Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 121/122 (1943)

Heft: 19

Artikel: Das Kraftwerk Mörel der Rhonewerke AG., Ernen

Autor: Preiswerk, M.

DOI: https://doi.org/10.5169/seals-53197

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Das Kraftwerk Mörel der Rhonewerke AG. Ernen. - Die Energieversorgung der schweizerischen Industrie. -Vom katalanischen Bauernhaus. — Zur Situierung Globus-Neubau Zürich. — Mitteilungen: Kantholz-Normung. Das Stadion von Tlemcen in Algier. Ofenrohre aus Aluman. Die Muttensee- und Limmernkraftwerke. Wasserkraftwerke im

Nationalrat-Wahlen. Schifferheim der Schweiz. Reederei in Engadin. Wettbewerbe: Ueberbauung des Schiltwiesenareals in Ober-Basel. winterthur. Bezirksgebäude in Dielsdorf. – Literatur.

Mitteilungen der Vereine.

Vortragskalender.

Der S. I. A. 1st für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Band 122

Nr. 19

Das Kraftwerk Mörel der Rhonewerke AG., Ernen II. Elektrische und maschinelle Anlagen (Schluss von S. 222) Maschinenhaus Mörel und Freiluftstation

Die Gestaltung eines Maschinenhauses ist von vielen Faktoren abhängig, unter denen vor allem die Geländeverhältnisse der Baustelle, die Lage von Druckleitung und Unterwasserkanal, Zufahrtmöglichkeit, Anzahl und Typ der Maschinen, sowie die Richtung der abgehenden Fernleitungen massgebend sind.

Der schwach gegen die Rhone geneigte Platz direkt oberhalb des Wehres der Wasserfassung des SBB-Kraftwerkes Massaboden eignete sich sehr gut für die Erstellung des Maschinenhauses in der Längsrichtung des Tales. Der Lageplan (Abb. 23) zeigt die Anordnung des Gebäudes mit Freiluftanlage, angebautem Dienstgebäude, Druck- und Verteilleitung, Unterwasserkanal und Zufahrtstrasse. Die Kote der Maschinenaxe beträgt 738,80 m. Transformatoren und Gerüste der Freiluftstation sind durch das Hauptgebäude verdeckt und daher von der auf dem rechten

Freiluft - Schaltanlage 741,80 Querschniff A - B Frischluft 3 Transformati U.W.- Kana 9/69 KV - 450-SBZ

Abb. 25. Schnitt der Zentrale Mörel, mit Generator-Lüftungskanälen. — 1:500

> Freiluft - Schaltanlage Dienstgebäude W.C. Bureau B 737,90 UW-Kana Not - U.W. - Kana Schülze S87

Abb. 21. Die Zentrale Mörel mit der Freiluft-Schaltanlage der Rhonewerke A.G. Ernen Grundriss (mit Horizontalschnitt in Kote etwa 737) 1:500

Rhoneufer liegenden Strasse und Furkabahn aus kaum sichtbar. Das Gebäude ist neben der Druckleitungsaxe erstellt, was bei Rohrbruch seine Gefährdung verringert. Der Unterwasserkanal, in den die Saugrohre der Turbinen ausmünden, ist parallel zum Gebäude angeordnet. Ein Notauslass mit Schütze ermöglicht die Rückgabe des Wassers in die Rhone unterhalb des Wehres des Werkes Massaboden, um bei Hochwasser das Niveau im Unterwasserkanal senken zu können; dabei wird die Schütze im Stichkanal geschlossen.

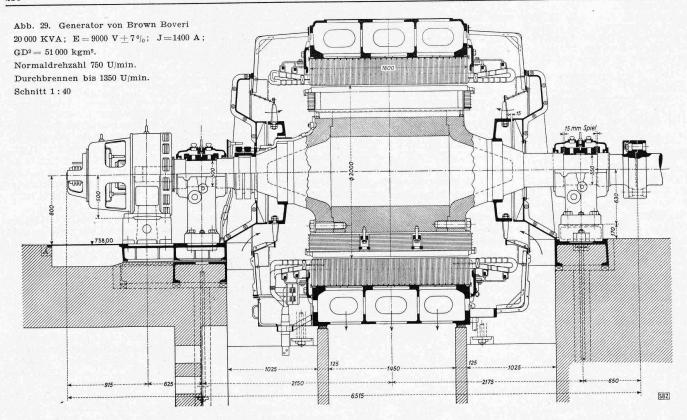
Die Brücke über die Rhone musste unterhalb des Wehres gebaut werden, um das für Hochwasser nötige Durchgangsprofil zu haben. Damit war auch die Lage der Zufahrtstrasse bestimmt.

Die Fernleitungen zweigen von der Freiluftstation ab, die hinter dem Maschinenhaus liegt; sie wirken dadurch sehr wenig störend.

Das Maschinenhaus (Abb. 26, S. 233) ist als Massivbau in vibriertem Beton ausgeführt; armiert sind lediglich zwei durchgehende Schwellen unter den Kranbahnpfeilern, die Deckenkonstruktionen und die Kranbahn. Ferner erhielten die Generatorenfundamente, mit Rücksicht auf Vibrationen, eine Vertikal- und Horizontalarmierung. Das Dach der Maschinenhalle hat eiserne Binder und ist mit Gneisplatten aus Kalpetran im Zermattertal gedeckt; der Maschinenhausboden und die Wände bis 1,80 m Höhe sind mit rotbraunen Klinkerplatten belegt (Abb. 30, S. 233).

Als Turbinen wurden Doppel-Francis-Spiralturbinen mit horizontaler Achse und offenem Laufrad gewählt. Diese benötigen keine Spurlager, werden vom sandhaltigen Wasser am wenigsten

angegriffen und sind leicht zu reparieren. Die horizontale Anordnung ermöglicht Montage und Demontage mittels Kran und hat gegenüber der vertikalen Aufstellung noch den Vorteil der bessern Uebersichtlichkeit. Die Schluckfähigkeit der Turbinen ist so bemessen, dass eine Maschinengruppe das Niederwasser im Winter (während mindestens zwei Monaten) allein verarbeiten kann und dass


bei maximaler Wasserführung ein gewisser Spielraum in der Verteilung der Leistung auf zwei getrennte Betriebe besteht (Abb. 27 und 28, Seite 231).

Die Daten der Turbine sind folgende: $N = 24\,900 \text{ PS} =$

- 18 300 kW $H = 245 \div 260 \text{ m};$ $Q = 8300 \, 1/s$ n = 750 U/min;

Gewicht 115 t $_\eta$ bei Vollast = 86,5 $^{\mathrm{o}}/_{\mathrm{o}}$ ³/₄ Last = 90 °/₀

1/2 Last = 84 0/0 Alleunter Wasserdruck stehenden Teile bestehen aus Stahlguss, das Laufrad aus Chromnickelstahl. Die Seitenwände des Leitapparates und des Laufrades sind auswechselbar. Der Oeldruckregulator jeder Turbine hat ein elektrisch angetriebenes Pendel, das von einemPendelgenerator gespeist wird, der seinerseits mit dem Hilfserreger des Generators kombiniert ist. Zwei unabhängig voneinander elektrisch angetriebene Oelpumpen speisen den Drucköl-

Behälter, von dem die Servomotoren des Leitapparates und der Druckregler beliefert werden. Ein am Wasserdruck liegender Servomotor, der im Normalbetrieb zur Schonung der Dichtungen keine Bewegung macht, leitet bei Ausfall des Oeldruckes die Schliessbewegung des Leitapparates ein. Die Drehzahlverstellung und die Lastbegrenzung werden vom Kommandoraum aus elektrisch betätigt. Vor jeder Turbine sind zwei Kugelschieber angeordnet, von denen der erste Reserveschieber ist und nur Handbetätigung hat, während der zweite mit Oeldruck gesteuert wird (Abb. 27). Der erste darf nur geschlossen werden, wenn der zweite Schieber zur Reparatur ausgebaut werden muss.

Als besondere Sicherheit gegen Durchbrennen ist das Maschinentachymeter mit einem elektrischen Kontakt versehen, der bei Ueberdrehzahl den Schnellschluss der Turbine zum Ansprechen bringt. Abschluss des Kugelschiebers und Schnellschluss können auch vom Kommandoraum aus fernbetätigt werden.

Jede Turbine ist mit einem *Drehstromgenerator* direkt gekuppelt (Abb. 29). Der dreiteilige Rotorkörper aus Stahlguss, bei dem keine durchgehende Welle zur Anwendung kam, ist erwähnenswert. Ferner ist auf die Statorwicklung hinzuweisen, die erstmals für Maschinen dieser Grösse aus Aluminium hergestellt wurde. Bei der Montage mussten pro Generator 2400 einzelne Verbindungen für die Wicklungsköpfe hergestellt werden. Bei Generator 1 wurde dazu die autogene Schweissung verwendet, während bei Generator 2 und 3 die Verbindungen als Hartlötung unter Anwendung eines nicht hygroskopischen Flussmittels ausgeführt wurden (Ansicht des Maschinensaales Abb. 30, S. 233).

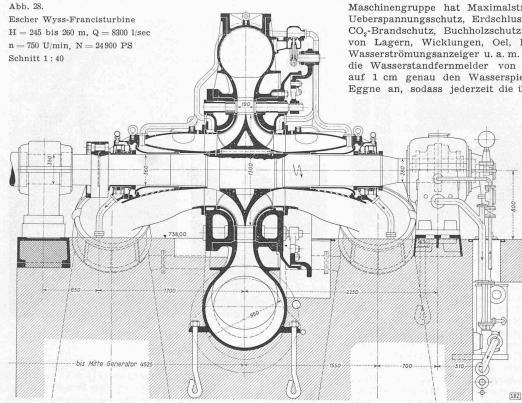
Das mittlere Lager der Gruppe gehört zum Generator, das Turbinenlager ist Führungslager. Am äusseren Generatorlagerbock sind Haupt- und Hilfserreger fliegend angeordnet.

Die Daten der Generatoren sind folgende:

 $N=20\,000~{
m kVA};~E=9\,000~{
m V}\pm7\,^{\circ}{}_{
m 0};~J=1\,400~{
m A}$ $n=750~{
m U/min};~{
m Durchbrennen~bis}~1350~{
m U/min}$ ${
m Polzahl}=8;~GD^2=51\,000~{
m kgm}^2;~{
m Gewicht}~86~{
m t}$ ${
m Wirkungsgrade~Vollast}~{
m ^3/, Last}~{
m ^{1/_2}~Last}$ ${
m cos}~\varphi=1~97.6~97.2~96.2$ ${
m cos}~\varphi=0.8~96.8~96.4~95.5$

Sowohl hinsichtlich der Wasserführung für die Turbinen, als auch der Luftführung für die Generatoren, erwies sich die Anordnung der Maschinenaxen in Längsrichtung des Zentralegebäudes am günstigsten. Das Wasser tritt durch die Verteilleitung an der Südwand in das Gebäude ein, durchfliesst die Kugelschieber, die Turbinen und die Saugrohre und gelangt an der Nordseite des Gebäudes in den Unterwasserkanal. Die Kühlluft hingegen wird wenig über Boden an der Nordfassade von jedem Generator einzeln angesaugt und als Warmluft an der Südfassade

8 m über Boden ausgestossen. Die Kanäle der Turbinenleitungen sind von den Luftkanälen der Generatoren baulich getrennt, sodass kein Wasser zu den Generatoren gelangen kann. Jeder Generator arbeitet direkt über blanke Al-Schienen auf seinen zugehörigen Transformator. Eine eigentliche Unterspannungs-Schaltanlage ist somit nicht vorhanden, einzig die Messwandler sind an den Generatorklemmen angeschlossen. Eine Hilfsschiene ermöglicht es, bei Störungen die notwendige Umleitung vorzunehmen (Schaltschema Abb. 32, Seite 232).


Die drei Transformatoren haben folgende Daten:
 N = 20 000 kVA; Uebersetzung bei Vollast und cos φ = 0,9 9 000/69 000 ± 6 % V
 Unterspannungsseite Δ; Oberspannungsseite λ
 Eisenverluste 30 kW; Aluminiumverluste 195 kW;

Kurzschlusspannung $8,5\,^{9}/_{0}$; Gewicht 36,6 t, davon 9,1 t Oel. Jeder Transformator hat zwei unabhängige Oelkühlsysteme. Die Kühlung erfolgt durch Wasser, das dem Unterwasserkanal entnommen wird. Die Wicklungen der Transformatoren sind aus Aluminium; die Verbindungen erfolgten hier durch Weichlötung, nachdem durch ein besonderes Verfahren auf jedes Leiterende eine Kupferhülse aufgelötet worden war.

Die Freiluftstation befindet sich auf der Südseite des Maschinenhauses und ist wegen der Geländeverhältnisse 2,5 m höher gelegt als der Maschinenboden. Dort sind die Transformatoren aufgestellt, die auf einfache Weise mit Hilfe eines demontierbaren Montagebockes in das Maschinenhaus unter den Kran gefahren werden können (Abb. 33, Seite 233).

Auf der 65 kV-Seite sind anschliessend an die Transformatoren die Schalter angeordnet, die dem Schutz der Generatoren und ihrer Parallelschaltung dienen. Die Sammelschienen der Freiluftanlage sind den Leitungen zugeordnet, sodass nicht das Kraftwerk als Ganzes, sondern jede Maschinengruppe einzeln auf eine Leitung geschaltet wird. Jeder Schalter übt somit auch die Funktion als Leitungsschalter aus. Es wurden Oelströmungsschalter verwendet, die mit Kraftspeicher-Fernsteuerantrieben ausgerüstet sind. Die Stromwandler für die Schutzrelais befinden sich im Fuss der Schalter.

Bei jedem Leitungsabgang sind in der Freiluftstation die Strom- und Spannungsumwandler für Messung, Synchronisierung und Erdschlussprüfung vorhanden. Gegen Ueberspannungen sind vor jeder Leitung Resorbitableiter angebracht. Zum Schutze des Leitungsnetzes sind die Nullpunkte der Transformatoren an eine Dissonanzlöschspule angeschlossen. Diese stellt ihre Induktivität bei Schaltungsänderungen automatisch auf die Kapazität des Netzes ein. Die Freiluftanlage ist in ihren Abmessungen so aufgebaut, dass durch einfache Verstärkung der Isolation der Uebergang von 65 kV auf 150 kV

möglich ist. Die Drehtrennschalter und die Anschlüsse bestehen aus Aluminiumlegierungen, die Sammelschienen aus Aldrey. Bei den Verbindungen zwischen Leitungsseilen und Anschlusszapfen wurde weitgehend das Alutherm-Schweissverfahren angewendet.

Das Dienstgebäude schliesst westlich an das Maschinenhaus an; es befinden sich darin zu ebener Erde die beiden Hausturbinengruppen, Werkstatt, Magazin und Garage, im ersten Stock Kommandoraum (Abb. 31, S. 232), Bureaux, Akkumulatoren- und Mannschaftsraum. Im Untergeschoss sind das Oellager und der Luftschutzraum angeordnet.

Weil bei dieser Anlage ganz auf die Möglichkeit verzichtet wurde, den Hilfsbetrieb des Maschinenhauses vom Hauptbetrieb zu speisen, war es notwendig, zwei Hausturbinengruppen von je 350 PS zu installieren. Die Einsparungen, die durch den Wegfall der Schalter und Transformatoren mit Spannungsregulierung entstehen, wiegen die Kosten der Hausgruppen bei weitem auf; zudem ist die Betriebsicherheit erhöht.

Im Kommandoraum sind alle nötigen Betätigungsorgane, Instrumente, Relais und Regler für Turbinen, Generatoren, Transformatoren, Leitungen und Hilfsbetriebe untergebracht. Jede Maschinengruppe hat Maximalstromschutz, Differenzialschutz, Ueberspannungsschutz, Erdschlusschutz für Stator und Rotor, CO2-Brandschutz, Buchholzschutz, Meldung der Temperaturen von Lagern, Wicklungen, Oel, Luft, Eisen, sowie Oel- und Wasserströmungsanzeiger u. a. m. Für die Betriebführung sind die Wasserstandfernmelder von Wichtigkeit. Der eine gibt auf 1 cm genau den Wasserspiegel in der Ueberfallkammer Eggne an, sodass jederzeit die überfallende Wassermenge er-

mittelt werden kann; er ist nach dem bekannten Schwimmersystem gebaut. Der zweite Wasserstandfernmelder meldet und registriert den Spiegel im Wasserschloss: er ist nach dem Prinzip der Druckwaage konstruiert. Mit diesen beiden Meldungen ist einesteils die Ausnützung des zufliessenden Wassers mit maximalem Gefälle ohne Verlust und andernteils die Benützung des Druckstolleninhaltes als Reserve für kleine Spitzendeckungen möglich.

Im Kommandoraum befinden sich die Telephonapparate für die Verbindung mit dem internen automatischen Netz der Illsee-Turtmann A. G.1) und der AIAG Chippis, sowie für den Amtanschluss. Die interne Verbindung erfolgt

auf der 65 kV-Fernleitung mittels leitungsgerichteter Hochfrequenztelephonie zwischen Mörel und Turtmann.

Fernleitung Mörel-Turtmann

Die im Kraftwerk Mörel erzeugte Energie wird in das 65 kV-Netz des Werkes Chippis übertragen, das bereits bis Turtmann reicht. Die grosse Uebertragungsleistung von 3×20000 kVA auf die 30 km lange Strecke von Mörel bis Turtmann würde als wirtschaftlichste Spannung 150 kV erfordern. Dies hätte aber den Einbau von Transformatoren 150/65 kV in Turtmann oder in Chippis zur Folge, was heute im Hinblick auf die Beschaffung des erforderlichen Eisens und des Oeles Schwierigkeiten bieten würde. Man beschloss daher, die Uebertragung mit 65 kV durchzuführen. Eine zweisträngige Leitung ist projektiert, vorläufig wurde aber erst ein Strang erstellt.

Wegen der herrschenden Eisenknappheit wurde die ganze Leitung als Weitspannleitung mit Holzgestänge ausgeführt, mit Ausnahme der drei ersten Eisenmaste bei Mörel. Die Leitung hat provisorischen Charakter und ist so angelegt, dass ein

1) Siehe SBZ Bd. 84, S. 286* (1924) und Bd. 121, S. 139* (1943)

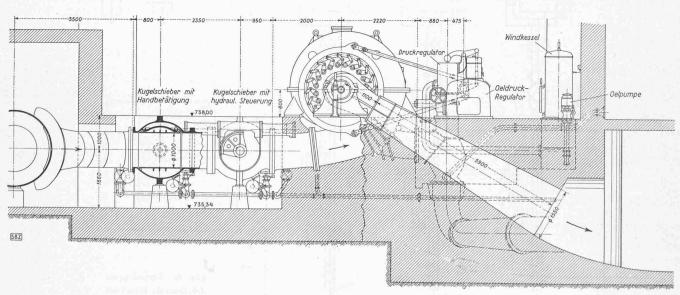
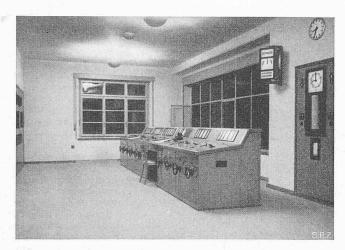
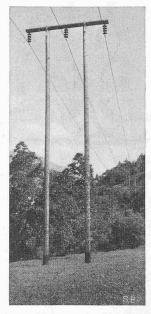
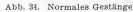


Abb. 27. Zentrale Mörel. Schnitt mit Turbinen-Ein- und Auslauf und Schnitt des ersten Kugelschiebers. — Masstab 1:100




Abb. 31. Kommandoraum der Zentrale Mörel


besseres Tracé in mindestens 16 m Entfernung für die spätere Erstellung einer 150 kV-Eisenmastenleitung frei bleibt.

Als günstigstes Leiterbild für Holzkonstruktionen erwies sich der Portalmast, bei dem die drei Leiterseile in einer horizontalen Ebene angeordnet sind. Die Abspann- und Winkelmaste sind als Bockkonstruktion ausgebildet. Bei einer grossen Spannweite wurden für jede Phase Einzel-A-Maste aufgerichtet.

Viel Ueberlegung erforderte die Durchbildung der Konstruktion der Trag- und Abspannmaste, wo Zug- und Druckkräfte bis zu 10 t pro Stange auftreten. Die Stangen der Tragmaste (Abb. 34) sind direkt im Boden eingegraben und verkeilt, während die Abspann- und Winkelmaste (Abb. 35) an Hunziker-Sockeln befestigt sind, die in Betonfundamenten eingegossen wurden.

Als Leiter wurde ein Seil von 307 mm² Reinaluminium gewählt (Konstruktion 37×3,25 mm). Für diesen grossen Querschnitt kam Aldrey nicht in Frage, weil die Holzkonstruktion der Abspannmaste die Ausnützung seiner grossen Zugfestigkeit nicht zugelassen hätte. Die Seile sind mit 8 kg/mm² bei 0° C und 2 kg/m Zusatzlast ausgelegt; die mittlere Spannweite beträgt 135 m, die grösste 453 m. Der Leiterabstand ist 2,40 m, bei grösseren Spannweiten ist er bis zu 8 m erhöht.

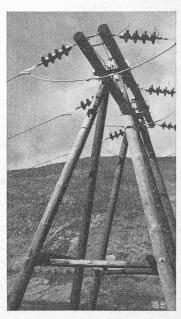
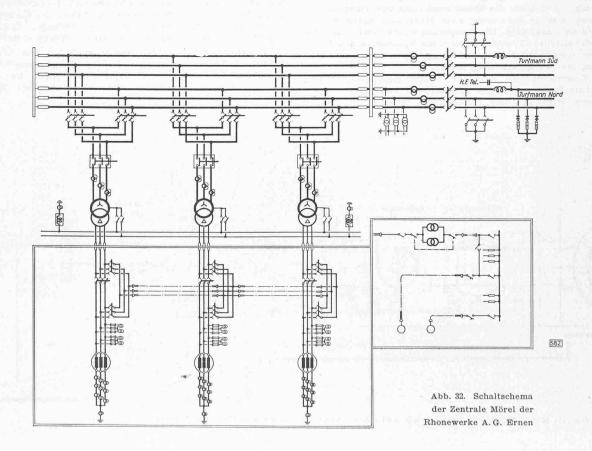



Abb. 35. Abspann- und Winkelmast

Die Isolation geschieht durch eine Kette aus vier Elementen Kappen-Bolzen-Isolatoren. Ihre Aufhängepunkte sind metallisch verbunden, damit bei Isolatorendefekt von zwei Phasen auf dem gleichen Mast kein Brand des Querholzes, sondern eine richtige Auslösung des Maximalstromrelais des Leitungsschalters erfolgt. Gegen Erde, also auch bei atmosphärischen Ueberspannungen, wirkt sich die Isolierfähigkeit der Stangen günstig aus.

Für die Trag- und Abspannklemmen wurden eigene Konstruktionen aus Anticorodal angewendet, die sehr leicht und beweglich gebaut sind und die sich besonders zur Verhütung von Schwingungsschäden bewährt haben. In der Abspannklemme wird das Seil nicht abgeschnitten, sondern durchgeführt. Da die Seile mit abgepassten Längen geliefert wurden, fallen alle Seilverbindungen in die Schlaufen der Abspannmaste. Die Seile wurden untereinander nach dem von der AIAG neu entwickelten

DAS KRAFTWERK MOREL DER RHONEWERKE AG. ERNEN

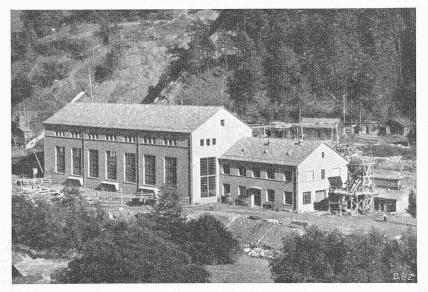


Abb. 26 (vgl. S. 229). Das Maschinenhaus Mörel

Bew. 6057 lt. BRB 3. X. 39

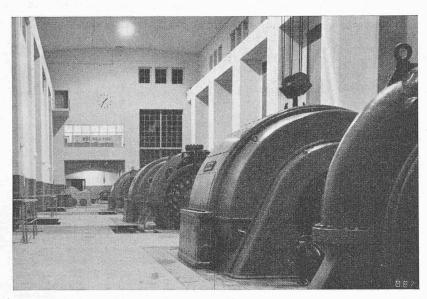


Abb. 30. Der Maschinensaal des Kraftwerks Mörel. Drei Gruppen zu je 24 900 PS

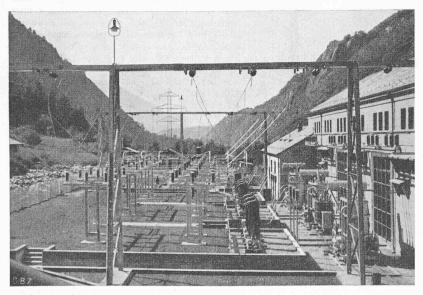


Abb. 33. Die Freiluft-Schaltanlage Mörel

Bew. 6057 lt. BRB 3. X. 39

Alutherm-Schweissverfahren geschweisst. Die Seilenden werden dabei in eine Aluthermpatrone gesteckt und durch einen besonderen Spannapparat zusammengepresst. Nach dem Abbrennen der Patrone sind die Seilenden sauber metallisch verbunden. Diese Schweissverbindung bietet alle Garantie, dass der elektrische Kontakt der Verbindungsstelle einwandfrei erhalten bleibt.

Das Kraftwerk Mörel kam mit der ersten Maschinengruppe am 10. September 1943 in Betrieb. Die zweite und die dritte Gruppe waren acht Tage später ebenfalls betriebsbereit.

Projekt und Bauleitung des baulichen Teiles lagen in den Händen des Ingenieurbureau Hydraulik A.G., Zürich, das diese Arbeiten in enger Fühlungnahme mit der Aluminium-Industrie A.G. durchführte und mit der örtlichen Bauleitung Oberingenieur H. Nipkow betraute.

Für die geologischen Untersuchungen wurden Prof. Dr. M. Lugeon (Lausanne) und Dr. J. Hug (Zürich) und für die Besprechung einiger Fragen im Stollenbau Prof. Dr. Ch. Andreae (Zürich) zugezogen. Die architektonische Gestaltung der Zentrale besorgte Arch. H. de Kalbermatten in Sitten.

Unternehmer und Lieferfirmen

Die Ausführung der baulichen Arbeiten wurde in ungefähr gleich grossen Losen an fünf voneinander unabhängige Bauunternehmungen vergeben und zwar in der Reihenfolge von der Wasserfassung bis zur Zentrale an die Unternehmungen: J. Zeiter (Brig), A.G. Heinr. Hatt-Haller (Zürich), F. Meyer u. J. Dubuis (Sitten), Schweiz. Stuag A.G. (Bern-Lausanne), Schafir & Mugglin (Liestal und Muri/Bern). Die letztgenannte Unternehmung hat für den Hochbau der Zentrale die Firma A. Spaltenstein (Zürich) zugezogen.

Die Erstellung der Druck- und Verteilleitung erfolgte durch die Firmen: Escher Wyss Maschinenfabriken (Zürich), Gebr. Sulzer (Winterthur) und Giovanola Frères S.A. (Monthey).

Die Maschinen- und Apparatelieferungen haben untenstehende Firmen ausgeführt:

Ateliers des Charmilles S.A.: Sicherheitsklappe am Beginn der Druckleitung

Ateliers de Constructions Mécaniques de Vevey S.A.: Schützen und Rechen

Escher Wyss Maschinenfabriken A.G. (Zürich): Turbinen und Kugelschieber

Brown, Boveri & Cie. A. G. (Baden): Generatoren Maschinenfabrik Oerlikon (Zürich): Transformatoren

Sprecher & Schuh A.G. (Aarau): 65 kV-Schalter Carl Maier & Cie. (Schaffhausen): Schaltanlagen und Kommandoraum

Gesellschaft der L. von Roll'schen Eisenwerke A.G. (Bern): Kran

Brown, Boveri & Cie. A.G. (Baden): Hochfre-

quenztelephon E. Steiner, elektr. Unternehmungen (Winterthur):

Fernleitungsmontage als Unternehmer Câbleries & Tréfileries S.A. (Cossonay): Alu-

miniumseile
Projektierung, Montage und Inbetriebsetzung

Projektierung, Montage und Inbetriebsetzung der elektrischen und mechanischen Anlagen, wie auch der Fernleitung wurden von der Aluminium-Industrie A. G. besorgt.

Obering. M. Preiswerk, Lausanne

Die Energieversorgung der schweizerischen Industrie

Der Schweiz. Energie-Konsumenten-Verband bot an seiner diesjährigen Generalversammlung vom 23. März¹), die vom Präsidenten H. Sieber geleitet wurde, seinen Mitgliedern wie im Vor-

Schweiz. Energiekonsument» 1943, Nr. 4 und Sonderdruck: «Die Energieversorgung der Schweiz. Industrie».