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ZWANZIG JAHRE BAUINGENIEUR-PRAXIS
Unsere Leser werden sich fragen," was dieser orakelhafte

Titel zu bedeuten habe, umsomehr, als ja mancher Ober schon
viel längere Praxis verfügt, ohne ein Wesen daraus zu machen.
Wir möchten auch keineswegs der immer mehr umsichgreifenden
Jubiläumsucht Vorschub leisten, die sich an jede mehr oder
weniger runde Jahreszahl klammert. Der Umstand, der uns zu
dem vorliegenden, ausnahmsweisen Sonderheft Veranlassung gibt,
ist folgender. Heute begeht ein E. T. H.-Bauingenieur-Kurs, dessen
ehemalige Angehörige noch aussergewöhnlichen Zusammenhang
pflegen, die kameradschaftliche Feier ihrer vor 20 Jahren
erfolgten Diplomierung. Ihr Lebensweg hat sie zwar auf die
verschiedenartigsten Zweige des Ingenieurberufs geführt, von
der Lehre reiner Wissenschaft bis zur Volkswirtschaft und
Verwaltungstätigkeit ; einer sitzt an der E.T. H. auf dem berühmten
Lehrstuhl Ernst Meissners, ein anderer ist sogar Vorstand der
Bauingenieurabteilung geworden, noch ein Dritter «seufzt beim
Unterricht, und der schreibt Rezensionen» (im Vereinsorgan der
G. E. P.), wie wir in der alten Burschenherrlichkeit singen. Unser
Sonderheft will durch Kurzberichte vor Augen führen, wie weit
von dem einer landen kann, was er sich als frisch Diplomierter
als beruflichen Lebensweg vorgestellt haben mag; wie wichtig
also die wissenschaftlichen Grundlagen sind, die ihm als Rüstzeug

ermöglichen, all den Aufgaben gerecht zu werden, die das
Leben unerwarteterweise an ihn stellen kann. So betrachtet
glauben wir, dass dieses Sonderheft auch über den Kreis der
Nächstbeteiligten hinaus ein allgemeines Interesse beanspruchen
darf und darin seine Rechtfertigung findet. C. J.

Les vibrations transversales des cordes pesantes
verticales
Par HENRY FAVRE, Dr. es sc. techn., professeur à l'E. P. F., Zurich

Les vibrations transversales d'une corde homogène soumise
à une traction constante ont été l'objet de nombreuses études
théoriques. D'Alembert, Euler, D. Bernoulli et Lagrange ont
consacré à ce sujet des mémoires qui figurent parmi les plus belles
pages scientifiques du XVIIIe siècle.

Euler1) et, longtemps après lui, Lord Raylelgha) ont étudié
le problème plus général des vibrations transversales d'une corde
de traction constante mais de masse par unité de longueur
variable. Nous nous proposons d'examiner ici le problème inverse,
celui où la masse par unité de longueur est constante mais la
traction variable le long de la corde.

Ce cas est fréquent dans les applications. Considérons en
effet une corde verticale de longueur A, tendue entre deux points
fixes A, B (fig. 1). Supposons-la tout d'abord à l'état de repos.
La traction en un profil X sera

8 S0 + [tgx (1)
où S0 désigne la traction au milieu 0, u la masse par unité de
longueur (supposée constante), g l'accélération de la pesanteur
et x la distance OX. La traction de cette corde est variable.
C'est une fonction linéaire de x. Aux extrémités A et B elle a
pour valeur

1 1
Sa 8n- ¦figh 8S 80 ¦pgh (2)

Par exemple, pour h 100 m, (tg 1 kg/m (câble d'acier
d'environ 16 mm de diamètre) et S0 500 kg, on aura 8A 500 —

500 + -g- 1 100 550 kg. La1 100 450 kg et 8B ¦.

2 " - -" ' 2
traction en B est 22 0/0 Phis grande qu'en A. Si cette corde vibre
transversalement, son mouvement sera régi par d'autres lois que
dans le cas des cordes homogènes de traction constante: d'où
l'utilité du problème posé.

Dans la première partie de cette étude, nous établissons
l'équation différentielle régissant les vibrations transversales des

') «Recherches sorte mouvement des cordes inégalement grosses» par
M. Muter. Mélanges de philosophie et de mathématique de la Société Royale
de Turin, 1766. '

•) «Theory of Sound» 1877 (1*™ édition). Trad, allem, par le Dr. Nee-
sen: «Die Theorie des Schalles», Braunschweig, 1879.

Fig. 1 Fig.

cordes tendues quelconques, hétérogènes et de traction variable.
Dans la seconde, nous déterminons une solution approchée de
cette équation, dans le
cas où fi est constant x\
et 8 une fonction liné- /

aire de x (corde vérti- /
cale homogènepesante). x\ j
La troisième partie est
consacrée à l'interprétation

physique de la
solution trouvée; la "? |* %
quatrième à l'examen
de quelques vibrations „V*0^
simples. Dans la ein- *.i 1- j n
quième, nous étudions
le cas des ondes station-
naires. h/2

1. Equation différentielle

d'une corde
hétérogène soumise à une
traction variable.

Soit une corde
hétérogène animée de
vibrations transversales autour d'une position d'équilibre rectiligne.
Choisissons un système cartésien rectangulaire x, y dans le
plan du mouvement, Taxe des x coïncidant avec la corde à l'état
de repos (fig. 2). Désignons par x, y les coordonnées d'un
point quelconque P, par x -\- dx, y y dy celles d'un point
infiniment voisin Q.

Nous ferons au sujet du mouvement les mêmes hypothèses
que pour les cordes homogènes de traction constante : 1°) la
vibration transversale est infiniment petite : P se déplace très peu
sur une parallèle à y. 2») l'angle que fait la tangente en P avec
Taxe x est infiniment petit quel que soit le temps t.

On déduit immédiatement de ces hypothèses que PQ dx
(aux infiniment petits du troisième ordre près) : la longueur d'un
élément quelconque de corde reste constante pendant le mouvement.

D'autre part la composante de l'accélération de PQ
suivant x est nulle. La traction est donc indépendante du temps
mais peut dépendre de x. Soit 8 sa valeur en P. En Q elle sera

/i Ft
8 -|—=— dx. 8 ainsi que la masse par unité de longueur u sont' dx
des fonctions données de x. Remarquons que les angles de la

dytangente avec laxe as, en P et Q, sont respectivement

dy
â x dx

d t dy
dx

et

\dx I dx.

\8 +
dS
dx dx) +

8

dy
Jx~
dy
dt

dx dy
dx

La somme des projections, sur l'axe y, des forces agissant
sur Télément PQ est, aux infiniment petits d'ordres supérieurs
près:

dy
dx

dx3
d'où l'équation du mouvement:

d'y („ d'Jt
dx'

d
dx

dS
I

i_y_\
)x

dx

dx dS dy
rit3 dx d x I dx

ou bien
masse acceleration force

d'y i ds dy i d'y
/s.) s<a

0
dx'

'

S dx dx (3)

C'est une équation aux dérivées partielles du second ordre,
où y désigne la fonction Inconnue des deux variables indépendantes

x, t. Elle est linéaire, mais à coefficients variables, puis-
1 (t El

que -g- -j-^ et 8jfi sont des fonctions de x. En faisant S
8 dx

const, et fi const
vibrantes :

on retrouve l'équation classique des cordes
d*y 1 d'j/
dx* o> dt* ' (4)
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où (4')

est la vitesse d'une onde indéformable se propageant le long de
la corde.

2. Solution approchée de l'équation (3) dans le cas d'une corde
homogène pesante verticale

Nous avons vu que, pour une telle corde, fi est constant et
8 une fonction linéaire de x. Ecrivons cette fonction comme
suit pour la commodité des calculs:

8 80(1 + iax) (5)
où 80 désigne la traction au point d'abscisse nulle, a une
constante dont la dimension est l'inverse d'une longueur. La
comparaison de (1) et (5) montre que

fi g 4 a S0, d'où i»g
4S„

(6)

Introduisons l'expression (5) de S dans (3); il vient, après

(7)

ation par 1 -\- éax:

,i a „ï S'y dy(1 + iax) -s \- 4 a —1—m dx' T dx
1

c2
d'y
dt'

0

où (7-)

Dans la plupart des applications, a sera très petit par
rapport à un et ax petit. Prenons en effet l'exemple numérique
précédemment cité:

pt9 1

4S„ 4 500
h

m 0,0005 m-

0,0005 50 0,025^ I X | max — *~ 9

Il est donc indiqué de chercher à déterminer une solution
approchée de (7) en considérant cet «x comme petits.

Dans ce but, nous ferons le raisonnement suivant. Dans le
cas particulier a 0, l'équation (7) se réduit à celle des cordes
vibrantes (4), dont l'intégrale générale est

wmwBmm
où P .et / désignent des fonctions quelconques. Ces fonctions
représentent des ondes qui se propagent sans se déformer, F dans
le sens des x croissants, / dans le sens contraire. La vitesse de

propagation de ces ondes est c.
' Dans le cas général où a est différent de zéro, mais a et

ax sont petits par rapport à 1, nous pouvons chercher à satisfaire

à l'équation (7) par une expression de la forme
(l + e2aOan V. d + e2x)x'

y (1+eix) j^r* / * + (8)
c c

où F, f désignent des fonctions quelconques, £t et s2 des
constantes du même ordre que a. Cette expression représente, comme
nous le verrons au paragraphe suivant, la somme de deux ondes
qui se propagent en se déformant.

Pour vérifier que (8) est bien la solution cherchée et pour
trouver les valeurs de «j et sa, remplaçons, dans (7), y par
l'expression ci-dessus en faisant pour simplifier f 0. On obtient
après quelques transformations et en tenant compte de ce que
oc et ocx sont petits par rapport à un, ce qui permet de négliger
les produits et les puissances des petites quantités 8,, s, et oc :

— («! + «?» + 2 «)p' + 2 (% + a) — J 0

où F' et F" désignent les dérivées première et seconde de F par
rapport à t. Cette équation sera satisfaite quel que soit F si
l'on choisit s, et e., de façon à annuler les expressions entre
parenthèses. D'où les deux conditions:

e1 + e8 + 2a:0 e, -f a 0
c'est à dire e, st — oc

Remplaçons e, et ea par — o: dans (8), il vient:

V (1—-ax){ F t- (1 — ace) x + t l (1 — ax)x
c

(9)

Telle est une solution approchée de l'équation (7) régissant
les vibrations transversales d'une corde homogène pesante
verticale. Son application est soumise à la restriction que a et
a\x\ max soient petits par rapport a un. Pratiquement ces deux
grandeurs devront être comprises entre 0 et 0,1 ou tout au plus
0,15«).

Remarque. En comparant (6) et (70 on voit que les
constantes a et c sont liées par la relation 4ac2 g.

3. Interprétation physique de la solution (9)
Nous allons tout d'abord montrer que F et f représentent

des ondes qui se propagent en se déformant. Considérons par
exemple F.

Nous appellerons «vitesse de propagation d'une valeur
déterminée de la fonction F» la vitesse d'un observateur se
déplaçant le long de la corde de manière à ce que F lui paraisse
constant. L'équation régissant le mouvement d'un tel observateur

est évidemment t
c

a x) x const.

car cette relation est précisément la condition nécessaire et
suffisante pour que F ne varie pas.

Pour calculer la vitesse —Ü| de l'observateur, c'est à dire

la vitesse de propagation
membres par rapport à t :

-.— S e(l-f 2a«0

m
définie ci-dessus, dérivons les deux

1 dx

2 a s» est petit par rapport à 1:
S7

0

Vï=]/ S0(l + 4aa0

dx
dt

(1 + 2ax)

(1 -f 2aa0

(10)

d'où, en remarquant que
dx
dt ' Vf1

Mais, au profil x, la traction est 8 8„ (1 -(- éax) (5). Si
8 avait partout cette valeur, la vitesse de propagation qu'auraient

les ondes indéformables F et f serait, d'après (40 :

Ì
Ceci nous permet d'énoncer le

T

c'est à dire précisément

théorème :

«En un profil d'abscisse x, la vitesse de propagation d'une
valeur de F est égale à la vitesse qu'auraient les ondes
indéformables le long d'une corde de caractéristiques fi, S constantes
précisément égales à celles du profil considéré».

F représente donc une onde qui se propage en se déformant,
puisque, à un instant donné t, la vitesse de propagation de
chacune des ordonnées de la courbe F(x, t) est une fonction de x
représentée par l'équation (10). La vitesse de
chaque ordonnée étant positive, Tonde se dé-
place dans le sens des x croissants, c'est à
dire de bas en haut et comme 1 -|- 2ax croît
avec x, les ordonnées de la tête de Tonde ont
des vitesses plus grandes que celles de la queue,
de sorte que l'intumescence tend à s'allonger.
La figure 3 montre comment se propage une
onde F (trait interrompu).

Quant à la fonction /, elle représente une
onde qui se propage en se déformant dans
le sens des x décroissants, c'est à dire de haut
en bas, comme une onde F qui décrirait son
chemin en sens inverse ; / se raccourcit en se
propageant. Il suffit, pour démontrer cette
propriété, de remarquer que Ton passe de
l'argument de P à celui de / en remplaçant c
par — c.

Examinons maintenant y. Si F existe seul,
y sera l'ordonnée d'une onde que Ton obtiendra,
pour un instant donné, en multipliant les
ordonnées de Tonde F par le facteur 1 — ax.
Cette onde, en se propageant de bas en haut,
a ses ordonnées y qui décroissent. De plus
elle s'allonge. Elle est donc fortement défigurée

(voir la figure 3, trait continu).
Si / existe seul, y sera une onde se propageant

de haut en bas. Ses ordonnées
augmentent mais sa longueur diminue.

Lorsque F et f sont différents de zéro, y est la somme de
deux ondes analogues à celles que nous venons de décrire, la
première, qui correspond à P, se propage de bas en haut, la
seconde, correspondant à /, se propage de haut en bas.

Remarquons encore que si, à un instant donné, une onde y
correspondant à F coïncide avec une autre correspondant à /,
la première coïncidera, dans la suite, avec les différentes
positions qu'occupait la seconde à des temps antérieurs et
réciproquement. Cela est dû au fait que leur déformation dépend de x
seul (et non de t). (A suivre.)

Fig. 8. Ondes F
et y aux temps
vit ^2 ^^ *3

») Pour mettre en évidence l'Influence de la pesanteur, les figures 8

à 8 ont été faites en choisissant la limite extrême a |x|mnx — a 0,16.

Dans toutes les figures nous avons exagéré les dimensions horizontales,
afin de permettre une appréciation commode du caractère des vibrations.
Il va de soi qu'il s'agit de mouvements infiniment petits.
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