Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 121/122 (1943)

Heft: 25

Artikel: Die 300 PS-Diesel-mechanischen Triebwagen der Mittel-Thurgau-Bahn

Autor: Meyer, A.

DOI: https://doi.org/10.5169/seals-53115

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Belastungsglieder:

Fälle a und b:

$$rac{3}{4} \, rac{N_1}{L} = 0 \, , \, rac{3}{4} \, rac{N_2}{L} = rac{3}{4} \cdot rac{1}{16} \, p \, L^2 rac{1}{\sin \, lpha} = 0,054126 \, p \, L^2$$

Fälle c und d:
$$\frac{3}{4} \frac{N_1}{L} = \frac{3}{4} \cdot 2 \cdot \frac{1}{32} \cdot \frac{1}{4} p L^2 \frac{1}{\lg \alpha} = 0,006766 p L^2$$

$$\frac{3}{4} \frac{N_2}{L} = -0,006766 p L^2$$

Fall a:

$$\begin{array}{l} T_1 = T_4 = \mathtt{0} \,, \quad T_3 = T_5 = - \, T_6 = T_2 \\ \mathrm{Gl. \, (b)} \colon - T_2 = \mathtt{18} \, T_2 - T_2 = - \, \mathtt{20} \, T_2 = \mathtt{0.054126} \, p \, L^2 \\ T_2 = - \, \mathtt{0.002706} \, p \, L^2 \end{array}$$

Fall b:

$$\begin{array}{c} T_1=T_4=0\,,\; T_3=-\,T_5=-\,T_6=T_2\\ \mathrm{Gl.\;(b)}:\; -T_2-18\,T_2+\,T_2=-\,18\,T_2=0,\!054126\,p\,L^2\\ T_2=-\,0,\!003007\,p\,L^2 \end{array}$$

$$\begin{array}{l} T_1 = -\ T_4\ , -\ T_3 = -\ T_5 = T_6 = T_2 \\ \text{Gl. (a) und (b):} \\ -\ T_2 + T_2 - 18\ T_1 + T_2 - T_2 = -\ 18\ T_1 = 0,006766\ p\ L^2 \\ +\ T_2 + T_1 - 18\ T_2 - T_2 - T_1 = -\ 18\ T_2 = -\ 0,006766\ p\ L^2 \\ T_1 = -\ T_2 = -\ 0,000375\ p\ L^2 \end{array}$$

Fall d:

daraus:

$$\begin{array}{l} T_1 = T_4 \text{, } T_3 = T_5 = T_6 = T_2 \\ \text{Gl. (a) und (b) :} \\ -18\,T_1 + 4\,T_2 = 0,006766\,p\,L^2 \\ 2\,T_1 - 16\,T_2 = -0,006766\,p\,L^2 \\ T_1 = -0,000290\,p\,L^2 \\ T_2 = 0,000386\,p\,L^2 \end{array}$$

Zusammenstellung

0,000000 = 0,002706 + 0,0027060,000000 - 0,002706 + 0,002706Fall b

0,000000 = 0,003007 = 0,0030070,000000 + 0,003007 + 0,003007Fall c

-0,000375 + 0,000375 - 0,000375 + 0,000375 - 0,000375 + 0,000375

-0,000290 + 0,000386 + 0,000386 - 0,000290 + 0,000386 + 0,000386

Fall A -0,000665 - 0,004952 - 0,000290 + 0,000085 + 0,000312 + 0,006474 pL^2 pL^2 pL^2 pL^2 pL^2

Mit Hilfe der Beziehungen (1) findet man die Biegungsmomente zu:

$$\begin{array}{lll} X_1 = & -0.00786\,p\,L^2 & Y_1 = & -0.00534\,p\,L^2 \\ X_2 = & -0.00209\,p\,L^2 & Y_2 = & +0.00252\,p\,L^2 \\ X_3 = & +0.00555\,p\,L^2 & Y_3 = & +0.00027\,p\,L^2 \\ X_4 = & +0.00038\,p\,L^2 & Y_4 = & +0.00031\,p\,L^2 \\ X_5 = & +0.00008\,p\,L^2 & Y_5 = & +0.00730\,p\,L^2 \\ X_6 = & +0.00338\,p\,L^2 & Y_6 = & -0.00450\,p\,L^2 \end{array}$$

Schlussbemerkungen

Die Vernachlässigung des Torsionswiderstandes steht oft, besonders in den Berechnungen von Eisenbetonkonstruktionen, in sonderbarem Widerspruch zu der vielfach zu weit getriebenen, zahlenmässigen Genauigkeit der statischen Berechnungen. Bei Berücksichtigung des Zusammenhanges der einzelnen Konstruktionsteile treten, wie die Beispiele zeigen, erhebliche Abweichungen gegenüber der üblichen Rechnungsart auf. Für die Aufnahme der Torsionsmomente sollte durch zweckentsprechende Armierungen gesorgt werden. Zahlenmässig fällt beim ersten Beispiel besonders die Grösse der Auflagerkräfte auf. Ueblicherweise würde man für den ersten Belastungsfall setzen: A, = $A_2 = A_3 = A_4 = 0.50 \, p \, L_1$. Statt dessen wurde errechnet: $A_1 =$ $\equiv 0{,}426\,p\,L_{\!_1}$, $\,A_{\!_2} \equiv A_{\!_4} \equiv 0{,}574\,p\,L_{\!_1}$. Die Auflagerkräfte an den spitzen Ecken sind um 14,8 % kleiner und die Auflagerkräfte an den stumpfen Ecken um 14,8 % grösser als 0,50 pL1. Wenn man bedenkt, dass die stumpfen Ecken näher der Lastresultierenden liegen, und dass der Lastausgleich auf dem kürzeren Wege natürlicher erscheint, überrascht das Ergebnis nicht.

Den im zweiten Beispiel behandelten Stabzug als kontinuierlichen Balken zu rechnen, wäre falsch. Nur, wenn in den Knickpunkten 1 und 2 kräftige, verankerte Querschwellen eingebaut würden, könnte die Berechnung als kontinuierlicher Balken als genügend genau bezeichnet werden.

Die Berechnung geknickter Stabzüge verursacht, wie die Beispiele zeigen, bei Anwendung der abgeleiteten Kontinuitäts-Gleichungen keine Schwierigkeiten und keinen grossen Arbeits-

Die 300 PS-Diesel-mechanischen Triebwagen der Mittel-Thurgau-Bahn

Von Ing. A. MEYER, in Fa. Schweizerische Lokomotiv- und Maschinenfabrik Winterthur

Allgemeines

Die Leitung der Mittelthurgau-Bahn gelangte schon vor einigen Jahren zur Erkenntnis, dass eine teilweise Umstellung des Betriebes von Dampf- auf Dieseltraktion erhebliche Einsparungen zur Folge haben werde. Wegleitend war der Gedanke, die vorhandenen 3/5-gekuppelten Heissdampflokomotiven nur noch für die mittelschwere und schwere Zugförderung zu verwenden, den normalen Personenverkehr einschliesslich des leichten Stückgüterverkehrs dagegen mit Dieseltriebwagen mittlerer Leistung zu bewerkstelligen. Bevor sich das Bahnunternehmen entschloss, solche Triebwagen anzuschaffen, führte es mit einem gemieteten vierachsigen dieselmechanischen Triebwagen deutscher Herkunft während beinahe vier Jahren einen Versuchsbetrieb durch, dessen Ergebnis die Richtigkeit der erwähnten Ueberlegungen bestätigte.

Durch sorgfältige Auswertung der Betriebserfahrungen wurde eine wertvolle Grundlage für die Ausarbeitung des Pflichtenheftes für die neuen Dieseltriebwagen gewonnen. In Bezug auf den generellen Aufbau schrieb die Bahngesellschaft vierachsige Triebwagen mit unter dem Wagenboden angeordneter Motoranlage vor. Anderseits wurde bei einem ungefähren Leergewicht des Triebfahrzeuges von rd. 36 t und einer Höchstgeschwindigkeit von rd. 80 km/h eine Motorleistung von rd. 300 PS gewünscht, um einen Zug von einem Gesamtgewicht von 77 t auf der massgebenden Steigung von 20 $^{\rm o}/_{\rm oo}$ mit einer Geschwindigkeit von 30-32 km/h befördern zu können. Besondern Wert legte die Bahngesellschaft auf die Aufteilung der motorischen Anlage in zwei unabhängig voneinander arbeitende Aggregate, um bei einer Störung die Fahrt unter Benützung eines Motors fortsetzen zu können. Diese Lösung erlaubt zudem, bei kleineren Zugleistungen nur mit einem Motor zu fahren.

Die beiden neuen Diesel-Triebwagen wurden im Frühjahr 1939 in Auftrag gegeben und zwar der wagenbauliche Teil und die Drehgestelle einschliesslich des Gesamtentwurfes des Triebwagens, sowie der Lieferung der Brems- und gewisser Hilfseinrichtungen bei der Triebwagen- und Waggonfabrik Wismar, die Motoren einschliesslich der Lichtmaschinen und der Batterie bei der AG. Adolph Saurer, Arbon, und die mechanische Kraftübertragung mit Fernsteuerungseinrichtung bei der Schweiz. Lokomotiv- und Maschinenfabrik, Winterthur.

Zufolge der durch den Ausbruch des Krieges geschaffenen Verhältnisse beschloss die Mittelthurgau-Bahn, die Montage der Triebwagen in den Werkstätten der SLM in Winterthur durchführen zu lassen. Dies geschah in enger Zusammenarbeit letztgenannter Firma mit der Bahn und der Lieferantin der wagenbaulichen Teile. Nach Abnahme durch die Aufsichtsbehörde wurden die Fahrzeuge am 20. Dezember 1941 bzw. am 25. Januar 1942 dem fahrplanmässigen Betrieb übergeben.

Grundsätzlich bestehen die Wagen (Abb. 1 und 2) aus dem Wagenkasten, den beiden, je eine Triebachse und eine Laufachse aufweisenden Drehgestellen, und den unter dem Wagenkasten angeordneten zwei Maschinenanlagen.

Abb. 3 zeigt die Anordnung der beiden getrennt voneinander arbeitenden motorischen Anlagen. Der Dieselmotor und das druckölbetätigte Stufengetriebe mit Wendegetriebe jedes Aggregates sind auf einem besondern Maschinenrahmen montiert, der unter Zuhilfenahme schwingungs- und geräuschdämpfender Elemente an besondern, vom Fussboden unabhängigen Querträgern des Untergestelles aufgehängt ist. Der Oberteil der Motoren ragt leicht über den Fussboden hinaus (s. Abb. 2). Die über dem Motor liegende Doppel-Sitzbank bildet gewissermassen die Motorhaube; diese ist leicht aufklappbar und erlaubt somit gute Zugänglichkeit zu den Motoren. Auf jeden Maschinenrahmen ist ferner ein einstufiger Knorr-Kolbenkompressor (Typ V 70/150), mittels Keilriemen angetrieben, montiert.

Tabelle I: Hauptdaten der Fahrzeuge

Besetzung und Gepäck

Spurweite 1435 mm, Triebrad- und Laufraddurchmesser 65 Sitzplätze III. Kl., 8 II. Kl., 13 Klappsitze, total 86 Sitzplätze Stehplätze 34, Fassungsvermögen total 120 Personen Gesamtdauerleistung beider Dieselmotoren $2 \times 150 = 300 \text{ PS}$ 1500 U/min Entsprechende Motordrehzahl TT Fahrgeschwindigkeit auf T TTT TV V Stufe rd. 17 31,2 49,4 bei obiger Motordrehzahl 60,2 82 km/h Leergewicht des Triebwagens rd. 36 t Gewicht des voll ausgerüsteten Triebwagens rd. 38 t Dienstgewicht des Triebwagens einschliesslich

rd. 46 t

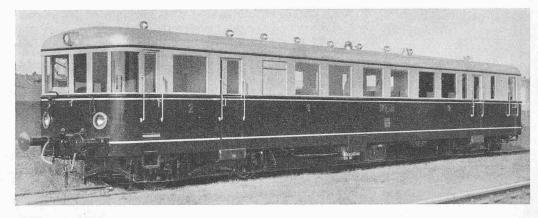


Abb. 1. 300 PS-Diesel-mechanischer Triebwagen der Mittelthurgau-Bahn

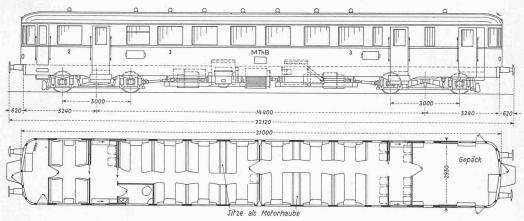


Abb. 2. Typenbild des 300 PS-Diesel-mechanischen Triebwagens. Masstab 1:150

Drehgestelle und wagenbaulicher Teil

Die beiden zweiachsigen *Drehgestelle* des Triebwagens sind genau gleich ausgeführt. Der Radstand beträgt 3 m. Die innere Achse jedes Drehgestelles ist angetrieben. Die Trieb- und Laufachsen besitzen aufgezogene Radreifen mit Sprengringbefestigung; die Achsen laufen in Rollenlagern. Die Abstützung des elektrisch zusammengeschweissten Drehgestellrahmens auf die Achsen erfolgt über Blattfedern, denen Schraubenfedern zugeschaltet sind. Der Wagenkasten ruht auf der zentralen Drehpfanne der Wiege, die seitliches Spiel aufweist; überdies sind seitliche Gleitstützen vorgesehen. Die Bremse ist achtklötzig. Jedes Drehgestell ist mit einem Bremszylinder ausgerüstet.

Wagenkasten. Das Untergestell besteht zur Hauptsache aus elektrisch geschweissten Profilen; im Hinblick auf den Betrieb mit Anhängern erhielten seine Kopfstücke und die Längsträger eine besonders kräftige Ausbildung. Anderseits sind die Träger, die durch das Gewicht der unter dem Wagenkasten angeordneten Maschinenanlagen beansprucht werden, entsprechend widerstandsfähig vorgesehen. Das Kastengerippe besteht aus leichten Profilen, deren Verbindungen vorwiegend elektrisch geschweisst sind. Der eine Führerstand bildet mit dem Gepäck- und Postraum ein einziges Abteil (Abb. 2). Der 3. Kl.-Raum ist in Raucher- und Nichtraucher-Abteil unterteilt, die Zwischenwand zwischen diesen ist oberhalb der Brüstung verglast.

Innenausstattung. Fussboden Kiefernholzbretter mit Linoleumbelag, innere Verkleidung, Seitenwände und Decke Sperrholz, in den 3. Kl.-Räumen unterhalb der Brüstung mit

rotem Linoleum verkleidet, oberhalb naturpoliert Eichenholz, Decke weiss lackiert, Leistenwerk mahagonifarbig poliert. Sitzund Rückenflächen der Bänke der 3. Klasse leicht gefedert und mit Kunstleder überzogen. 2. Kl.-Abteil Wände mahagonilasiert Kirschbaum, Decke poliert Ahorn. Fenster sämtlicher Fahrgastabteile herablassbar, Rahmen aus poliertem Leichtmetall. Scherenausgleich. Betätigung mittels Kurbel. Torpedolüfter.

Die Führerstände sind für sitzende Bedienung eingerichtet. Auf dem in Fahrtrichtung rechts angeordneten abschliessbaren Führerstandtisch sind untergebracht: Motorregu-Stufenschaltlierhebel, hebel, Wendeschalter, Führerbremsventil, Anlass-Abstelldruckknöpfe und für die Motoren, Kontrolllampen für Motor- und Getriebeöldruck, sowie Batterieladung, Wendegetriebe-Rückmeldelampen, Kühlwasser- und Fernthermometer, elektrischer Motordrehzahlanzeiger, Bremsmanometer, Schalter für Führerstand- und Stirnbeleuchtung des Wagens, usw. In dem einen Führerstand befindet sich ein registrierender Hasler-Ge-

schwindigkeitsmesser, im andern ein elektrisch betriebenes Tachometer System Deuta. Auf dem Fussboden sind links die Hebel für die Betätigung der Luftpfeife und rechts die Stössel für die Betätigung des Luftsanders bzw. des Auslöseventils der Bremse angeordnet. Den Uebergang auf die Anhängewagen erlaubt die links vom Führerstandtisch angeordnete stirnseitige Flügeltüre. Ueber jedem Führerstand ist ein Brennstoffbehälter von 214 l Inhalt eingebaut.

Eine nicht einfache Aufgabe bildet bei Dieseltriebwagen in der Regel die Frage der Heizung. Hier kam eine sog. Unterflur-Warmwasser-Heizung zur Anwendung, bestehend aus dem unterhalb des Wagenfussbodens angeordneten, doppelwandigen Koks-Heizofen, dem Ausgleichgefäss mit Fülleinrichtung und den Verteilleitungen und Heizkörpern. Der Ofen wird von aussen her beschickt. Durch Betätigung von Ventilen ist es möglich, die Hälfte der Heizkörper auszuschalten. Die Heizung ist so ausgebildet, dass auch das Kühlwasser der beiden Motoren vorgewärmt, anderseits die im Kühlwasser enthaltene Wärme zur Heizung des Wagens herangezogen werden kann. — Die Personenanhänger sind mit einer einfachen Koksofen-Warmluftheizung ausgerüstet.

Die Luftbremse besteht aus einer Westinghouse-Doppelbremse, die sowohl automatisch wie auch direkt wirkt. Die Notbremseinrichtung ist die übliche. Im übrigen ist jeder Führerstand mit einer Spindelhandbremse ausgerüstet, die auf das entsprechende Drehgestell wirkt.

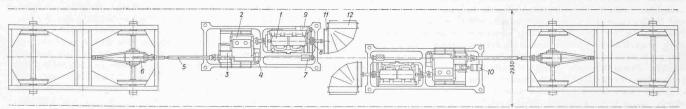


Abb. 3. Anordnung der Maschinenanlagen, 1:100. Legende: 1 Dieselmotor, 2 Stufengetriebe, 3 Wendegetriebe, 4 pneumatischer Steuerapparat zur Fern- u. Vielfachsteuerung, 5 Kardanwelle, 6 Kegelrad-Achsantrieb, 7 Luftkompressor, 8 Keilriemenantrieb, 9 u. 10 Lichtmaschinen, 11 Ventilator, 12 Kühler

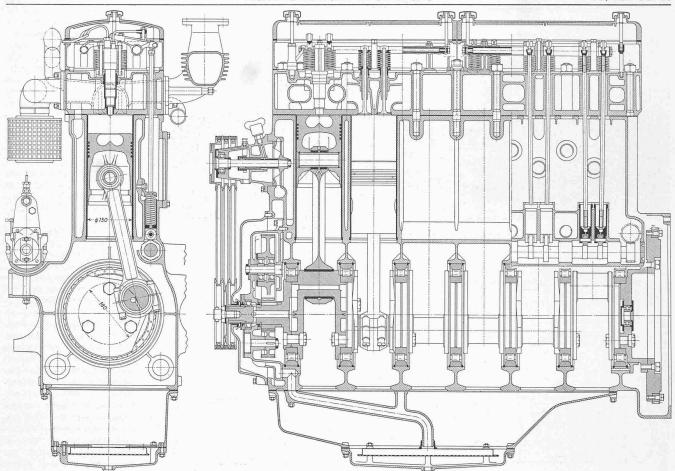


Abb. 5. Quer- und Längsschnitt 1:10 durch den Saurer-Dieselmotor (Der Antrieb des Ventilators erfolgt bei den Triebwagen nicht über einen Keilriemen, sondern direkt von der Motorwelle aus).

Die Totmanneinrichtung spricht sechs bis sieben sec nach Loslassen des Motorregulierhebels, der von selbst in die Leerlaufstellung zurückgeht, an. In diesem Falle wird die Stromzufuhr zu den elektro-pneumatischen Ventilen der Stufengetriebeschaltung unterbrochen, sodass die Getriebe ausgeschaltet werden; gleichzeitig tritt die Druckluftbremse in Tätigkeit.

Maschinenanlage

Die Wahl fiel auf den Saurer-BXD-Dieselmotor, der sich im Eisenbahnbetrieb seit Jahren bereits bestens bewährt hatte. Dieser sechszylindrige Viertaktmotor (Abb. 5) leistet bei 130 mm Bohrung und 180 mm Hub an der Welle dauernd 150 PS bei 1500 U/min. Für den Zylinderblock mit Kurbelgehäuse-Oberteil, der aus einem Stück besteht, wurde legierter Grauguss verwendet. Die Zylinder enthalten auswechselbare, eingepresste Zylinderbüchsen, deren innere Fläche gehont ist. Der abnehmbare Zylinderkopf weist je zwei aus legiertem Stahl geschmiedete Einlass- und Auslassventile auf, die durch eine im Kurbelgehäuse sieben mal gelagerte Nockenwelle mittels Stosstangen und Kipphebeln betätigt werden. In der Axe des Zylinderkopfes ist die Einspritzdüse (Bosch-Einspritzpumpe mit 185 kg/cm² Druck) angeordnet, eine Vierlochnadeldüse Bauart Saurer. Sieben reichlich bemessene Rollenlager dienen als Lagerung für die im Einsatz gehärtete Kurbelwelle. Diese besteht nicht aus einem als Ganzes geschmiedeten oder gegossenen Stück, sondern aus einzelnen Kurbelhubteilen, die mittels Passchrauben zusammengefügt sind. Vollständig bearbeitete, in Doppel-T-Form gehaltene Schubstangen Chromnickelstahl, Lagerschalen Bronze, Kolben Leichtmetall geschmiedet, Kolbenbolzen legierter Stahl, schwimmend im Kolben. Der doppelt wirkende Regulator dient sowohl zur Einhaltung der Leerlaufdrehzahl (600 U/min) als auch zur Begrenzung der Höchstdrehzahl. Sämtliche wichtigen bewegten Teile innerhalb des Motors sind an eine zentrale Druckschmierung angeschlossen. Das Drucköl wird von einer doppeltwirkenden Zahnradpumpe geliefert, von der aus ein erster geschlossener Oelkreislauf, die Kurbelwellenschmierung, über den Oelfilter läuft und ein zweiter über die Ventilsteuerung und die Nockenwelle zur Oelwanne führt. Oelfilter Leichtmetallgehäuse mit drei sternförmigen Filztucheinsätzen, Oelbehälter aus Aluminium von rd. 25 l Inhalt am Kurbelgehäuse befestigt. Als Brennstoffilter dienen Saurer-Papier-Zellenfilter. Den Kühlwasserumlauf sichert eine vom Motor angetriebene Zentrifugalpumpe. Leistung, Drehmoment und Brennstoffverbrauch siehe Abb. 6, Seite 306.

Die Drehzahlverstellung der Motoren erfolgt vom Führerstand aus mittels Druckluft. Am Brennstoffregulierhebel der Einspritzpumpe ist ein Druckluftzylinder mit einem Kolben angebracht, der gegen eine kalibrierte Feder arbeitet. Der im Führerstand angeordnete Motorregulierhebel wirkt auf ein Druckminderventil, durch das sich die Füllung der Einspritzpumpe nach Belieben einstellen lässt. In der Ruhelage des Kolbens laufen die Motoren im Leerlauf. Diese Drehzahlverstellung erlaubt, beide Motoren von ein und demselben Druckminderventil aus gleichzeitig zu steuern. Zum Abstellen der Motoren dient ein weiterer Druckluftzylinder mit Kolben, der ebenfalls auf den Brennstoffhebel der Einspritzpumpe wirkt; jeder Motor wird durch Betätigung eines Druckknopfes vom Führerstand aus einzeln abgestellt. Zum Anlassen müssen die Motoren auf Vollfüllung gestellt werden. Falls keine Druckluft vorhanden ist. was z.B. unter Umständen nach längerem Betriebsunterbruch vorkommt, können die Motoren von jedem Führerstand aus mittels eines besonderen Kabelzuges auf Vollfüllung gestellt werden. Die Motoren werden elektrisch durch je zwei sechs PS-Anlasser in Betrieb gesetzt.

Die Rückkühlung des Motorkühlwassers erfolgt für jede Maschinenanlage getrennt. Zu diesem Zwecke sind zwei Unterflurkühler vorgesehen (s. Abb. 3), die parallel zur Fahrtrichtung liegen. Die Kühler werden durch je einen Ventilator belüftet, der von der Kurbelwelle des Motors direkt angetrieben wird. Die Regulierung jeder Kühlanlage erfolgt selbsttätig durch einen Thermostaten, der bei zu kaltem Kühlwasser einen direkten Rückfluss zum Motor unter Umgehung des Kühlers öffnet; es ist aber dafür gesorgt, dass trotzdem im Kühler eine gewisse Wasserzirkulation erhalten bleibt. Im weitern können die Kühler bei kalter Witterung durch handbetätigte Jalousien mehr oder weniger zugedeckt werden. — Das Motorenschmieröl wird in der Oelwanne des Motors durch den Fahrwind genügend gekühlt.

Abb. 7 zeigt schematisch die «SLM-Winterthur»-Getriebeanlage einer der beiden Maschinengruppen des Motorwagens.

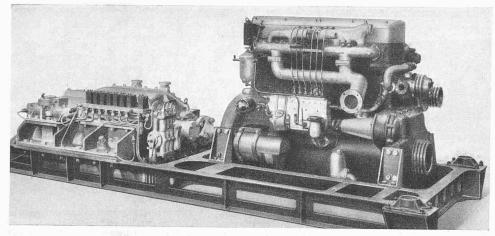


Abb. 4. Motor-Getriebe-Aggregat, auf dem sog. Maschinenrahmen montiert (die elektro-pneumatischen Ventile des Stufengetriebes sind normalerweise verschalt)

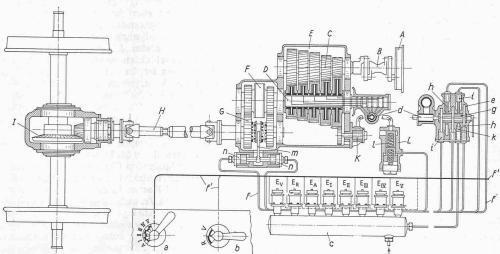


Abb. 7. «SLM-Winterthur»-Getriebeanlage mit elektro-pneumatischer Fern- und Vielfachsteuerung. Legende: A drehelastische Federkupplung. B gelenkige Verbindung, C Primärwelle des Stufengetriebes, D Sekundärwelle des Stufengetriebes, E Stufengetriebe, F Freilauf-Ueberholungskupplung, G Wendegetriebe, H Kardanwelle, I Kegelrad-Achsantrieb, K Oelpumpe, L kombiniertes Ueberdruck- und Anfahrventil, a Stufenschalthebel, b Wendeschalter, c Druckluft-Verteilrohr, Ev, En elektro-pneumatische Ventile zur Wendegetriebeschaltung, EA, EI, EII, EIII, EIV, Ev elektro-pneumatische Ventile zur Stufengetriebeschaltung, d Schalthahn, e pneumatischer Steuerapparat, f Luftleitungen, f' elektrische Leitungen, g verzahntes Wellenstück, h Zahnstange, i Kolben mit verschiedenem Hub, k Rückstellkolben, l Hauptfeder des Ueberdruckventiles, m Schaltgabel zum Wendegetriebe, n Zylinder zur Wendegetriebeschaltung

Vom Schwungrad des Motors aus wird das Motordrehmoment über eine drehelastische Federkupplung A und eine gelenkige Verbindung B auf die Primärwelle C sowie auf die Sekundärwelle D des druckölbetätigten Stufengetriebes E übertragen. Von dieser aus vollzieht sich die Uebertragung des Drehmomentes über die Freilauf-Ueberholungskupplung F, das Wendegetriebe G und eine Kardanwelle H auf den Achsantrieb I, der jeweils auf der innern Achse jedes Drehgestells sitzt.

Die drehelastische Federkupplung ergibt, nebst weicher Uebertragung des Motordrehmomentes, ein Mittel, durch zweckmässige Wahl der Federung — meist ohne anderweitige Massnahmen — allfällige kritische Drehschwingungen des Systems Motor - Getriebe - Fahrzeugmasse - drehelastische Verbindungen ausserhalb des Fahrbereiches zu verlegen.

Ueber die Arbeitsweise des «SLM-Winterthur»-Stufengetriebes ist hier schon früher berichtet worden¹). Das Drucköl zur Steuerung der in den grossen Zahnrädern des Stufengetriebes eingebauten Kupplungen wird in sehr einfacher Weise durch Drehen eines auf der Sekundärwelle liegenden Oelverteilhahns gesteuert, für dessen Betätigung im vorliegenden Falle eine elektro-pneumatische Fernsteuerungs-Einrichtung vorgesehen wurde. Das Anfahren geschieht mittels der Kupplung der ersten Stufe und zwar vorerst kurzzeitig mit vermindertem Oeldruck (Anfahrstellung A der ersten Stufe). Eine besondere, zwischen Motor und Getriebe angeordnete Anfahrkupplung fällt bei der «SLM-Winterthur»-Kraftübertragung bekanntlich weg.

1) SBZ Bd. 104, S. 13* (14. Juli 1934) und früher, sowie Bd. 105, S. 302* (29. Juni 1935). Siehe auch SLM-Winterthur-Mitteilungen, April 1941.

Das Wendegetriebe wird mittels einer verschiebbaren Klauenkupplung betätigt (Umkehrzahnrad). Mit dem Wendegetriebe ist die bereits erwähnte Freilauf-Überholungskupplung (Abb. 8) kombiniert. Diese verhindert eine allfällige Kraftübertragung von den Triebrädern auf das Stufengetriebe und den Motor. Auf diese Weise lassen sich allfällige nachteilige Folgen von Fehlschaltungen seitens des Fahrpersonals verhüten. Gleichzeitig gewährleistet die Freilauf-Ueberholungskupplung in Verbindung mit den übrigen fahrtechnischen Eigenschaften des Getriebes einen völlig stossfreien Geschwindigkeitswechsel.

Die Steuerung der beiden Stufen- und Wendegetriebe erfolgt mittels einer von der Lokomotivfabrik Winterthur entwickelten elektro - pneumatischen Fern- und Vielfachsteuerung, die in Abb. 7 schematisch angedeutet ist. Sie arbeitet wie folgt: Jeder Stellung des Stufenschalthebels im Führerstand ist ein auf dem Druckluft-Verteilrohr c sitzendes, an die Akkumulatorenbatterie des Triebwagens angeschlossenes Elektroventil E_A , E_I - E_V zugeordnet. Wird der Stufenschalthebel in eine Betriebsstellung gebracht, so wird das entsprechende Elektroventil erregt und dem zugehörigen Zypneumatischen linder des Steuerapparates e Druckluft aus dem Verteilrohr c zugeleitet. Dieser Steuerapparat besitzt ein mit dem Schalthahn d gekuppeltes, verzahntes Wellenstück g, in das geführte Zahnstangen h eingreifen. Gegen diese drücken Kolben i, deren jeder einen ganz bestimmten Hub besitzt, der der beabsichtigten Winkelverdrehung des Schalthahns d entspricht. Der

Kolben k des Steuerapparates e steht dauernd unter Druck; er bewirkt die Rückstellung des pneumatischen Steuerapparates in die Nullstellung, wenn keines der besagten Elektroventile erregt ist. Das Elektroventil E_A leitet die Druckluft zum kombinierten Ueberdruck- und Anfahrventil L des Getriebes. Wie bereits erwähnt, wird beim Anfahren mit der ersten Geschwindigkeit vorerst diese Anfahrstufe kurzzeitig eingeschaltet, wobei die Hauptfeder 1 des Ueberdruckventils auf ein bestimmtes Mass entspannt und somit der Kupplungsöldruck vermindert wird.

Die Verschiebung der Klauenkupplung des Wendegetriebes G erfolgt durch die Kolben n (Elektroventil E_V oder E_R , durch Wendeschalter b betätigt, der nur mit dem abnehmbaren Handgriff des Stufenschalthebels umgestellt werden kann). Im Führerstandtisch sind entsprechende Rückmeldelampen angeordnet.

einer währe ohne durcht
Die entspr
mecha dieser

Abb. 8. Freilauf-Ueberholungskupplung des «SLM-Winterthur»-Getriebes. 1 primärer, 2 sekundärer Teil, 3 Mitnehmer-Rollen

Das Zu- und Abschalten einer motorischen Anlage während der Fahrt lässt sich ohne jede Schwierigkeit durchführen.

Die elektrische Anlage entspricht der bei dieselmechanischen Triebwagen dieser Leistung allgemein üblichen. Zur Stromerzeugung dienen zwei Bosch-Lichtmaschinen (Typ GUL 24 V) von je 1200 W, die mit einer Kadmium-Nickel-

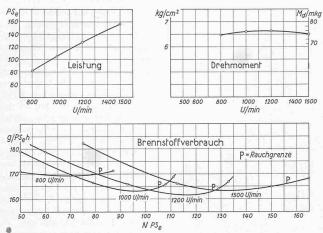


Abb. 6. Leistung, Drehmoment und spezifischer Brennstoffverbrauch des Motors No. 76019 (Abnahmeproben vom 8. März 1941).

Tabelle II: Leistungen, Brennstoff- und Schmiermittelverbrauch der Diesel-mechanischen Triebwagen No. 251 und 252

1942 Monat	Total der geleisteten		Brennstoff- verbrauch			Schmiermittel- verbrauch		
	Trieb- wagen- km	Brutto- tonnen- km	Total kg	pro Zug- km	pro br. tkm	Total kg	pro Zug- km	pro br. tkm
April	12 135	533 380	5800	478	10,9	75	6,2	0,14
Mai	14 225	637 610	6401	450	10,0	50	3,5	0,08
Juni	14 626	632 670	5888	403	9,3	70	4,8	0,11
Juli	15 268	670 355	6080	398	9,0	36	2,35	0,05
August	14 945	646 625	5785	387	9,0	38	2,5	0,06
September	14 027	632 475	5850	417	9,2	48	3,4	0,08
Oktober	14 655	679 705	6270	428	9,2	30	2,04	0,04
November	14 031	643 605	6174	440	9,6	48	3,4	0,07
Dezember	14 632	676 225	6215	425	9,2	146*)	10,0	0,21
Total bzw. Durchschnitt	128 544	5 752 650	54463	423	9,47	541	4,21	0,094

^{*)} Ueberholung von Motor und Getriebe bei Wagen No. 251.

Batterie von 260 Ah bei 24 V Spannung parallel geschaltet sind (Aufladung automatisch über eine Reglereinrichtung). Da die Motoren während der Fahrt häufig abgestellt werden, erfolgt der Antrieb einer der Lichtmaschinen von der Sekundärwelle des einen Stufengetriebes aus, womit auch bei Fahrt mit abgestellten Motoren die Batterieladung gewährleistet ist, sofern die Wagengeschwindigkeit über 22 km/h beträgt. Für die Anlasser der Dieselmotoren wurde ebenfalls ein Bosch-Fabrikat (BPD 24 V) gewählt. Die elektrische Beleuchtung der verschiedenen Abteile des Triebwagens ist reichlich. Stirnseitig besitzen die Fahrzeuge je zwei Scheinwerfer mit Abblendvorrichtung und eine Signallampe.

Betriebliches

Ueber die Leistungsfähigkeit der Wagen gibt das Zuglasten-Diagramm Abb. 9 Aufschluss. Es zeigt, mit welcher Geschwindigkeit eine bestimmte Anhängelast auf den Hauptsteigungen der Bahn noch befördert werden kann; dabei ist angenommen, dass der Triebwagen voll besetzt sei (Bruttogewicht 46 t). Das Diagramm wurde auf Grund der Fahrwiderstandsformel berechnet, die sich aus Auslaufversuchen ergab. Den Berechnungen wurde eine Motorleistung bei 35°C Ansauglufttemperatur und 720 mm Hg zugrunde gelegt; im weitern wurde bei der Aufstellung des Diagrammes der durch die Ventilatoren, die Kompressoren und die Lichtmaschinen im betreffenden Drehzahlbereich benötigten Leistung, sowie den im Prüfstand gemessenen Wirkungsgraden der Getriebeanlagen Rechnung getragen.

Vom 1. April bis 31. Dezember 1942 wurden 93%, aller Personenzugs-km und 77% sämtlicher Zugsleistungen überhaupt (Personen und Güterzüge) mit den beiden Triebwagen bewältigt. Nennenswerte Störungen kamen nicht vor. Tabelle II orientiert über Zugsleistungen, Brennstoff- und Schmiermaterialverbrauch. Dieser bezieht sich auf das ganze Fahrzeug, also nicht nur auf die beiden Maschinenanlagen, und schwankt zwischen 0,04 und 0,21 g/tkm. Die grosse Spanne in den einzelnen Monaten rührt von den zeitweisen Neu-Oelfüllungen bzw. bedeutendern Nachfüllungen her. Im Mittel beträgt der Verbrauch in den gesamten neun Monaten 0,094 g/tkm, übrigens ein bescheidener Wert für

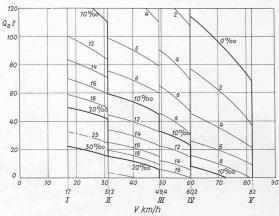


Abb. 9. Zuglasten-Diagramm (Beharrungszustand). Legende: Qn Anhängelast am Zughaken, in t, bei vollbesetztem Triebwagen mit 46 t Bruttogewicht, V Fahrgeschwindigkeit in km/h, I bis V Getriebeabstufung. $2^{\,0}/_{00}$. $4^{\,0}/_{00}$, $10^{\,0}/_{00}$, $20^{\,0}/_{00}$. . . Steigung in $^{\,0}/_{00}$

die vorliegenden Betriebsverhältnisse. Das gebrauchte abgelassene Oel der Maschinenanlagen wird eben jeweils filtriert und zu einem bedeutenden Teil wieder verwendet. Interessant ist, wie der Brennstoffverbrauch nach und nach von 10,9 auf 9,0 bzw. 9,2 g/tkm zurückging, was in erster Linie der nach einigen Monaten Betrieb erreichten geschickten Ausnützung der beiden Maschinenanlagen zuzuschreiben ist. In der Tat wird heute nur dann mit beiden Motoren gefahren, wenn dies unbedingt notwendig ist. Anderseits werden die Motoren auf Gefällstrecken, soweit dies das Stillegen des Bremskompressors erlaubt, abgestellt; jedes unnütze Leerlaufenlassen der Motoren wird konsequent vermieden.

Der Unterhalt der Maschinenanlagen blieb bisher unter den erwarteten Grenzen. Vom 1. April bis 31. Dezember 1942 wurden für beide Motorwagen für den laufenden Unterhalt (ohne Wagenreinigung, Reinigungs- und Heizmaterial) und die wöchentlichen kurzen Ueberholungen Material-Kosten in der Höhe von 728 Fr. und Löhne in der Höhe von 3544 Fr. aufgewendet. Es entspricht dies, zusammengenommen, einer Auslage von 3,32 Rp./km bzw. 0,074 Rp./br. tkm. Selbstredend lassen diese Zahlen noch keine endgültigen Schlüsse hinsichtlich der zukünftigen Unterhaltskosten zu. Anlässlich der um die Jahreswende durchgeführten eingehenden Ueberholung von zwei Maschinenanlagen wurden Motoren und Getriebe in denkbar bestem Zustande vorgefunden. Dies lässt hoffen, dass auch in Zukunft die Unterhaltkosten bescheiden ausfallen werden.

Von besonderem Interesse ist noch die Erwähnung der Tatsache, dass die Ausserbetriebsetzung der Triebwagen für Revisionsarbeiten an den Maschinenanlagen dank der Anschaffung eines vollständigen Reserve-Motor-Getriebe-Aggregates jeweils auf wenige Tage beschränkt wird.

MITTEILUNGEN

Neubau der National-Zeitung, Basel. Leider ist in der Beschreibung auf S. 224* lfd. Bds. die Darstellung der durch Lehmann & Co. in Basel erstellten Heizungs- und Lüftungsanlagen zu kurz gekommen. Wir tragen deshalb folgendes nach. Als Raumheizung dient eine Pumpen-Warmwasserheizungsanlage, die in eine Reihe von Heizgruppen unterteilt ist, bei denen durch eine weitgehende Regulierfähigkeit dafür Sorge getragen worden ist, dass der Einfluss der Sonnenstrahlung und des Windanfalles auf die einzelnen Bauteile beim Heizen berücksichtigt werden kann. Die Heizung des grossen Rotationsraumes erfolgt mittels Luftheizapparaten, die rasches Aufheizen sichern. Auch wird durch die entstehende Luftströmung die Schwitzwasserbildung an den Oberlichtern vermieden. — Der Rotationsmaschinenraum ist mit einer vollautomatischen Luftkonditionierungsanlage ausgerüstet, mittels der Temperatur und Feuchtigkeit der Raumluft konstant gehalten werden können, was für die Erzielung eines guten Druckes von ausserordentlicher Bedeutung ist. Eine Rheo-Differenzialregulierung steuert sämtliche Luftklappen, Heiz- und Kühlventile, sowie die Ventilatoren. Die Betätigung der ganzen Anlage kann von einer zentralen Schalttafel im Rotationsmaschinensaal aus erfolgen. Der Setzmaschinensaal besitzt eine besondere Zu- und Abluftanlage, wobei die Luftkanäle so angeordnet sind, dass eine Ansammlung von schädlichen Dämpfen in den Räumen nicht möglich ist. Eine eigene Zu- und Abluftventilationsanlage besitzt ferner die Stereotypie. Diese beiden