegenseitig am «freien» Schwinden. Mit Benützung des Ansatzes
(I) wird:

-f s, S -X- (Faser 1)
m

~E~I 6.

a'

a'
(Faser 2)

E' Ist symbolisch und fällt später aus der Rechnung heraus. Um
«$J|nd <j, zu bestimmen, benützen wir die Gleichgewichtsbedingung

JadF 0, aus der aXi + <_ Fa ° fcd&t; dies in dle zwei
obigen Gleichungen für at und o. eingesetzt führt zu

_a^ s^F, + s_EtFt
E' H EtFt + EaFa

Wir definieren analog wie oben als fiktive äussere Kräfte
folgende Ausdrücke:

Nl elB1F1
Na «_2E2F2

EiFa Ni + N„ N als Resultierende der Kräfte
mm

und s1 El F1

H und Na
abgekürzt. '

Daraus erhellt, dass die Berechnung von

Bestimmung von

Der Nenner E1F1 + EtFi 2EiFi werde mit (EF)
i

und a2 auf die

allein zurückgeführt werden kann, d. h.
E'

auf die Bestimmung einer einzigen fiktiven Kraft N, die, wie
auch der Nenner (EF), sofort hingeschrieben werden kann.

Diese Betrachtungsweise lässt sich auf den allgemeinsten
Fall der Berechnung der Eigenspannungen mit Verdrehung des
Querschnittes anwenden, was im Folgenden bewiesen wird. Es
ist hierbei vorausgesetzt, dass keine äusseren Kräfte wirken.

Wir betrachten einen
symmetrischen
Querschnitt, bei dem das
Schwindmass s und
der Elastizitätsmodul

E von Faser zu
Faser variieren. Die

durch das Schwinden

jeder Faser
«induzierten»

Normalspannungen sollen
berechnet werden. Als Bezugsaxe wird die Horizontale durch
den Schwerpunkt des ideellen Querschnittes (ideelle Schweraxe)
gewählt, wofür die Gleichung

JEzdF 0 (1)
gilt. Wir haben vorerst die beiden Gleichgewichtsbedingungen

fadF 0 (2)
und fazdF 0 (3)

k

>

Z>0

KO
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zur Verfügung, wo das Integral über den ganzen Querschnitt
zu erstrecken ist. Die Lösung des Problems folgt in Analogie
mit Obigem aus dem Ansatz

^+-<>=-i- <*>

in Kombination mit der Navier-Bernoulli'schen Hypothese des
Ebenbleibens der Querschnitte; für unsern Fall heisst das aber,
dass 8 aus Gl. (4) eine lineare Funktion des Abstandes z von
der ideellen Schweraxe ist:

8 A + Bz §m
wo A und B Konstante sind. 6ds ist die tatsächliche
Längenänderung der Faser von der Länge ds im Abstände z. Daraus
folgt:

' + e A + Bz (6)
E

oder
6- (7)a E(A + Bz)

(7) in (2) und (3) eingesetzt ergibt:
JodF AfEdF + BfEzdF — JsEdF _= 0

fozdF AfEzdF -f BJEzmF — JsEzdF 0

Wegen (1) ist fEzdF 0 und die Konstanten A und B sind
gleich:

fsEdF

JsEzdF

(8)

B (9)
JEz'dF

Analog zu früher kann definiert werden:
eEdF dN Differential einer fiktiven äusseren Nor¬

malkraft
JeEdF N Resultierende aller fiktiven Normal¬

kräfte
(eEdF)z dNz dM Moment der fiktiven Kraft dN bezüg¬

lich der ideellen Schweraxe
JeEzdF M Moment der Resultierenden N bezüg¬

lich der ideellen Schweraxe
Zur Abkürzung setzen wir:

JEdF SEiFi (EF)

JEz*dF SEiJi (EJ)

Damit wird:

und schliesslich

N M
(EF) ' (EJ)

i

o N M
E + £ " (EF) "^ " (EJ)

(10)

(11)

Aus dieser Gleichung, in der die rechte Seite nur mit z variiert,
lässt sich die Spannung o für eine beliebige Faser leicht
berechnen.

Damit ist die Berechnung der Eigenspannungen im
allgemeinsten Falle, als ein Problem innerer Kräfte, zurückgeführt
auf ein solches äusserer, fiktiver Kräfte, nämlich auf dasjenige
der Biegung mit Axialkraft. Sobald die Kraft N und ihre Lage
bestimmt sind, ist die Lösung durch Gl. (11) gegeben. Sämtliche
Sonderfälle betr. Temperaturänderungen, Schwinden, usw. und,
wie wir sehen werden, Vorspannungen, können somit einheitlich
behandelt werden, und zwar in einem einzigen Berechnungsgang,
der folgendermassen zusammengefasst werden kann:

Aus den gegebenen Grössen e und E, die im allgemeinsten
Falle von Faser zu Faser variieren, berechnet man die fiktive
Kraft

N JeEdF SstEiFi
i

sowie das Moment M JsEzdF _? gj ._?£«; Ff

ferner die Nennergrössen
(EF) JEdF SEiFi
(EJ) JEz'dF S EiJi

i
Alsdann folgt für eine Spannung <n für eine Faser sj,, für die
die Werte eu und E^ gelten, nach Gl. (11):

_2k_ _Jl__ az_
Ek + k ''

(EF) + k~(EfJ)
Diese Gleichung nach ai, aufgelöst ergibt die gesuchte Spannung.

Die Berechnung ist einfach und übersichtlich und macht
die Aufstellung von eventuell komplizierten Elastizitätsbedingungen

überflüssig.
Falls in Gl. (11) alle e 0 gesetzt werden und N und M

äussere Kräfte sind, so stellt diese für einen Eisenbetonquer'
schnitt nichts anderes als die Navier'sche Spannungsgleichung
nach Stadium 1 dar.

die Winkeldrehung des Querschnittes ist. Dies

Es sei noch bemerkt, dass 6 die tatsächliche Dehnung der
NFaser z ist, wobei ,_,,r*5 s« die «spezifische» Dehnung und

(EF)
M dep

(EJ) ~ ds
erlaubt, das allgemeine Problem der Eigenspannungen auch auf
statisch inibestimmte Systeme zu übertragen, wo dann neben
den oben behandelten Spannungen «erster Art» solche «zweiter
Art» infolge der Auflagerbedingungen auftreten. Dies soll in
einem späteren Aufsatz behandelt werden.

Anwendungen auf den Eisenbeton
In der Folge werden die Spannungen nach Stadium 1 (rissefrei)

berechnet. Die Plastizität des Betons wird dadurch berück-

sichtigt, dass für -=^- statt n der Wert kn gesetzt wird.
Ei,

1. Vorgespannter Beton (ohne Schwinden).
Gegeben sei ein symmetrischer Eisenbetonquerschnitt mit

Fem und den zugehörigen Vor-den Armierungen Fei, Fe
Spannungen ö»ei, a»e2..... avem. Gesucht sind die Spannungen
im Beton und in den Eisen. Der ideelle Schwerpunkt Su. ist
durch JEzdF 0 definiert. Nach dem «Loslassen» der
Vorspannung in den Eisen haben diese die Tendenz, sich zu ver-
kürzen, d. h. zu «schwinden». Das Schwindmass wird definiert
als:

_T_> -

(12)E.
(—, da ovei als Zugspannung < 0 ist und ee£ als Verkürzung
> 0). Vom Schwinden des Betons soll vorerst abgesehen werden,
d. h. 65 0. Die Berechnung der Spannungen erfolgt nach
Gl. (11):

0 N M
4- s= \- z-1^ / _c? jp\ rE

worin für den Beton eb

00,

(EF) ' (EJ)
-. 0 zu setzen ist, und für die Eisen

folgt N — 2a
Ferner ist für die Eisen Et — Ee, Fi

iFei, M — Zo»eiFeizei, (EF) S6Ffc +
EeSFei, (EJ) EbJb + Ee2Jei und für die Betonspannung

i i
in einer Faser zb:

Ob 2oveiFei
Eb — zb-

2oveiFe
Ob(EF) " (EJ)

Für die Eisenspannung in einer Eisenlage zei ist:
o,i aei — a-»ei SoveiFei 2ov,
E, + se

Ee (EF) (EJ)

Damit ist die Aufgabe für jeden Fall der Vorspannungen gelöst.

2. Schwinden im Beton
Es liege der selbe Querschnitt zu Grunde, jedoch seien sämtliche

Vorspannungen gleich Null (Schwinden allein). Es ist
eei 0, £b es und N es EbFb, M es EbFbs, wo s den
Abstand der Schwerpunkte des ideellen und des Betonquerschnittes
bedeutet (s aus der Momentengleichung für S,-j.). (EF) und
(EJ) wie oben. In Gl. (11) eingesetzt folgt:

Qb esEbFb
| ^ j^EbFbs

Eb + " (EF)
Qei _ s,EbFb
F.

«6-

+ *.

(EJ)
esEbFbs

(EF) I "~" (EJ)
Werden diese Gleichungen nach ob und aei aufgelöst, so folgen
die bekannten Formeln für das Schwinden nach der Theorie der
Eigenspannungen 2).

S. Vorspannung und Schwinden
Fall 1. und 8. können gleichzeitig behandelt werden, indem

eb — Sj und e„£ ^- gesetzt wird. Es ändern sich nur N
E.

und M:
N — Sa«eiFei M ¦e.EbFb

i
(EF) und (EJ) wie oben. Dies führt zu

ab N M
~El~ "^" e' |j (EF)

Oei — Ö»«£

.; + esEbFbs

«i

E.
N

(EF) ^
(EJ)

M
JEJJ

für Vorspannung und
Schwinden gleichzeitig.

2) Siehe Prof. Dr. M. Ritter, «Wärme- und Schwindspannungen in
eingespannten Gewölben». SBZ, Bd. 95, S. 139* und 156«, März 1930).
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lf. TemperaturSpannungen
Es liege wieder obiger Querschnitt zu Grunde. Man setzt:

£ (o t°
wo t" Temperatur (i. Allgem. variabel mit z).
co Wärmeleitzahl (i. A. variabel mit z, für Eisen und Beton
jedoch konstant und für beide Materialien dieselbe).
a) Lineare Temperaturänderung

Darin ist als Spezialfall die gleichmässige Temperaturänderung
mit t° konstant enthalten. Für t° wird gesetzt #> a +

bz, wo a und b durch t"a und i°0 an den Rändern bestimmt
werden können. Es folgt:

£ co (a -)- b z)
und

N co\_a (EF) + bUEFz] wa(EF)
M wlaXEFz + b(E J)1 a>b (EJ)

Wegen (1) ist 2EFz 0 und Gl. (11) ergibt:
a HH-=- 4- w (a -f- bz) =_= a> (a + oz)E

woraus wie bekannt a 0.
b) Ungleichmässige Temperaturänderung nach

einem Parabelgesetz
Vorausgesetzt sei ein unarmierter Beton-Rechteckquerschnitt

von der Grösse bd und eine Temperaturänderung nach dem
Gesetz

z1

lP
Dann ist

im j, i(t«m — t\)

cot tn 4(t--t.)-gr (— Verlängerung)
Hierin bedeuten P>m die Temperatur in der Mitte und t\
diejenige am Rande des Querschnittes. Aus Symmetriegründen ist
M 0. N ist eine fiktive Zugkraft, die nach dem obigen
Parabelgesetz leicht berechnet werden kann zu:

u>EbFb

Nach Gl. (11) folgt:
o N

"FT+S— (EF)

" g~" (*, +2tm)

M + 2tm)

oder

o co Eb (t

Für z 0 und

tj) und o or

folgt bzw. o am

— 4

coEb

z*

Um —

2<3n

Heutige Aufgaben industrieller Wärmewirtschaft
Die immer dringendere Frage, wie und in welchem Umfang

die knapp werdende Kohle ersetzt werden kann, veranlasst uns,
auf zwei Vortragsveranstaltungen des letzten Jahres zurückzukommen.

I.
An der Generalversammlung des Schweiz.

Energiekonsumenten-Verbandes vom 24. März in Zürich*) wurde durch
Kurzvorträge von fünf Referenten das Thema Anpassung der
Wärmeversorgung der Schweiz. Industrie an die gegenwärtige und
kommende Kohlenwirtschaft behandelt.

Nach dem einleitenden Referat von Prof. Dr. JB. Bauer, E. T. H.,
brachten die weiteren Referenten als Beiträge zum gemeinsamen
Thema gut belegte Ausführungen überTeilfragen aus dem Arbeits-
gebiet ihrer Firmen. Es sprachen Dir. J. Gastpar (Gebr. Sulzer) über
«Wärmebeschaffung in Dampf- und Warmwasserkesseln», Obering.

R.Peter (Escher-Wyss) über «Richtlinien für vorteilhafte
Wärmewirtschaft industrieller Betriebe und die zur Verfügung
stehenden technischen Mittel», Obering. P. Faber (BBC) über
«Sparsame Energiewirtschaft» und Ing. G. Keller (BBC) über
«Ersatz von festen, flüssigen und gasförmigen Brennstoffen durch
Elektrowärme». Alle Referate sind als Sonderpublikation des
E.K.V. bei dessen Sekretariat, Usteristr. 14 in ZUrich zu beziehen.

Nach Prof. B. Bauer, der die prinzipielle Seite des Themas
und die Möglichkeit und Notwendigkeit der Anpassung der
Wärmeversorgung der Industrie an die gegenwärtige und
kommende Kohlenwirtschaft darlegte, hat die durch die
Mangelwirtschaft und die Autarkiebestrebungen in den kohlenprodu-

¦) In dem den Vorträgen vorangehenden geschäftlichen Teil der Sitzung
stimmte die Versammlung auf Antrag des Ausschusses einstimmig einer
Resolution zu, in der dringend der beschleunigte Ausbau von Grosspeicherwerken

gefordert wurde. Die Resolution stellte ferner fest, dass durch
rechtzeitige Erteilung von Konzessionen für neue Kraftwerke auf Grund
von Art. 21 und 24bis der Bundesverfassung eine vermehrte
Energielieferung heute sichergestellt wäre («Der Schweiz. Energie-Konsument»
1942, S. 70 ff.).

ersetzbar durch Etektrokessel
306000 t

I ersetzbar durch elektr. Warmlufterhitzer
1385001

m
Wim n i

für Etektrokessel

Hi «40 Mio kWh

ersetzbar durch Elektro-Ofen
«3200 t

für elektr. WarmlufferNtzer
230 Mio kWh

vorläufig nicht ersetzbar
191100 t
sowie ¦-

HHI ihdusfr. Raumheizung
'"

101000 t

D

Abb. 1. Ersatzmögliehkeiten des

industriellen Kohlenverbrauchs
für das Jahr 1940,

Gesamtverbrauch 980100 t

für Elektro-Ofen
130 Mio kWh

K^^l mutmassliches Maximal-Programm:
[^Xsj 970 Mio kWh wovon Sommerenergier

900Mio kWh (ersetzt rd. 1330001 Kohlej

Abb. 2. Strombedarf für den in den
industriellen Anlagen möglichen
Kohlenersatz im Jahr 1940,

Gesamtbedarf 2200 Mio kWh

zierenden Ländern stark geförderte «Kohlenveredlung», für die
die Kohle nicht mehr «Brennstoff», sondern «Werkstoff» ist, auch
für spätere Zeiten unbedingt eine Verknappung und Verteuerung
der bisher von der Industrie bevorzugten fetten Kohlensorten
zur Folge. Anderseits muss mit einer stärkeren Belastung der
Kohle durch fiskalische und soziale Abgaben gerechnet werden.
Ein Angleichen an diese Verhältnisse müsse daher gesucht werden

durch Brennstoffeinsparung einerseits und durch Ersatz von
Brennstoffen durch landeseigene Rohenergie, d. h. durch
Elektrizität anderseits.

Ueber Ersatz von Brennstoffen durch Elektrowärme machte
Ing. G. Keller interessante Angaben. Prinzipiell sei dies bei
den meisten industriellen Wärmeanlagen möglich; besonders
günstig liegen die Verhältnisse bei Glüh-, Brenn- und Schmelzöfen,

wo Temperaturen bis 1000 ° C leicht erreicht werden können.
Für höhere Temperaturen bestehen noch gewisse Schwierigkeiten.
Für Grossbetriebe, z. B. für Anwendung von Elektrowärme in
der Zementindustrie, liegen erst Versuche vor; dagegen sind
auch Trockenöfen und Metallbäder geeignete Objekte. Für Elek-
trokessel für Dampf- oder Warmwasserbereitung liegen die
Verhältnisse wieder wesentlich anders, da hier der Wärmeinhalt
einer kWh direkt mit dem nutzbaren Heizwert eines kg Brennstoff

in Beziehung zu setzen ist. Keller gab eine interessante
Zusammenstellung über die Aequivalenzzahl einer kWh zu einem
kg Brennstoff bei verschiedenen Verwendungszwecken. Diese
Verhältniszahl (kWh elektr. Energie: kg Kohle für gleiche
Produktion) beträgt z. B. für Einsatzhärteöfen 2,7, für Glühöfen 2,0,
für Brennen von Porzellan 1,28, Emaillieren von Blechwaren 1,0,

Feuerverzinkung 1,0, Dampferzeugung 5 bis 6. Diese Zahlen sind
für die Tarifbildung und Anwendungsmöglichkeit massgebend.

Nach Studien von Prof. Bauer wären von dem im Jahre 1940
ausgewiesenen Kohlenbedarf von rd. 1 Mio t etwa 60°/0 vorläufig
aus technischen oder wirtschaftlichen Gründen nicht durch
Elektrizität ersetzbar, für die übrigen 40 % Hesse sich die Umstellung
durchführen (Abb. 1). In den Angaben, die diesem Diagramm zu
Grunde liegen, sind die 1940 bereits elektrifizierten Betriebe
nicht inbegriffen. Die für den angegebenen Brennstoffersatz
erforderliche Energiemenge übersteigt aber bei weitem die
wirtschaftliche Leistungsfähigkeit der bestehenden und neu geplanten
Kraftwerke. Ein mutmassliches Maximalprogramm gibt das
zweite Diagramm (Abb. 2). Darnach «könnten eventuell» 183000 t
Industriekohlen Im Jahre durch Hydroelektrizität ersetzt werden.
Für die Durchführung dieses Programms wären aber vielfach
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