Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 119/120 (1942)

Heft: 18

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Allgemeine Berechnung von rechteckigen Eisenbeton-Querschnitten auf Biegung mit Axialkraft. - Zum beschleunigten Ausbau unserer Wasserkräfte. - Technische Fragen der Baustoffbewirtschaftung. - Pro Helvetia. - Drei Einfamilienhäuser in Zollikon bei Zürich. - Mitteilungen: Baueisen- und Zementrationierung. Zur Betrachtung schneller Vorgänge. Die magnetische Anomalie von Kursk. Zum Gedächtnis Mittelholzers. Kantonschul-Turnhallen in Zürich. S. I. A.-Sektion Fribourg. -Literatur. - Vortragskalender.

Band 119

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet

Nr. 18

Allgemeine Berechnung von rechteckigen Eisenbeton-Querschnitten auf Biegung mit Axialkraft

Von ERNST FRAUENFELDER, Dipl. Ing. E. T. H., Münchenstein-Basel

In der Schweizerischen Bauzeitung, Bd. 79, S. 263* und 307* (27. Mai und 24. Juni 1922) ist von Ing. P. Pasternak ein Verfahren «zur Berechnung von Eisenbeton-Querschnitten auf einheitlicher tabellarischer Grundlage» veröffentlicht worden, das meines Erachtens in der Praxis zu wenig Beachtung und Eingang gefunden hat. Es beruht auf zwei Nomogrammen, bzw. einer Koeffizienten-Tabelle, die zur Dimensionierung und Spannungsberechnung von beidseitig armierten, bzw. einseitig zugbewehrten Rechteckquerschnitten dienen und sowohl für reine Biegung, als auch für Biegung mit Axialdruck und -Zug gelten.

Abgesehen von den interessanten mathematischen Ableitungen zur Berechnung der erwähnten Nomogramme befasste ich mich mit der Vervollständigung jener Dimensionierungs-Tabelle für die einseitig zugbewehrten Rechteckquerschnitte, die ich seither wegen ihres einfachen Aufbaues, ihres grossen Geltungsbereiches und nicht zuletzt wegen ihrer vielseitigen Anwendungsmöglichkeiten stets mit Vorteil gebraucht hatte.

Durch die Einführung der neuen Eidg. Vorschriften 1) vom 14. Mai 1935 sind die von Ing. P. Pasternak aufgestellten Nomogramme und die Koeffizienten-Tabelle für n=20 ungültig geworden, da bekanntlich der Verhältniswert für $n = E_e$: E_b mit 10 in den Spannungsberechnungen zu berücksichtigen ist (Artikel 97). Angeregt durch die Vorteile dieses Dimensionierungs-Verfahrens, sowie durch die übersichtliche Ableitung der allgemeinen Bemessungsformeln, wie sie Prof. E. Mörsch in seinem Werk «Der Eisenbetonbau, seine Theorie und Anwendung» 2) gezeigt hat, bin ich dazu gekommen, die ursprünglich nur für einseitig zugbewehrte Eisenbeton-Querschnitte bestimmte Tabelle auf beidseitig armierte Querschnitte für n=10 und n=15 umzurechnen und zu erweitern.

Die nachstehenden Ableitungen folgen dem Gedankengang von Prof. Mörsch, sind aber mit den von Ing. Pasternak eingeführten Koeffizienten entwickelt worden, um den Zusammenhang mit der eingangs erwähnten Veröffentlichung zu wahren. Als neue Koeffizienten erscheinen der Wert α , der das Verhältnis zwischen dem Abstand h' der Eiseneinlagen vom Betonrand zur Nutzhöhe h angibt, sowie der Koeffizient K_3 , der im Zusammenhang mit den übrigen gegebenen Grössen (Querschnitt-Abmessungen und zulässige Spannungen) ohne weiteres die Berechnung der erforderlichen Druckarmierung F'e gestattet (siehe Gl. 11).

Es sei noch betont, dass die hier entwickelten Bemessungs-Formeln nur für diejenigen Fälle gelten, wo die Resultierende der Normalkräfte ausserhalb des Kerns des ideellen Querschnittes angreift, im allgemeinen für

$$\min \ c = \frac{M}{N} \ge \frac{d}{3}$$

1. Allgemeine Bezeichnungen und Ableitung der Formel für die Querschnitt-Bemessung

Ersatz des auf den Mittelpunkt O des Betonquerschnittes (Stabaxe) bezogenen Biegungsmomentes M und der daselbst angreifenden Normalkraft N (Abb. 1) durch die im Abstand $c = \frac{M}{N}$ vom Mittelpunkt exzentrisch wirkende Kraft N (Abb. 2). Im folgenden gilt, wenn vor der Kraft N zwei Vorzeichen stehen, das obere für N = Druckkraft, das untere für N = Zugkraft. Bei gegebenen zulässigen Spannungen σ_b und σ_e ist das Spannungsbild nach Abb. 1 bekannt. Der Abstand der Nullinie vom ge-

drückten Rand berechnet sich wie bei einfacher Biegung zu
$$x=rac{n\,\sigma_b}{n\,\sigma_b+\sigma_e}h=\xi\,h$$
 (1)

worin

$$\xi = \frac{n}{n+\gamma} \text{ und } \gamma = \frac{\sigma_e}{\sigma_b} \quad . \quad . \quad . \quad (2)$$

$$h - \frac{x}{3} = \varrho h = \left(1 - \frac{\xi}{3}\right) h \quad . \quad . \quad . \quad (3)$$

$$h - \frac{x}{z} = \rho h = \left(1 - \frac{z}{z}\right) h \qquad (3)$$

²) 6. Aufl., I. Band, 1. Hälfte, S. 417 (Konrad Wittwer, Stuttgart 1923).

Spannung in den gedrückten Eisen

$$\sigma'_e = n \, \sigma_b \frac{x - h'}{x} = \sigma_e \frac{x - h'}{h - x} \quad . \quad . \quad (4)$$

Resultierende der Betonpressungen $D_b = \frac{b \, x}{2} \, \sigma_b$

Kraft in den Druckeisen $D_e = F'_e \, \sigma'_e$ Kraft in den Zugeisen $Z_e = F_e \, \sigma_e$

Wir führen nun ein neues Moment M_e ein und zwar bedeutet dies allgemein das Moment der in Abb. 2 exzentrisch wirkenden Druckkraft (+), bzw. Zugkraft (-) auf die gezogene Eiseneinlage F_e :

 $M_e=N\,(c\,\pm\,e)$ (6) Mit M_1 bezeichnen wir das Biegungsmoment, das der einfach bewehrte Rechteckquerschnitt $b \ d$ ohne Axialkraft N zur Erzeugung der Spannungen σ_b und σ_e aufnehmen könnte:

$$M_1 = \sigma_b \frac{b \, x}{2} \Big(h - \frac{x}{3} \Big) = K_1 \, b \, h^2 \, \sigma_b = K_2 \, b \, h^2 \, \sigma_e \; . \quad . \quad (7)$$

worin

$$K_1 = \frac{1}{2} \varrho \, \xi = \frac{1}{6} \frac{n (2 n + 3 \gamma)}{(n + \gamma)^2} \text{ bzw. } K_2 = \frac{K_1}{\gamma} .$$
 (8)

Aus der Gleichheit zwischen den innern und äussern Kräften lassen sich in Bezug auf Abb. 2 folgende Beziehungen aufstellen:

a)
$$M_e = N(c \pm e) = F'_e \sigma'_e (h - h') + \sigma_b \frac{b x}{2} \left(h - \frac{x}{3}\right)$$

b)
$$Z_e = D_b + D_e \mp N$$

Aus der Momentengleichung a) folgt mit Hilfe von (7)

$$F'_{e} = rac{M_{e} - M_{1}}{\sigma'_{e} (h - h')}$$

$$b' = \frac{M_e}{K_1 \sigma_b h^2} = \frac{N (c + e)}{K_2 \sigma_e h^2} \dots (9)$$

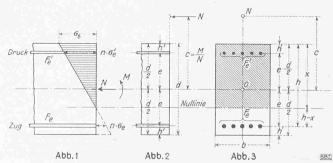
Durch Einführung der Bezeichnungen
$$b' = \frac{M_e}{K_1 \sigma_b h^2} = \frac{N (c \pm e)}{K_2 \sigma_e h^2} \qquad (9)$$

$$\alpha = \frac{h'}{h} = \frac{d - 2e}{d + 2e} \qquad (10)$$

$$e = \frac{d}{2} \frac{1 - \alpha}{1 + \alpha}$$

und mit Hilfe der Gleichungen (4) und (2) ergibt sich

$$F'_{e} = \frac{K_{1} \sigma_{b} h^{2} (b' - b) (h - x)}{\sigma_{e} (x - h') (h - h')} = \frac{K_{1}}{\gamma} \frac{h - x}{x - h'} \frac{b' - b}{h - h'} h^{2} = \frac{K_{1}}{\gamma} \frac{1 - \xi}{\xi - \alpha} \frac{b' - b}{1 - \alpha} h$$


woraus der Querschnitt der Druckeiseneinlagen

$$F'_e = K_3 \frac{b'-b}{1-a'}h$$
 (11)

Words der *Querschnitt der Brückeisenentagen*

$$\frac{F'_e = K_3 \frac{b' - b}{1 - \alpha} h}{K_3 = \frac{K_1}{\gamma} \frac{1 - \xi}{\xi - \alpha}} = \frac{K_1}{n - \alpha (n + \gamma)} \quad (12)$$
Aus der Kräftegleichung b) folgt:

$$F_e = rac{D_b + D_e + N}{\sigma_e} = rac{b \, x}{2} rac{\sigma_b}{\sigma_e} + F'_e rac{\sigma'_e}{\sigma_e} \mp rac{N}{\sigma_e}$$

¹⁾ Siehe SBZ, Bd. 106, S. 59 (10. August 1935) und Bd. 107, S. 46 (1. Februar 1936).