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Les vibrations transversales des cordes pesantes
Par HENRY FAVRE, Dr. es sc. techn., professeur à l'E. P. F., Zurich

4. Etude de quelques vibrations simples
1 °) Supposons tout d'abord que l'on déplace horizontalement

pendant un temps très court l'extrémité inférieure A de la corde
représentée à la figure 1, en revenant à la position initiale. On

engendre ainsi une petite onde élémentaire y= (1 — ax) F qui
monte le long de la corde en subissant la déformation décrite
au paragraphe précédent.

Au moment où cette onde arrive à l'extrémité supérieure B
(supposée fixe), il se crée une onde descendante (1 — ax)f qui
neutralise la première, car en B on doit avoir y 0 quel que
soit t. En d'autres termes on aura d'après (9)
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verticales (Suite de la page 254)

L'onde incidente montante (1 — ax)F s'est transformée en
une onde descendante (1 — ax) f égale mais de signe contraire.
Il y a réflexion totale avec changement de signe (fig. 4). La
nouvelle onde (1 — ax) f descendra le long de la corde en se
transformant comme nous l'avons indiqué et arrivera en A. Si
ce point est fixe à ce moment, l'onde descendante se transformera
en une onde montante absolument identique à (1 — ax) F, qui
remontera le long de la corde et le jeu des réflexions se
poursuivra indéfiniment.

Calculons le temps r que met cette onde élémentaire pour
parcourir la corde de A en B et retour. Nous avons, en utilisant
la formule (10):

+ Ä/2 + h\2

_
"l——çà. — f(.l — 2ax)dx

2Ä
2h\l>

m
sn

(11)

Ce temps est donc le même que si la corde était tendue par
une force constante, égale â la traction au milieu 0 de la corde
pesante verticale considérée.

De (11) on tire
ih2fiS„ (11')

Si l'on connaît Ä et « on peut, en mesurant le temps x,
calculer par cette formule la traction Sa au milieu d'une corde tendue

verticale. De là, il est facile de calculer S4 et Sb par les
formules (2).

2°) Considérons le mouvement défini en choisissant

/ M 0 et F :
2ji
T t — (1 — ax) x -\- ß

a(l —aa;)sin-^ft (1 — ax) x + ß1 (12)

où a, T et ß désignent des constantes.
L'élongation sera, d'après (9) :

2jt |
yx — a i j. — a x) sin -—

En un point x, la corde est animée d'une vibration
transversale harmonique de période T et d'amplitude a(l— ax). Au
temps t, la corde est formée d'une série de demi-ondulations
inégales, alternativement positives et négatives, comprises entre
des points d'élongation nulle, dont les abscisses x sont données
par l'équation

1 n
— (1 — ax) x + ßgl kn

où k désigne un entier négatif, nul ou positif. Pour résoudre
cette équation, le plus simple est de procéder par approximations

successives. Puisque ax est petit par rapport à 1, posons
d'abord a 0. L'équation devient linéaire et a pour racine x
c j t -j- ß -|—— k (première approximation). Remplaçons en¬

suite le terme ax par ac (t -f- ß -|—— k\ On obtient encore

une équation linéaire dont la racine est la valeur de seconde
approximation suivante:

a* c (t + ß + -2-
k\ 1 + ac (t + ß + -g-

k\

(fc= 2,-1, 0,-1-1, +2,...)
On voit que xk croît avec k. Les points d'élongation nulle sont
rangés comme l'indique la figure 5.

Calculons la distance de deux de ces points consécutifs.
L'abscisse du point k — 1 est

T

(13)

Xk l c \t + ß + (k m
ac I t + ß + ^-(k — l)

Soustrayons (13') de (13)
cT

*fc 37. — Xk - 1 —s h ««*" * + 0 +

]) (13')

(14)

On voit que la distance Xk de deux points nuls consécutifs —
la demi-longueur d'onde — croît avec k. La suite des valeurs

Xk — 1. Xk, Xk + 1 • • forme une progression arithmétique de
ac-T-

raison

D'autre part, la courbe étant comprise entre les deux droites
y + a (1 — ax), la valeur absolue des maxima et des minima
successifs décroît de bas en haut (fig. 6). Il serait facile de
calculer la position et la grandeur de ces extréma.

Lorsque le temps croit, l'onde (12) se propage en montant
le long de la corde (onde progressive). Elle se déforme comme
nous l'avons exposé au paragraphe 3. Les demi-ondulations
s'allongent et s'aplatissent à mesure qu'elles s'élèvent. Il est
intéressant de remarquer que la corde reprend périodiquement la
même position. En effet, soit t une époque déterminée. Au temps
t -j- T le second membre de (12) sera identique à la valeur qu'il
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avait au temps t, puisque l'argument du sinus a augmenté de
2ji. On peut donc dire que la propagation de l'onde (12) est un
phénomène périodique, de période T.

3°) On verrait de même que l'équation

ys a (1 — ax) sin —=- \t + •— (1 — «*) x + y (15)

représente une onde analogue à celle de la figure 5, mais qui
descend le long de la corde en se déformant, le phénomène étant
de nouveau périodique.

4°) Considérons le mouvement obtenu en superposant les
deux ondes progressives yx et y, de sens contraires définies par
(12) et (15). Une transformation simple donne:

y 2/i + Vi

2a(l — ax) cos-
2n [m ax) x ¦

2re
(t + s) (16)

y + ß
2

Cette équation est celle d'une onde stationnaire. Un point
quelconque x de la corde est animé d'un mouvement harmonique
de période T. Au temps t, la corde est formée de demi-ondulations

inégales alternativement positives et négatives, tout à fait
analogues à celles étudiées plus haut. Seulement ces ondulations
ne se propagent plus, elles se dilatent ou s'aplatissent sur place,
en passant alternativement d'un côté à l'autre de l'axe x (fig. 6).
Aux points où le cosinus s'annule, l'amplitude est toujours égale
à zéro. Ce sont les nœuds. Entre deux nœuds consécutifs est un
ventre où l'amplitude passe par un maximum. La position des
nœuds est donnée par l'équation

\L.(l-ax)x + ô\=--^- + knT L c j
' "J 2

(k H 2, —1, 0, +1, +2,
En procédant par approximations successives, comme nous l'avons
fait pour établir la formule (13), on trouve pour l'abscisse du
nœud k:

Xk

Xk

1-f «c
T fBBS

et pour le nœud k — 1 :

¦BBJBBBBy
D'où pour la demi-longueur d'onde :

cT
Xk Xk — xk - i —s f- ce CT

à +

ô +

(k m
m

La suite des valeurs X^ — i,
progression arithmétique de raison

ilac'T
2~

Xk + i<

T
~~2

(17)

(17')

forme une

comme pour l'onde

progressive (12).
La figure 6 représente huit positions successives de la corde,

au cours d'une période T. Toutes les courbes sont situées entre
T

es deux droites y + 2a(l — ax). Aux époques t — s -|

et 3T
~4~ les courbes sont tangentes à ces droites.

5. Ondes stationnaires d'une corde pesante verticale tendue entre
deux points fixes

Soit une corde verticale tendue entre les deux points fixes
A, B de distance h. Choisissons le système d'axes x, y de la
figure 1. Nous allons examiner les différentes ondes stationnaires
simples qui peuvent exister.

Puisque A et B sont fixes, nous aurons nécessairement un
nœud en chacun de ces points. La corde peut former une ou
plusieurs demi-ondulations stationnaires analogues à celles
étudiées à la fin du paragraphe précédent.

Supposons qu'il se forme m demi-ondulations. Soit p la
valeur de k au nœud A, q p -f- m celle relative au nœud B.
Nous avons les deux conditions:

h h
xP --£¦, av, +-2-

qul donnent, exprimées à l'aide de (17) :

2 (*+t)1{1 + BC[

TI 1
c -* + -«- h

à + +r-—i Mir fWP^:«
Ces deux équations déterminent T et â. Pour les résoudre

par rapport à ces grandeurs, commençons par exprimer — ô yT t 1\, „ première. A cet effet, faisons tout

¦(• + t)

t(p +
d'abord a

à l'aide de la

0, d'où la valeur de première approximation
lv h

~2) ~ ~ ~2c

Remplaçons la seconde paranthèse à crochets du premier

membre par 5^-, on tire alors de l'équation la valeur de
2c

seconde approximation
T-ô + (a)~2~{P + 2 — 2c \" T 2

En procédant d'une façon analogue avec la seconde équation
on obtient

L tth\

+ -2-(«+T) + ^(1--r)
Soustrayons maintenant (a) de (b) :

T h I 1

-5- (.0. — P) — » d'où, puisque q — p m:

2h
me

2h
m

(b)

(19)

De l'équation (a) on calcule ensuite, compte-tenu de (19):

ô=»(1 + J^ + ± + ±JL\. (20)2c \ 2 ' m m I
Dans cette formule, p désigne la valeur de k relative au nœud
inférieur A. On peut choisir pour p un entier quelconque.

En faisant successivement m 1, 2, 3, on obtient les
différents mouvements stationnaires simples que peut faire la
corde. Ce sont les «sons» qu'elle peut produire. Ces mouvements
sont régis par l'équation (16) où T et (î ont les valeurs .(19) et
(20). La position des nœuds intermédiaires est donnée par (17).
Remarquons que d'après (19) les différentes périodes sont les
mêmes que si la traction était constante et égale à S0. On peut
dire aussi que la pesanteur n'a pas d'influence sur les périodes,
car si elle n'agissait pas la traction serait partout égale à S0.
Par contre, Za pesanteur influence sensiblement la forme des
ondulations, comme nous allons le voir en examinant en détail
les cas »i l et m 2.
1°) m 1. Son fondamental ou 1er harmonique.

L,e mouvement ne comprend qu'une seule demi-ondulation.
D'après (19):

T 2h
c

2h H (191)

La période est égale au temps x que met une onde élémentaire

pour parcourir deux fois la corde [voir (11)]. Choisissons
p — 1. La formule (20) donne

«=€- <2oi>

L'équation du mouvement (16) devient:

y=2«(l — a a") COS

u (1 — aar) x -\-
ah»

T
2n

(.t + e) (16')c 4c J T
Cherchons la position du maximum des elongations. A cet effet,
égalons à zéro la dérivée de y par rapport à x'.

2n
— a COS ———

T (1

- d ax)
2n
cT (1 2«a:) sin

- ax) X -\-

2«

ah3

le
2k r 1

(1 — a.x) x +
oft8
4c

La solution de cette équation comprise entre — — et -| est
voisine de zéro, car si l'on fait en première approximation a 0.

2jtX TCXl'équation se réduit à sin —=— 0 ou sin 0, dont la seulecT h
solution relative au domaine considéré est x 0. Nous pouvons
donc remplacer le cosinus par 1, le sinus par l'arc qui est petit
et négliger les produits et les puissances de a et de .r; l'équation

se réduit alors à
2ir 2re / x ah* \- a ~ W^-(-5" + Tï-j °

D'où, compte-tenu de (19l) :

(i + -^À aft' ê* — 0,35oAs

C'est l'abscisse du ventre. On voit que ce dernier est situé au-
dessous du milieu de la corde. Quant à la valeur du maximum,

T
on l'obtient pour t — s -f —r en remplaçant dans (16l) x par

-0,35 aft', ce qui donne

j/m.ï 2a(l + 0,35a*h*) cos

^2o(l + 0,35a»h*) cos (—0,17.0?.)
*[- 0,35

œAs
+

ah2

To'

Ê*2a(l + 0,SBa'h') Il
ymax ™

0,01; *) 2a (1 + Ofida^h2),

2a (1 + 0,30a*h*)
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La figure 7 résume ces résultats. On voit que si la pesanteur ne
change pas la période du son fondamental, elle a par contre
pour effet de dilater la partie inférieure de l'onde et de rétrécir
la partie supérieure.

2°) m 2. Second harmonique.
Le mouvement comprend deux demi-ondulations, séparées

par un nœud. D'après (19) :

(192)

La période est égale au temps — que met une onde

élémentaire pour parcourir une fois la corde. Choisissons p — 1.
La formule (20) donne

â= -r— U +afl)4c
L'équation du mouvement (16) devient:

(202)

y 2a(l — ax) cos —- — (1 — aa-) x + -^ (1 y ah) ¦

2n
• sin-^-U-f g) (162)

L'abscisse du nœud intermédiaire est donnée par (17) où

l'on fait k 0, 6 _— (1 y ah) et T — :
4c c

x°-c[-m (1+ ah) + JLl.
4c J

1 + ac — -r- (!+ afe) + -T7T4c '4c
d'où, en effectuant les opérations et en négligeant les infiniment
petits d'ordres supérieurs:

ah*
T — 0,25 a A2

Le nœud intermédiaire est donc situé au-dessous du milieu de
la corde.

Cherchons la position des extrema des elongations. A cet
effet, égalons à zéro la dérivée de y par rapport à x:

27
a cos

In T 1 h 1

¥~IT ~ a + TF (1 + ah)\
2n f In

— (1 — aa>) —— (1 — 2aa) sin {—=- ¦

cT T

I L (1 _ aflJ) a, y JL (i y aft) J _, 0 (c)

Cette équation a deux solutions xi et xu comprises entre ~
et -|—— ; chacune correspond à un ventre. Pour « 0, l'équa-

27t /tion (c) se réduit à sin ——- l.c -f
_ h

h
~4

^- ou sin
2tï

* +
dont les solutions sont x :

a"i

Posons alors
A

4+ ê xn= + -2- + fi

et mettons successivement ces expressions à la place de x dans
(c) On obtient en remplaçant le cosinus par 1 ou - 1, le sinus
par l'arc ou son supplément changé de signe et en négligeant
les produits et les puissances des petites quantités g. tj, a :

tA2
16"

2jr \2 / 3aA2

d'où

et

I 2ny I 3a
a-\m) (—i

16 + v)

0

0

5 V

xi

- T (t H" i) a Ää - °'2125 « ^2

T + e —t (1 + 0,85 a A)

xn= + (1 — 0,85 o h)
h h

Quant à la valeur absolue des extrema des elongations, on l'ob-
Ttient pour t — s + —- en remplaçant dans (162) x par x\ puis

par x\\ ce qui donne après quelques transformations :

|j/[ | =2o(l + 0,25 a A + 0,20 a2h2)
|2/„| 2a (li—0,25a A + 0,20 a* A2)

La figure 8, qui résume ces résultats, montre que si la
pesanteur ne change pas la période du second harmonique, elle a
par contre comme effet de modifier sensiblement la forme des
vibrations.
Remarques.

1°) Il n'y aurait aucune difficulté à étudier en détail les
harmoniques dont l'ordre est supérieur à deux.

2") Nous avons supposé, à partir du paragraphe 2, que la
corde était pesante, homogène et verticale. Les résultats obtenus
sont immédiatement applicables au cas d'une corde homogène
pesante oblique, pourvu qu'elle soit tendue de façon à être
sensiblement rectiligne. Cette remarque généralise les résultats
indiqués4).

3°) Il serait facile d'appliquer la méthode d'intégration du
paragraphe 2 au cas d'une corde pesante, verticale ou oblique,
dont la masse par unité de longueur serait une fonction linéaire

de x.
4°) Cette méthode d'intégration est analogue à celle que

nous avons utilisée pour établir la théorie des coups de bélier
dans les conduites à caractéristiques linéairement variables le
long de l'axe5).

En campagne, le 3 octobre 1943

Wettbewerb für die Dorfkerngestaltung
von Riehen bei Basel

Ausgangspunkt dieses Wettbewerbes war das Bedürfnis nach
einem Landgasthof mit Saalbau, für den an der Hauptverkehrsader,

der Baselstrasse, ein schmales, aber tiefes Grundstück
gegenüber der Kirche zur Verfügung steht. Sodann ist in Riehen
ein Polizeiposten einzurichten, dessen Lage und Gestaltung ebenfalls

durch den Wettbewerb abzuklären war, und schliesslich
mussten Räume für eine Filiale der Kantonalbank in einem der
Gebäude an günstiger Lage untergebracht werden. Während die
Vorschläge der Wettbewerbteilnehmer für eine praktische
Verwirklichung dieser Wünsche durch Grundrisse 1: 200 zu belegen
waren, wurde zugleich verlangt, dass diese Bauten, deren baldige
Ausführung zu erwarten ist, so in den Dorfkern eingegliedert
werden, dass der heute noch bestehende Charakter der
Landgemeinde erhalten bleibt. Daher war im Wettbewerbprogramm
auch ein genereller Bebauungsplan 1:500 verlangt für die
Gesamtgestaltung des Dorfkerns innerhalb des Strassenvierecks
Baselstrasse/Schmiedgasse/Bahnhofstrasse/Bettingerstrasse.
Insbesondere sollte in diesem Raum ein Dorfplatz für Promenadenkonzerte,

öffentliche Versammlungen im Freien, Bundesfeiern
usw., sowie ein Park mit Kinderspielplatz untergebracht werden.

') Signalons ici qu'un problème un peut différent, celui des petites
vibrations de la chaînette, a été abordé par K. Wolf: «Schwingungen
elastischer Seile», Zeitschrift für angewandte Math. u. Meen., T. 7, p. 137 à
144. 1927. Les vibrations finies de la chaînette ont été étudiées récemment
par G. Hunziker: «Theorie gespannter Seile. Schneilhöhe und
Modellmechanik», Leemann & Cie., Zurich et Leipzig, 1942.

E) Voir: «Revue générale de l'Hydraulique», Paris, 1938 et «Bulletin
Technique de la Suisse romande», Lausanne, 1942.
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