Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 121/122 (1943)

Heft: 5

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Eigenspannungen und vorgespannter Beton. — Heutige Aufgaben industrieller Wärmewirtschaft. — Der Neubau der Stadtgärtnerei Zürich. — Mitteilungen: Schweiz Mustermesse in Basel. Anwendungen der ultravioletten Strahlung. Der japanische Kwangmon-Untersee-Tunnel. Studium und Fortbildung des Ingenieurs. Kurs 1918

bis 1922 an der mechanisch-technischen und elektro-technischen Abteilung der E.T.H. Die Transiranische Bahn. — Nekrologe: Hermann Jaeggi. Wettbewerbe: Verbindung der Rhoneschiffahrt aus der Stauhaltung Verbois mit dem Genfersee. - Literatur. - Mitteilungen der Vereine. Vortragskalender.

Band 121

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet

Nr. 5

Eigenspannungen und vorgespannter Beton

Allgemeine, vereinfachte Berechnungsweise

Von Ing. Dr. PIERRE LARDY, Zürich

Das aktuelle Problem der Berechnung der Biegungsspannungen in einem Eisenbetonbalken mit vorgespannten Armierungen kann folgendermassen formuliert werden: Gegeben sei ein symmetrischer Eisenbetonquerschnitt mit den Armierungen ${F_{e_1}}$, ${F_{e_2}}$, \ldots ${F_{em}}$, deren zugehörige Vorspannungen mit $\sigma_{e_1}^v$, $\sigma_{e_2}^v,\,\ldots\,\sigma_{em}^v$ bezeichnet seien. Es sollen die Biegungsspannungen im Beton sowie die endgültigen Eisenzugspannungen $\sigma_{e_1},\;\sigma_{e_2}$, \ldots , σ_{em} unter Berücksichtigung des Schwindens und der Plastizität bestimmt werden.

In der bisherigen Berechnungsweise¹) zerfällt die Berechnung in mehrere Stufen. Für jede gegebene vorgespannte Eisenlage F_{e_1} , F_{e_2} , F_{em} , sowie für das Schwinden werden die Spannungszustände getrennt berechnet und am Schluss superponiert. Infolge Schwinden und Plastizität des Betons sowie der elastischen Deformation des Querschnittes geht die ursprüng-

liche Vorspannung, z. B. $\sigma_{e_1}^v$, auf den Wert $\sigma_{e_1} < \sigma_{e_1}^v$ zurück; σ_{e_1} wird aus der Elastizitätsbedingung:

$$\frac{\sigma_{e_1}^v - \sigma_{e_1}}{E_e} = \varepsilon_s + k \frac{\sigma_b}{E_b}$$

 $\frac{\sigma_{e_1}^v-\sigma_{e_1}}{E_e}=\varepsilon_s+k\;\frac{\sigma_b}{E_b}$ (worin $\varepsilon_s=$ Schwindmass für Beton, k= Plastizitätsfaktor) für die Faser F_{e_1} gefunden, sobald σ_b dort bekannt ist. Aus den bekannten Gleichgewichtsbedingungen

$$\int \sigma dF = 0$$
 und $\int \sigma z dF = 0$

sowie aus der Hypothese von Navier-Bernoulli folgt die Spannungsverteilung im Beton und in den Eisen. Diese Berechnungsweise ist mühsam und unübersichtlich; denn für jede Berechnungsstufe sind der «ideelle Querschnitt», der «ideelle Schwerpunkt» und das «ideelle Trägheitsmoment» verschieden.

Im Folgenden soll gezeigt werden, dass sich diese Berechnungsweise wesentlich vereinfachen lässt, indem die ganze Berechnung in einer einzigen Berechnungsstufe durchgeführt werden kann, die einfach und übersichtlich ist und sich im allgemeinsten Fall der Eigenspannungen anwenden lässt. Wesentlich und neu ist dabei für die Anwendung auf den vorgespannten Beton, dass das Schwinden und die Plastizität in dieser vereinfachten Berechnungsweise voll berücksichtigt werden.

Einige einfache Ueberlegungen seien vorausgeschickt; dabei gelten Druckspannungen, sowie Faserverkürzungen als positiv, Zugspannungen und Faserverlängerungen als negativ. Wir betrachten eine am linken Ende eingespannte Faser von der Länge 1, vom QuerschnittF, dem ElastizitätsmodulE und dem Schwindmass $\varepsilon > 0$. Das Schwindmass ε bedeutet, dass die Faser die Tendenz hat, sich zu verkürzen um das Mass 1ε. Beim «freien», d. h. ungestörten Schwinden verkürzt sich die Faser um $\delta=1\,arepsilon$, bleibt dabei aber spannungslos.

Nun kann man sich die tatsächliche Verkürzung δ dadurch entstanden denken, dass man eine fiktive, nicht existierende Normalkraft N' als äussere Druckkraft auf die Faser wirken lässt und die Verkürzung δ als elastische Deformation infolge dieser Druckkraft auffasst. Die entsprechende fiktive Normal-

spannung σ' ist gleich $\frac{N'}{F}$; aus dem Hooke'schen Gesetz folgt $\dfrac{\sigma'}{E}=arepsilon$ oder $\sigma'=arepsilon E$ und daraus die fiktive Normalkraft N' zu

$$rac{\sigma'}{E}=arepsilon$$
 oder $\sigma'=arepsilon E$ und daraus die fiktive Normalkraft N' zu $N'=arepsilon EF$

Dabei sind die tatsächlichen Spannungen σ gleich Null; σ' existiert ebensowenig wie N'. Es ist $\frac{\sigma'}{E}$ gleich der tatsächlichen Dehnung ε .

Für den Fall, dass das Schwinden aus irgendeinem Grunde z. T. oder ganz verhindert wird, entstehen in der Faser Spannungen σ , die von Null verschieden sind. Die Verkürzung ist dann kleiner, weil sich das Schwinden nicht voll auswirken kann; es treten deshalb Zugspannungen $\sigma < 0$ auf, deren Anteil an der Deformation der Faser gleich $\frac{\sigma}{E}$ ist (im Sinne einer Verkleinerung der Verkürzung). Die tatsächlich auftretende Verkürzung δ wird dann:

$$\delta = \varepsilon + \frac{\sigma}{E} \quad (\delta < \varepsilon \; \text{, da } \sigma < 0)$$

Analog kann wieder eine fiktive Normalkraft N' als äussere

$$\delta = \frac{\sigma'}{E} = \varepsilon + \frac{\sigma}{E}$$
 (I)

Kraft eingeführt werden, die δ erzeugt. Es folgt: $\delta = \frac{\sigma'}{E} = \varepsilon + \frac{\sigma}{E} \quad \text{(I)}$ (Die Berechnung von N' würde hier die nähere Kenntnis der «Verhinderung» der Verkürzung erfordern.) Die beiden Grenzfälle $\sigma=0$ sowie $\frac{\sigma'}{E}=\delta=0$ (N'=0 und $\sigma=-\varepsilon E$) brauchen keine weitere Erläuterung.

Einen Schritt weiter führt die Betrachtung des Zusammenwirkens von zwei Fasern der Länge 1 mit den zugehörigen Werten ε_1 , E_1 , F_1 bzw. ε_2 , E_2 , F_2 . ε_1 und ε_2 seien > 0 (Verkürzungen). Voraussetzung ist, dass beide Fasern aneinander «haften»; die Bewegung der Endquerschnitte am freien Ende ist dann für beide Fasern dieselbe, nämlich eine Verkürzung δ . (Es wird hier von der Verdrehung abgesehen.) Beide Fasern hindern sich gegenseitig am «freien» Schwinden. Mit Benützung des Ansatzes (I) wird:

$$rac{\sigma_1}{E_1} + \epsilon_1 = \delta = rac{\sigma'}{E'}$$
 (Faser 1)
 $rac{\sigma_2}{E_2} + \epsilon_2 = \delta = rac{\sigma'}{E'}$ (Faser 2)

E' ist symbolisch und fällt später aus der Rechnung heraus. Um $\sigma_{\scriptscriptstyle 1}$ und $\sigma_{\scriptscriptstyle 2}$ zu bestimmen, benützen wir die Gleichgewichtsbedingung $\int \sigma \, \mathring{d} \, F = 0$, aus der $\sigma_1 \, F_1 + \sigma_2 \, F_2 = 0$ folgt; dies in die zwei obigen Gleichungen für σ_1 und σ_2 eingesetzt führt zu

$$\delta = \frac{\sigma'}{E'} = \frac{\varepsilon_1 E_1 F_1 + \varepsilon_2 E_2 F_2}{E_1 F_1 + E_2 F_2}$$

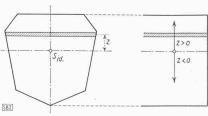
 $\delta = \frac{\sigma'}{E'} = \frac{\varepsilon_1 \, \overline{E_1} \, F_1 + \varepsilon_2 \, E_2 \, F_2}{E_1 \, F_1 + E_2 \, F_2}$ Wir definieren analog wie oben als fiktive äussere Kräfte folgende Ausdrücke:

$$N_1 = \varepsilon_1 E_1 F_1$$
 $N_2 = \varepsilon_2 E_2 F_2$

 $N_1=\varepsilon_1\,E_1\,F_1\\N_2=\varepsilon_2\,E_2\,F_2$ und $\varepsilon_1\,E_1\,F_1+\varepsilon_2\,E_2\,F_2=N_1+N_2=N$ als Resultierende der Kräfte N_1 und N_2 . Der Nenner $E_1\,F_1+E_2\,F_2=\sum E_i\,F_i$ werde mit $(E\,F)$

Daraus erhellt, dass die Berechnung von $\sigma_{\scriptscriptstyle 1}$ und $\sigma_{\scriptscriptstyle 2}$ auf die Bestimmung von $\frac{\sigma'}{E'}$ allein zurückgeführt werden kann, d. h. auf die Bestimmung einer einzigen fiktiven Kraft N, die, wie auch der Nenner (EF), sofort hingeschrieben werden kann.

Diese Betrachtungsweise lässt sich auf den allgemeinsten Fall der Berechnung der Eigenspannungen mit Verdrehung des Querschnittes anwenden, was im Folgenden bewiesen wird. Es ist hierbei vorausgesetzt, dass keine äusseren Kräfte wirken.



Wir betrachten einen symmetrischen Querschnitt, bei dem das Schwindmass & und der Elastizitätsmodul E von Faser zu Faser variieren. Die durch das Schwinden jeder Faser «induzierten» Normalspannungen sollen

berechnet werden. Als Bezugsaxe wird die Horizontale durch den Schwerpunkt des ideellen Querschnittes (ideelle Schweraxe) gewählt, wofür die Gleichung

¹⁾ Siehe Hoyer: «Der Stahlsaitenbeton» und neuerdings Moersch: «Der ¹) Siehe Hoyer: «Der Stahlsaitenbeton» und neuerdings Moersch: «Der Spannbetonträger», 1943. Hoyer gibt die Berechnung mit Superposition der Spannungszustände an, während Moersch, wie der Verfasser dieser Arbeit, mit einer fiktiven Resultierenden rechnet. Sowohl bei Moersch wie bei Hoyer sind das Schwinden und die Plastizität in den angegebenen Berechnungsweisen nicht einbezogen; Moersch berücksichtigt das Schwinden durch einen konstanten Abzug an den Vorspannungen. Im Gegensatz dazu behandelt Prof. Dr. M. Ritter in seiner Vorlesung «Ausgewählte Kapitel der Baustatik und des Massivbaues» das Problem der Vorspannung unter voller Berücksichtigung des Schwindens und der Plastizität.