Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 121/122 (1943)

Heft: 21

Artikel: Les vibrations transversales des cordes pesantes verticales

Autor: Favre, Henry

DOI: https://doi.org/10.5169/seals-53207

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: 20 Jahre Bauingenieur-Praxis. - Les vibrations transversales des cordes pesantes verticales. – Bemerkungen zur Ausbildung der Ingenieure. - De la stabilité des chambres d'équilibre. - 20 Jahre technischer Entwicklung in der modernen Türkei. — Der Uebergangsbogen als Trassierungselement im Strassenbau. - Vom Bau der Kerenzerbergstrasse. - Der Befestigungsbau durch Unternehmer und die Truppe. -Vom Bau des Limpachkanals. — Praktische Ortsplanung. — Arbeitsbeschaffung in Kriegs- und Nachkriegszeit. - Beitrag zur Berechnung beidseitig fest eingespannter, im Grundriss gekrümmter Träger. - Industriebau 1937 und 1942. - Ueber den verdübelten Balken. - Schlusswort.

Der S. I. A. Ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Band 122

Nr. 21

ZWANZIG JAHRE BAUINGENIEUR-PRAXIS

Unsere Leser werden sich fragen, was dieser orakelhafte Titel zu bedeuten habe, umsomehr, als ja mancher über schon viel längere Praxis verfügt, ohne ein Wesen daraus zu machen. Wir möchten auch keineswegs der immer mehr umsichgreifenden Jubiläumsucht Vorschub leisten, die sich an jede mehr oder weniger runde Jahreszahl klammert. Der Umstand, der uns zu dem vorliegenden, ausnahmsweisen Sonderheft Veranlassung gibt, ist folgender. Heute begeht ein E.T.H.-Bauingenieur-Kurs, dessen ehemalige Angehörige noch aussergewöhnlichen Zusammenhang pflegen, die kameradschaftliche Feier ihrer vor 20 Jahren erfolgten Diplomierung. Ihr Lebensweg hat sie zwar auf die verschiedenartigsten Zweige des Ingenieurberufs geführt, von der Lehre reiner Wissenschaft bis zur Volkswirtschaft und Verwaltungstätigkeit; einer sitzt an der E.T.H. auf dem berühmten Lehrstuhl Ernst Meissners, ein anderer ist sogar Vorstand der Bauingenieurabteilung geworden, noch ein Dritter «seufzt beim Unterricht, und der schreibt Rezensionen» (im Vereinsorgan der G. E. P.), wie wir in der alten Burschenherrlichkeit singen. Unser Sonderheft will durch Kurzberichte vor Augen führen, wie weit von dem einer landen kann, was er sich als frisch Diplomierter als beruflichen Lebensweg vorgestellt haben mag; wie wichtig also die wissenschaftlichen Grundlagen sind, die ihm als Rüstzeug ermöglichen, all den Aufgaben gerecht zu werden, die das Leben unerwarteterweise an ihn stellen kann. So betrachtet glauben wir, dass dieses Sonderheft auch über den Kreis der Nächstbeteiligten hinaus ein allgemeines Interesse beanspruchen darf und darin seine Rechtfertigung findet.

Les vibrations transversales des cordes pesantes verticales

Par HENRY FAVRE, Dr. ès sc. techn., professeur à l'E. P. F., Zurich

Les vibrations transversales d'une corde homogène soumise à une traction constante ont été l'objet de nombreuses études théoriques. D'Alembert, Euler, D. Bernoulli et Lagrange ont consacré à ce sujet des mémoires qui figurent parmi les plus belles pages scientifiques du XVIIIe siècle.

Euler 1) et, longtemps après lui, Lord Rayleigh 2) ont étudié le problème plus général des vibrations transversales d'une corde de traction constante mais de masse par unité de longueur variable. Nous nous proposons d'examiner ici le problème inverse, celui où la masse par unité de longueur est constante mais latraction variable le long de la corde.

Ce cas est fréquent dans les applications. Considérons en effet une corde verticale de longueur h, tendue entre deux points fixes A, B (fig. 1). Supposons-la tout d'abord à l'état de repos. La traction en un profil X sera

$$S = S_0 + \mu g x (1)$$

où S_0 désigne la traction au milieu 0, μ la masse par unité de longueur (supposée constante), g l'accélération de la pesanteur et x la distance OX. La traction de cette corde est variable. C'est une fonction linéaire de x. Aux extrémités A et B elle a pour valeur

$$S_A = S_0 - \frac{1}{2} \mu g h$$
 $S_B = S_0 + \frac{1}{2} \mu g h$. . (2)

Par exemple, pour h=100 m, $\mu g=1$ kg/m (câble d'acier d'environ 16 mm de diamètre) et $S_0=500$ kg, on aura $S_A=500-\frac{1}{2}\cdot 1\cdot 100=450$ kg et $S_B=500+\frac{1}{2}\cdot 1\cdot 100=550$ kg. La

$$\frac{1}{2} \cdot 1 \cdot 100 = 450 \; \mathrm{kg} \; \; \mathrm{et} \; \; S_B = 500 + \frac{1}{2} \cdot 1 \cdot 100 = 550 \; \mathrm{kg}. \; \; \mathrm{La}$$

traction en B est 22 $^{\scriptscriptstyle{0}}/_{\scriptscriptstyle{0}}$ plus grande qu'en A . Si cette corde vibre transversalement, son mouvement sera régi par d'autres lois que dans le cas des cordes homogènes de traction constante: d'où l'utilité du problème posé.

Dans la première partie de cette étude, nous établissons l'équation différentielle régissant les vibrations transversales des cordes tendues quelconques, hétérogènes et de traction variable. Dans la seconde, nous déterminons une solution approchée de

cette équation, dans le cas où μ est constant et S une fonction linéaire de x (corde verticale homogène pesante). La troisième partie est consacrée à l'interprétation physique de la solution trouvée; la quatrième à l'examen de quelques vibrations simples. Dans la cinquième, nous étudions le cas des ondes stationnaires.

1. Equation différentielle d'une corde hétérogène soumise à une traction variable.

Soit une corde hétérogène animée de vi-

1/2 Fig. 2 Fig. 1

brations transversales autour d'une position d'équilibre rectiligne. Choisissons un système cartésien rectangulaire x, y dans le plan du mouvement, l'axe des x coïncidant avec la corde à l'état de repos (fig. 2). Désignons par x, y les coordonnées d'un point quelconque P, par x + dx, y + dy celles d'un point infiniment voisin Q.

Nous ferons au sujet du mouvement les mêmes hypothèses que pour les cordes homogènes de traction constante: 10) la vibration transversale est infiniment petite: P se déplace très peu sur une parallèle à y. 2°) l'angle que fait la tangente en P avec l'axe x est infiniment petit quel que soit le temps t.

On déduit immédiatement de ces hypothèses que $\overline{P\,Q} = d\,x$ (aux infiniment petits du troisième ordre près) : la longueur d'un élément quelconque de corde reste constante pendant le mouvement. D'autre part la composante de l'accélération de PQ suivant x est nulle. La traction est donc indépendante du temps mais peut dépendre de x. Soit S sa valeur en P. En Q elle sera $S + rac{d\,S}{d\,x}\,d\,x$. S ainsi que la masse par unité de longueur μ sont des fonctions données de x. Remarquons que les angles de la tangente avec l'axe x, en P et Q, sont respectivement $\frac{\partial y}{\partial x}$ et $\frac{\partial y}{\partial x} + \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right) dx.$

La somme des projections, sur l'axe y, des forces agissant sur l'élément PQ est, aux infiniment petits d'ordres supérieurs

pres:
$$\left(S + \frac{dS}{dx} dx\right) \left[\frac{\partial y}{\partial x} + \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x}\right) dx\right] - S \frac{\partial y}{\partial x} =$$

$$= \left(S \frac{\partial^2 y}{\partial x^2} + \frac{dS}{dx} \frac{\partial y}{\partial x}\right) dx$$
d'où l'équation du mouvement:
$$\frac{\partial^2 y}{\partial x^2} \left(\frac{\partial^2 y}{\partial x^2} + \frac{dS}{\partial x} \frac{\partial y}{\partial x}\right) dx$$

ou bien
$$\frac{\mu \, dx \, \frac{\partial^2 y}{\partial t^2} = \left(S \, \frac{\partial^2 y}{\partial x^2} + \frac{d \, S}{d \, x} \, \frac{\partial y}{\partial x} \right) d \, x}{\left[\frac{\partial^2 y}{\partial x^2} + \frac{1}{S} \, \frac{d \, S}{d \, x} \, \frac{\partial y}{\partial x} - \frac{1}{\left(\frac{S}{S} \right)} \, \frac{\partial^2 y}{\partial t^2} = 0 \right]} \quad . \quad (3)$$

C'est une équation aux dérivées partielles du second ordre, où y désigne la fonction inconnue des deux variables indépendantes x, t. Elle est linéaire, mais à coefficients variables, puisque $\frac{1}{S} \frac{dS}{dx}$ et S/μ sont des fonctions de x. En faisant S=const. et $\mu = \mathrm{const.}$ on retrouve l'équation classique des cordes $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \dots \dots \dots (4)$

^{1) «}Recherches sur le mouvement des cordes inégalement grosses» par M. Euler. Mélanges de philosophie et de mathématique de la Société Royale de Turin, 1766.

^{2) «}Theory of Sound» 1877 (1ère édition). Trad. allem. par le Dr. Neesen: «Die Theorie des Schalles», Braunschweig, 1879.

Bd. 122 Nr. 21

où
$$c=\sqrt{rac{S}{\mu}}$$
 (4')

est la vitesse d'une onde indéformable se propageant le long de la corde.

2. Solution approchée de l'équation (3) dans le cas d'une corde homogène pesante verticale

Nous avons vu que, pour une telle corde, μ est constant et S une fonction linéaire de x. Ecrivons cette fonction comme suit pour la commodité des calculs:

$$S = S_0 (1 + 4 \alpha x)$$
 (5)

où S_0 désigne la traction au point d'abscisse nulle, α une constante dont la dimension est l'inverse d'une longueur. La comparaison de (1) et (5) montre que

$$\mu g = 4 \alpha S_0$$
, d'où $\alpha = \frac{\mu g}{4 S_0}$ (6)

Introduisons l'expression (5) de S dans (3); il vient, après multiplication par $1 + 4 \alpha x$:

$$\left[(1+4\alpha x)\frac{\partial^2 y}{\partial x^2} + 4\alpha \frac{\partial y}{\partial x} - \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = 0 \right]. \quad (7)$$

où

$$c = \sqrt{\frac{S_0}{\mu}} \quad . \quad . \quad . \quad . \quad (7')$$

Dans la plupart des applications, α sera très petit par rapport à un et αx petit. Prenons en effet l'exemple numérique précédemment cité:

ent cite:
$$\alpha = \frac{\mu g}{4S_0} = \frac{1}{4 \cdot 500} = 0,0005 \text{ m}^{-1}$$

$$\alpha \mid x \mid_{\text{max}} = \alpha \frac{h}{2} = 0,0005 \cdot 50 = 0,025$$

Il est donc indiqué de chercher à déterminer une solution approchée de (7) en considérant α et αx comme petits.

Dans ce but, nous ferons le raisonnement suivant. Dans le cas particulier $\alpha = 0$, l'équation (7) se réduit à celle des cordes vibrantes (4), dont l'intégrale générale est

$$y = F\left(t - \frac{x}{c}\right) + f\left(t + \frac{x}{c}\right)$$

où F et f désignent des fonctions quelconques. Ces fonctions représentent des ondes qui se propagent sans se déformer, F dans le sens des x croissants, f dans le sens contraire. La vitesse de propagation de ces ondes est c.

Dans le cas général où α est différent de zéro, mais α et αx sont petits par rapport à 1, nous pouvons chercher à satisfaire à l'équation (7) par une expression de la forme

$$y = (1 + \varepsilon_1 x) \left\{ F \left[t - \frac{(1 + \varepsilon_2 x) x}{c} \right] + f \left[t + \frac{(1 + \varepsilon_2 x) x}{c} \right] \right\}$$
(8)

où F, f désignent des fonctions quelconques, ε_1 et ε_2 des constantes du même ordre que a. Cette expression représente, comme nous le verrons au paragraphe suivant, la somme de deux ondes qui se propagent en se déformant.

Pour vérifier que (8) est bien la solution cherchée et pour trouver les valeurs de $arepsilon_{\scriptscriptstyle 1}$ et $arepsilon_{\scriptscriptstyle 2}$, remplaçons, dans (7), y par l'expression ci-dessus en faisant pour simplifier $f \equiv 0$. On obtient après quelques transformations et en tenant compte de ce que α et αx sont petits par rapport à un, ce qui permet de négliger les produits et les puissances des petites quantités ε_1 , ε_2 et α :

$$-\left(arepsilon_{_{1}}+arepsilon_{_{2}}+2\,lpha
ight) F^{\prime}+2\left(arepsilon_{_{2}}+lpha
ight) rac{x}{c}\,F^{\prime\prime}=0$$

où F' et F'' désignent les dérivées première et seconde de F par rapport à t. Cette équation sera satisfaite quel que soit F si l'on choisit ε_1 et ε_2 de façon à annuler les expressions entre parenthèses. D'où les deux conditions:

$$\begin{array}{ccc} \varepsilon_1+\varepsilon_2+2\,\alpha=0 & & \varepsilon_2+\alpha=0 \\ \text{c'est à dire } \varepsilon_1=\varepsilon_2=-\,\alpha & & \end{array}$$

Remplaçons $\varepsilon_{\scriptscriptstyle 1}$ et $\varepsilon_{\scriptscriptstyle 2}$ par $-\alpha$ dans (8), il vient:

$$y = (1 - \alpha x) \left\{ F \left[t - \frac{1}{c} (1 - \alpha x) x \right] + f \left[t + \frac{1}{c} (1 - \alpha x) x \right] \right\} (9)$$

Telle est une solution approchée de l'équation (7) régissant les vibrations transversales d'une corde homogène pesante verticale. Son application est soumise à la restriction que α et α | x | max soient petits par rapport à un. Pratiquement ces deux grandeurs devront être comprises entre 0 et 0,1 ou tout au plus 0,153).

Remarque. En comparant (6) et (7') on voit que les constantes lpha et c sont liées par la relation $4\,lpha\,c^2=g$.

3. Interprétation physique de la solution (9)

Nous allons tout d'abord montrer que F et f représentent des ondes qui se propagent en se déformant. Considérons par exemple F.

Nous appellerons «vitesse de propagation d'une valeur déterminée de la fonction F» la vitesse d'un observateur se déplaçant le long de la corde de manière à ce que F lui paraisse constant. L'équation régissant le mouvement d'un tel observa $t = \frac{1}{c} (1 - \alpha x) x = \text{const.}$ teur est évidemment

car cette relation est précisément la condition nécessaire et suffisante pour que F ne varie pas.

Pour calculer la vitesse $\frac{dx}{dt}$ de l'observateur, c'est à dire la vitesse de propagation définie ci-dessus, dérivons les deux membres par rapport à t: $1-\frac{1}{c}\left(1-2\,\alpha x\right)\frac{d\,x}{d\,t}=0$ d'où, en remarquant que $2\,\alpha x$ est petit par rapport à 1:

$$\frac{dx}{dt} = c(1 + 2\alpha x) = \sqrt{\frac{S_0}{\mu}} (1 + 2\alpha x) . . (10)$$

 $\frac{d\,x}{d\,t}=c\,(1+2\,\alpha\,x)=\sqrt{\frac{S_0}{\mu}}\,(1+2\,\alpha\,x)\quad. \quad (10)$ Mais, au profil x, la traction est $S=S_0\,(1+4\,\alpha\,x)$ (5). Si S avait partout cette valeur, la vitesse de propagation qu'auraient les ondes indéformables F et f serait, d'après (4'):

$$\sqrt{\frac{S}{\mu}} = \sqrt{\frac{S_0(1+4\alpha x)}{\mu}} \cong \sqrt{\frac{S_0}{\mu}}(1+2\alpha x)$$

 $\sqrt{\frac{s}{\mu}} = \sqrt{\frac{s_0\,(1+4\,\alpha\,x)}{\mu}} \cong \sqrt{\frac{s_0}{\mu}}\,(1+2\,\alpha\,x)$ c'est à dire précisément $\frac{d\,x}{d\,t}$. Ceci nous permet d'énoncer le théorème:

«En un profil d'abscisse x, la vitesse de propagation d'une valeur de F est égale à la vitesse qu'auraient les ondes indéformables le long d'une corde de caractéristiques µ, S constantes précisément égales à celles du profil considéré».

F représente donc une onde qui se propage en se déformant, puisque, à un instant donné t, la vitesse de propagation de chacune des ordonnées de la courbe F(x,t) est une fonction de x

représentée par l'équation (10). La vitesse de chaque ordonnée étant positive, l'onde se déplace dans le sens des x croissants, c'est à dire de bas en haut et comme $1 + 2 \alpha x$ croît avec x, les ordonnées de la tête de l'onde ont des vitesses plus grandes que celles de la queue, de sorte que l'intumescence tend à s'allonger. La figure 3 montre comment se propage une onde F (trait interrompu).

Quant à la fonction f, elle représente une onde qui se propage en se déformant dans le sens des x décroissants, c'est à dire de haut en bas, comme une onde F qui décrirait son chemin en sens inverse; f se raccourcit en se propageant. Il suffit, pour démontrer cette propriété, de remarquer que l'on passe de l'argument de F à celui de f en remplaçant cpar = c.

Examinons maintenant y . Si F existe seul, y sera l'ordonnée d'une onde que l'on obtiendra, pour un instant donné, en multipliant les ordonnées de l'onde F par le facteur $1 - \alpha x$. Cette onde, en se propageant de bas en haut, a ses ordonnées y qui décroissent. De plus elle s'allonge. Elle est donc fortement défigurée (voir la figure 3, trait continu).

Si f existe seul, y sera une onde se propageant de haut en bas. Ses ordonnées augmentent mais sa longueur diminue.

Fig. 3. Ondes F et y aux temps t_1 , t_2 et t_3

Lorsque F et f sont différents de zéro, y est la somme de deux ondes analogues à celles que nous venons de décrire, la première, qui correspond à F, se propage de bas en haut, la seconde, correspondant à f, se propage de haut en bas.

Remarquons encore que si, à un instant donné, une onde u correspondant à F coıncide avec une autre correspondant à f, la première coïncidera, dans la suite, avec les différentes positions qu'occupait la seconde à des temps antérieurs et réciproquement. Cela est dû au fait que leur déformation dépend de xseul (et non de t). (A suivre.)

3) Pour mettre en évidence l'influence de la pesanteur, les figures 3 à 8 ont été faites en choisissant la limite extrême $\alpha \, | \, x \, |_{\max} = \alpha \, \frac{h}{2} \, = 0.15$.

Dans toutes les figures nous avons exagéré les dimensions horizontales, afin de permettre une appréciation commode du caractère des vibrations. Il va de soi qu'il s'agit de mouvements infiniment petits.