Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 121/122 (1943)

Heft: 2

Artikel: Das Haus "Zum weiten Horizont" in Ebertswil am Albis

Autor: Kopp, Max

DOI: https://doi.org/10.5169/seals-53025

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

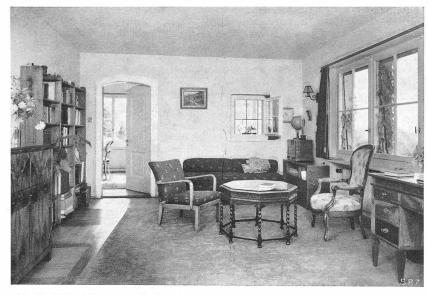


Abb. 13. Wohnstube, gegen die Esstube gesehen

Wiesen und Obstbäumen liegt.

Das Haus «Zum weiten Horizont» in Ebertswil am Albis

Wer aus dem Zürichseebecken kommt, die Enge des Sihltales durchschritten hat und nun von Sihlbrugg die schattige Waldlehne emporsteigt gegen den Schweikhof, dem öffnet sich dort oben eine neue, völlig überraschende Landschaft. Wir stehen am Südhang der Albiskette. Hinter uns steigen steil die Buchenwälder nach dem luftigen Grat empor. Vor uns aber fallen die Wiesen in den mannigfaltigsten Wellungen und in immer neuen Stufen ab gegen das tiefliegende Zugerland. Aus dem Grund seiner Mulde leuchtet der See und hinter ihm reihen sich die Berge der Innerschweiz. In den vielfältigsten Formen überschneiden sie sich und stufen sich zurück in weite Fernen, von denen her die weissen Pyramiden der Berneroberländer-Gipfel leuchten. Vom zackigen Pilatus an ebben sie nach Westen ab über die Höhen um den Napf, um in grosser Weite in die beruhigten Linien des Lindenberges und des Jurazuges auszuklingen. Wer vom Zürichsee her an die begrenzten Fernen gewöhnt ist, die die dem Ufer gleichlaufenden Höhenrücken nur gegen die Glarnerberge freigeben, den überwältigt hier am Südhang des Albis die Weite der Horizonte. Sie gaben diesem Hause den Namen, das, einen kurzen Gang in Richtung Hausen, über den Gehöften von Ebertswil, weit herum allein, in den

Ein kleiner Fahrweg führt vom Feldsträsschen hangabwärts gegen das Haus. Dieses wächst bergseits mit breiter Dachfläche aus der Halde heraus und öffnet sich mit Fenstern und Lauben nach der lockenden Talseite, ihre Aussicht und die mittägliche Sonne einfangend. Aber es schützt sich auch zugleich gegen die peitschenden Gewitter, die vom Pilatus herziehen, mit einem weitausladenden Dachschirm und mit der über dem Erdgeschoss durchlaufenden Balkonlaube (Abb. 6 und 11).

Das Hauptstück des Hausinnern ist die grosse Wohnstube. Sie fängt mit breitem Fenster den weiten Horizont ein und gibt den Räumen Mass und Grösse. Neben ihr nehmen sich die andern Stuben klein und intim aus. Sei es die Esstube, die nach Südosten auf den Garten blickt, sei es die kleine Stube der Hausfrau im westlichen Vorbau. Diesen Raum umfängt die Stimmung stiller Abgeschlossenheit. Wir steigen vom Gang drei Stufen zu ihm hinab und wenn hinter uns die Tür ins Schloss fällt, so haben wir so recht Hausbetrieb und Unrast hinter uns gelassen. Die ganz persönliche Welt der Frau umgibt uns mit Büchern, mit Musik- und Schreibgeräten. Die hohen Fenster lassen nur schmale Ausschnitte der Landschaft eintreten, aber über eine kleine Steintreppe gelangen wir hinab in die blühende Mannigfaltigkeit einer sonnigen Blumenecke (Abb. 6).

Was ist daneben sonst noch viel zu sagen? Es ist ja selbstverständlich, dass das Haus, soweit es der Kostenplan erlaubte, möglichst alle Bequemlichkeiten, die wir heute schätzen, in sich schliesst, von der automatischen Kohlenfeuerung der Heizung (Luwa-Kessel) bis zum Abwurf für gebrauchte Wäsche aus dem Badezimmer zur Waschküche. Die Kosten für den Kubikmeter umbauten Raumes betrugen im Baujahr 1938 ganze 59 Franken — ein Betrag, der uns heute schon fast sagenhaft anmutet.

Eidg. Oberbauinspektorat

Auszug aus den Geschäftsberichten 1938/1941

Vorbemerkung der Redaktion. Im Anschluss an die Berichte aus dem Tätigkeitsbereich der eidg. Aemter für Wasserwirtschaft, für Elektrizitätswirtschaft und des Starkstrominspektorates¹) veröffentlichen wir erstmals auszugsweise auch den Jahresbericht des Eidg. Oberbauinspektorates, den wir bisher nicht erhalten hatten. Wir nehmen zugleich die Gelegenheit wahr, auf die in der SBZ im Herbst 1938 in der Frage der Neubesetzung des Postens des Eidg.

Oberbauinspektors gegenüber dem jetzigen Träger dieses Amtes zum Ausdruck gebrachten Bedenken zurückzukommen. Jene, aus massgebenden Fachkreisen stammenden Befürchtungen haben sich inzwischen erfreulicherweise durch den Sinn für wissenschaftliche Forschung, den der gegenwärtige Leiter des Oberbauinspektorates unter Beweis gestellt hat, anerkanntermassen als unbegründet erwiesen. Der seinerzeit der Versuchsanstalt für Wasserbau an der E.T.H. durch den Bund erteilte Auftrag zur Durchführung von Modell-Versuchen über die Rheinregulierung oberhalb des Bodensees geht auf seine Initiative zurück; ferner hat das Oberbauinspektorat in neuester Zeit das systematische Studium des weiteren Ausbaues des schweizerischen Hauptstrassennetzes an die Hand genommen. Damit wird eine Forderung erfüllt, der auch wir schon wiederholt Ausdruck gegeben haben.

1) Vgl. Bd. 120, S. 174, 186, 187.

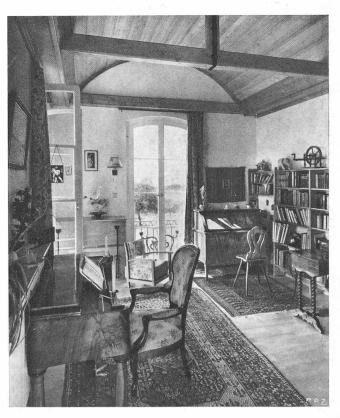


Abb. 14. Die «kleine Stube» im westlichen Vorbau

LÄNDLICHES WOHNHAUS "ZUM WEITEN HORIZONT"

IN EBERTSWIL AM ALBIS

Architekt MAX KOPP, Zürich

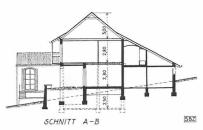


Abb. 4. Schnitt 1:400 (vgl. Grundrisse S. 22/23)

Verformungsmechanismus schon an Gummimodellen zu studieren, wo die Formveränderungen infolge Krafteinwirkung in ausgeprägter Weise in Erscheinung treten. Man kann sich das Arbeiten des Materials auch durch den Kraftfluss deutlich vor Augen führen.

Das Wesen der richtigen Formgebung wird Abb. 5. Anfahrt insbesondere an der Dehnschraube erläutert; ferner wird gezeigt, dass beim gelochten Stab die Spannungsverteilung im kritischen Querschnitt aus flacher Biegung wesentlich günstiger ist als wie aus einaxigem Zug.

Besondere Bedeutung kommt der richtigen Formgebung bei dynamischer Beanspruchung zu. Die Ermüdungsfestigkeit fällt bei scharfen Kerben stark ab und es ist eine rationelle Ausnützung hochfester Stähle nur dann möglich, wenn der Kerbempfindlichkeit Rechnung getragen wird. Von besonderer Bedeutung ist bei solchen Stählen die Behandlung der Oberfläche durch Polieren, Nitrieren oder Oberflächenhärten.

Die richtige Bemessung der einzelnen Konstruktionsteile beruht auf der Zeitfestigkeit, d. h. auf der Berücksichtigung der Anzahl und Grösse der Spannungswechsel während einem bestimmten Zeitintervall. Bei einer nur beschränkten Anzahl Wechsel können wesentlich höhere Beanspruchungen zugelassen werden. Hierbei ist dann jedoch zu beachten, dass man nicht zu nahe an die Streckgrenze des Materials herankommt und dass bei Werkzeugmaschinenteilen nicht zu grosse Verformungen entstehen.

Abb. 6. Südliche Hausecke, mit oberer Gartenterrasse

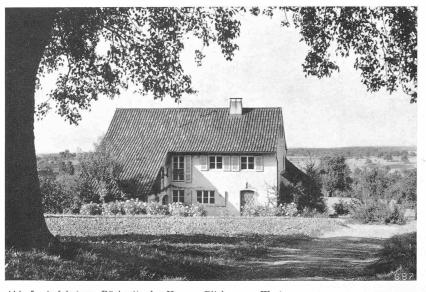


Abb. 5. Anfahrt zur Rückseite des Hauses, Blick gegen Westen

Der Leichtbau wird wesentlich durch die Verwendung von Hohlprofilen beherrscht. Diese sind insbesondere für die kombinierte Beanspruchung aus Biegung und Verdrehung günstiger als die offenen Profile. Da die Bauwerke möglichst dünnwandig ausgebildet werden, ist ihrer Stabilität besondere Aufmerksamkeit zu schenken. Hierbei kommen insbesondere in Betracht: Knicken im elastischen oder plastischen Bereich, und Beulen, je nachdem es sich um Stäbe oder Schalen handelt. Bei Trägern sind genügende Aussteifungen gegen das Kippen erforderlich. Durchweg ist zu beachten, dass der Elastizitätsmodul bei Leichtmetallen dreimal kleiner ist als bei Stahl.

Bei der Beurteilung, ob Stahl, Leichtmetall oder Kunstharz zu verwenden ist, sind in Betracht zu ziehen: Festigkeit, Steifigkeit, Gewicht und Wirtschaftlichkeit. Der Leichtbau bietet dem Ingenieur viele Möglichkeiten zur Entfaltung seiner Kenntnisse und seiner Initiative.

Da die Schweiz arm ist an Rohstoffen und einen scharfen Konkurrenzkampf zu führen hat, hat sie grosses Interesse am Leichtbau. Hierbei kommt ihr der Sinn ihrer Arbeiter für Exaktheit und Präzision wesentlich zu statten. Zielbewusste Pflege des Leichtbaues wird den alten Ruf der Schweiz zu neuer Blüte bringen.

2. Erzeugung und Verarbeitung des Aluminiums

Prof. Dr. A. v. ZEERLEDER, E. T. H., Zürich

Unter den Leichtstoffen für den Leichtbau kommt insbesondere das Aluminium mit seinen Legierungen in Betracht. Die heutige Herstellung beruht auf dem Verfahren von Héroult in Frankreich und Hall in Amerika, nach denen das Aluminium auf elektrolytischem Wege gewonnen wird. Zu diesem Zweck wird Tonerde in geschmolzenem Kryolith bei etwa 1000°C aufgelöst und der elektrochemischen Reduktion unterworfen. Da hierzu grosse Mengen elektrischer Energie benötigt werden, sind die Entwicklungsmöglichkeiten in der Schweiz günstig. Die Roh

Abb. 7. Ostecke der Südostseite, mit Eingang zur Garage

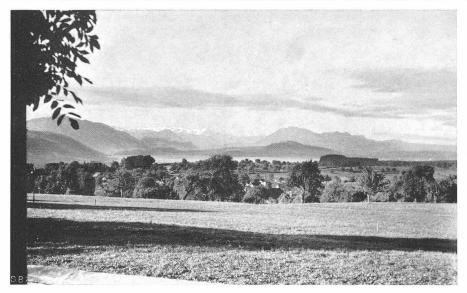


Abb. 10. Aussicht gegen Südwesten, mit Zugersee und Berner Alpen. Bew. Nr. 6057 lt. BRB 3. X. 39

stoffe aber müssen aus dem Ausland bezogen werden, so der rote Bauxit mit rd. 60% Tonerde insbesondere von den Mittelmeerländern und der Kryolith aus Grönland. Es besteht hingegen auch die Möglichkeit, den Kryolith synthetisch herzustellen, und im Notfall Kaolin und Ton auf Tonerde zu verarbeiten. Infolge ihres geringeren Tonerdegehaltes sind diese jedoch bis jetzt unwirtschaftlich. Die Kohleanoden können aus dem in der Schweiz anfallenden Teer, auch aus Pech und Petrolkoks und aus gutem Anthrazit hergestellt werden. Das nach diesem Verfahren hergestellte Aluminium weist einen Reinheitsgrad zwischen 99 und 99,8% auf. Aus einer zweiten Elektrolyse geht das Raffinal hervor mit einem Gehalt an Aluminium von 99,995%. Dieses zeichnet sich durch hohe elektrische Leitfähigkeit, hohen Korrosionswiderstand und grosse Verformbarkeit aus. Reinaluminium findet infolge seiner chemischen Beständigkeit insbesondere im Apparatebau der chem. Industrie Verwendung.

Besondere Bedeutung kommt den Aluminium-Legierungen zu. Legierungstechnisch können sie unterschieden werden in nicht aushärtbare und aushärtbare Legierungen, und diese wieder in solche die selbständig aushärten, oder die eine Erwärmung benötigen. Bezüglich Formgebung findet die Unterteilung in Gussund Knetlegierungen statt, wobei bei diesen Walzen, Pressen, Kneten und Ziehen in Betracht kommt. Im weiteren sind noch die Legierungen für Sonderzwecke, wie z. B. solche für Kolben, die warmfest sein müssen, sowie die Spritz- und Pressgusslegierungen zu erwähnen.

Die Zahl der Al-Legierungen ist sehr gross. Die Normen haben hierin klärend und vereinfachend gewirkt, sodass die wichtigsten Gusslegierungen in vier, die Knetlegierungen in fünf Gruppen zusammengefasst werden konnten. Die wichtigsten Legierungselemente sind Cu, Mg, Mn, Ni, Zn, Si und Ti. Je nach ihrer Zusammensetzung werden die Legierungen in binäre (zweistoff), ternäre (dreistoff) und solche mit mehr als drei Bestandteilen unterschieden. Unter den Legierungen, die durch

mehrtägiges Lagern bei Raumtemperatur selbständig aushärten, auch natürliche Alterung genannt, ist insbesondere die aus Al-Cu-Mg mit der Bezeichnung Duralumin oder Avional zu nennen. Unter die Legierungen, die zur Aushärtung mehrstündig angelassen werden, was auch als künstliche Alterung bezeichnet wird, gehören z.B. die Knetlegierungen Al-Cu-Ni (Y-Legierung), Al-Cu (Lautal) und Al-Mg-Si (Anticorodal), ebenso die Gusslegierungen von Y-Legierung, Anticorodal und Silumin-Gamma. Avional zeichnet sich besonders aus durch seine hohe Festigkeit, Anticorodal durch seinen Widerstand gegen Korrosionsangriffe und die Y-Legierung durch ihre hohe Warmbeständigkeit.

Erst durch die Aushärtung ist die Entwicklung der hochwertigen Aluminium-Konstruktionslegierungen möglich geworden. Sie besteht in einer Erhitzung möglichst dicht unter dem Soliduspunkt und in einer darauffolgenden Abschrekkung in kaltem Wasser. Hierdurch werden die durch die Erhitzung entstandenen

Mischkristalle in einen an Legierungselementen übersättigten, unstabilen Zustand übergeführt. Durch den Zeiteinfluss, insbesondere auch durch nachträgliche Erwärmung entstehen molekular-disperse Ausscheidungen, wodurch die ganze Masse unter mechanische Spannung versetzt wird. Dieser Vorgang bewirkt die materialtechnisch wichtige Steigerung der Festigkeit und Härte.

Konstruktiv ist von Bedeutung, dass infolge des gegenüber Eisen dreimal kleineren Elastizitätsmoduls auf die Erhaltung genügender Steifigkeit zu achten ist. Zur Erhöhung des Korrosionswiderstandes trägt wesentlich bei die Erzeugung einer Oxydschicht vermittelst anodischer Oxydation. Hierbei ist jedoch darauf zu achten, dass sie nicht mit Aluminiumoxyd lösenden Chemikalien in Berührung kommt.

Festigkeitstechnisch werden durch das Legieren Werte erreicht, die denen des Stahls gleichkommen. Während Reinaluminium weich im Mittel eine Streckgrenze von 3 kg/mm² und eine Zugfestigkeit von 8 kg/mm² aufweist, können die entsprechenden Werte bei Knetlegierungen ansteigen bis auf 30, bzw. $50~{\rm kg/mm²}$ und mehr und bei Gusslegierungen bis auf 28, bzw. $35~{\rm kg/mm²}$. Auch die Dehnungen können trotz diesen Festigkeiten ansehnliche Werte aufweisen, d.h. $10 \div 20~{\rm e}/{\rm o}$ bei den Knetund $1 \div 5 \div 8~{\rm e}/{\rm o}$ bei den Gusslegierungen. Beim Leichtmetallguss wird empfohlen, möglichst dünnwandigen Kokillenguss zu verwenden, der sich infolge der raschen Abkühlung durch grosse Feinkörnigkeit auszeichnet. Besondere Bedeutung kommt heute dem Spritzguss zu.

In technologischer Hinsicht ist zu erwähnen, dass beim Walzen der Kraftverbrauch annähernd gleich ist wie bei den Schwermetallen. Das Auswalzen kann bis zu den dünnsten Querschnitten stattfinden. Es wird hervorgehoben, dass das an der LA 1939 gezeigte Güterwagendach aus einem Stück bestand. Durch die Strang- und Rohrpressen ist es möglich, die vielgestaltigsten Profile herzustellen. Da ein rasches Auswechseln

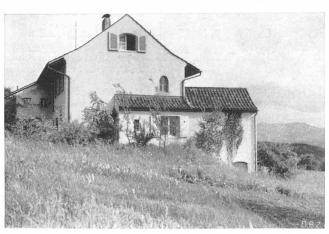


Abb. 8. Nordwestgiebel, Wetterseite des Hauses

Abb. 9. Das Haus im Gelände, aus Osten

der Matrizen stattfinden kann, lohnen sich schon Aufträge von kleinen Mengen, was beim Walzen ausgeschlossen ist. Schmieden benötigt einen grossen Kraftverbrauch. Infolge des beim Ausschmieden geringen zulässigen Wärmebereiches sind mehr Zwischenwärmungen notwendig. Es wird auf die geschmiedeten Propeller hingewiesen. Grosse Gegenstände können auch gepresst werden, wie dies an einem Scheibenrad der SBB gezeigt wird. Dünnwandige Profile werden auch durch Abkanten von Blechen oder Ziehen hergestellt. Hervorzuheben ist, dass die Gasflaschen aus Rondellen tief gezogen werden. Das Schweissen konnte erst zur Anwendung kommen, nachdem ein Mittel gefunden worden war, um das Aluminiumoxyd aufzulösen. Neben der Autogenschweissung hat auch die elektr. Lichtbogenschweissung Eingang gefunden. Bei der Punktschweissung ist zu erwähnen, dass an aushärtbaren Legierungen keine Beeinflussung der Festigkeit eintritt¹). Beim Nieten muss beachtet werden, dass das Schlagen rasch erfolgt, weil nach etwa vier Stunden das Nietmaterial beim Stauchen Risse erhalten kann. Kaltlagerung verzögert die Aushärtung. Leichtmetalle sollen stets kalt genietet werden. Die Kraftübertragung erfolgt durch Scherung und Lochleibung; die bei den warm geschlagenen Nieten auftretenden Reibungskräfte kommen hier nicht in Betracht.

Den Aluminiumlegierungen wird zukünftig noch ein weiterer Aufstieg bevorstehen.

1) Betr. Punktschweissen von Al siehe Bd. 120, S. 179*, ferner auf S. 8 lfd. Bandes.

Abb. 2. Keller-Grundriss 1:400

Abb. 12. Wohnstube, gegen die Gangtüre gesehen

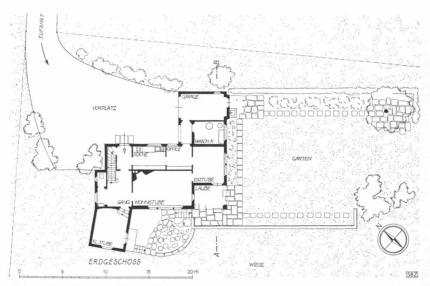


Abb. 1. Grundriss von Haus und Garten. — Masstab 1:400

Abb. 11. Südwestfront und Südostgiebel des Hauses «Zum weiten Horizont» in Ebertswil

Dr. R. Irmann machte in der Diskussion noch einige Angaben über die Untersuchungen der Ermüdungsfestigkeiten von genieteten Konstruktionen. Hierbei wurde festgestellt, dass durch Beseitigung der Reibkorrosion die Schwingungsfestigkeit auf +8 kg/mm² gesteigert werden konnte, während sie beim Stahl nach gleicher Versuchsart rd. 16 kg/mm2 ist. Auch bei Gussstücken kann die Art des Giessens einen Einfluss auf die Ermüdungsfestigkeit ausüben.

Anschliessend gibt Ing. Jenny (Dornier) bekannt, dass die anodische Oxydation unabhängig von der Schichtdicke eine Verminderung der Ermüdungsfestigkeit nicht herbeiführe. Sie könne daher ohne Bedenken angewendet werden.