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Reglerschwingungen und schiefwinklige Vektor-Diagramme

Von Dipl. Ing. ALBERT LUTHI, Ziirich

Die rechnerische Behandlung von Reglerproblemen fiihrt,
wenn von Diskontinuitédten, wie Reibungen und toten Spielen,
abgesehen wird und gegebenenfalls nur kleine Abweichungen
von einem Gleichgewichts-, bzw. Bezugszustande untersucht
werden, auf lineare homogene Differentialgleichungen mit kon-
stanten Koeffizienten. Es sei einleitend fiir einen einfachen Fall
eine solche Gleichung hergeleitet. Gegeben sei eine in Abb. 1
schematisch dargestellte Turbine mit mittelbar wirkendem Dreh-
zahlregler; T ist die Turbine, G der Generator.
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Wir unterscheiden verschiedene «Gliedery, die wir mit strich-
punktierten Linien umsdumt haben. Deren erstes bestehe u. a.
aus einem Drehzahlpendel P und einem Steuerschieber S, ,derden
Oelfluss von und zu einem Servomotor M, beherrscht. Ein Riick-
fiihrhebel H, sei an der Muffe des Pendels, am Steuerschieber
und an der Stange des federbelasteten Servokolbens K, ange-
lenkt. Das Pendel sei stabil, reibungs- und trigheitslos; dann
entspricht innerhalb des Hubbereiches der Muffe jeder Drehzahl
eine Muffenstellung. Konnen die Riickwirkungen des zweiten
Gliedes im Vergleich zu den Stellkridften des Kolbens K, ver-
nachlédssigt werden, so entspricht jeder «festen» Muffenstellung
eine «feste» Stellung des Servokolbens. Unter «fest» verstehen
wir, dass die Muffe, bzw. der Kolben im Momente der Betrach-
tung und schon lange Zeit vorher bewegungslos waren. Bewegt
sich die Muffe, so weicht der Steuerschieber von seiner Mittel-
lage ab und der Kolben K, geridt in Bewegung. Wir sprechen
dann von fliichtigen Stellungen und Hiiben, die nur durch
Momentanmessungen festgestellt werden konnen. Im folgenden
seien Y,1, Ym, Ys, Yq1 die fliichtigen kleinen Abweichungen der
Pendeldrehzahl, des Muffen-, Schieber- bzw. Kolbenhubes, y,1*,
Ym™, Ya,* dagegen die entsprechenden festen Abweichungen von
einer festen Bezugsstellung. Aus Abb. 1 folgt dann, dass die
Schieberabweichung ys proportional y,1 — y,1* ist. Ferner sei die

Servokolbengeschwindigkeit ,; proportional v, . Dann folgt,
wenn Z, eine positive Konstante ist:
— Z, Yol = Yal — Ya1*
Nun ist, da fiir feste Abweichungen der Steuerschieber in Mittel-
lage steht und daher der Hebel H, beim Uebergang in eine
andere Stellung um einen festen Punkt der Schieberaxe gedreht
wird, y,1* proportional y,*. Ferner ist mit Riicksicht auf die
das Pendel betreffenden Voraussetzungen und unter Annahme,
dass die Riickwirkungen des Hebels H, auf die Pendelmuffe ver-
nachléssigt werden kénnen, vy, * — vy, — Konstantey, (!). Hieraus
folgt
€y Ya1* = Y1

') Besteht zwischen ye1 und ym keine lineare Beziehung, so ersetzen
wir niherungsweise, wie {iblich, die Kurve der Beziehung zwischen beiden
Grossen durch deren Tangente im Bezugspunkte. Hiervon machen wir
stindig Gebrauch ohne darauf zuriickzukommen. Die Berechtigung hierzu

schpfen wir unter Beschrinkung auf genligend kleine Abweichungen aus
dem Reihenentwicklungssatze von Taylor.

wobei ¢’; eine negative Konstante ist. Aus den obigen zwei Glei-
chungen folgt schliesslich die Bewegungsgleichung des ersten
Gliedes: Yot =05 (Z¥at £ Yat) - = =+ o o (1)
Hierin hat die Konstante Z, die Dimension einer Zeit, da andern-
falls die rechtsseitige Klammer unhomogen wire. Die reelle Kon-
stante ¢’, nennen wir «feste» Uebersetzung, da fiir feste Ab-
weichungen _1],,1 verschwindet und daher-das «Hebelgesetz» y,1* —
¢! Yat™* gilt.

Uebergehend zum zweiten Gliede mit dem Steuerschieber S,,
dem Servomotor M, und dem Riickfiihrhebel H, erkennt man
die gleichen Gesetzméssigkeiten wie beim ersten Gliede. Wieder
soll die Riickwirkung des dritten Gliedes, genauer, des Turbinen-
Einlassventiles V, gegeniiber der Stellkraft des Servomotors M,
vernachldssigbar sein. Man erhilt die Bewegungsgleichung:

Ye2 =03 (23Ya2 + Ya2) - . . . . . (2)
Die Konstante ¢’, ist infolge der anderen Schieberanordnung
diesmal positiv. Wir betrachten schliesslich das letzte Glied be-
stehend aus der Turbine T mit Einlassventil V, Generator G und
Netz N. Der dem Turbinenrotor zugefiihrte Leistungsiiberschuss
4L, sei proportional der fliichtigen Ventilhubabweichung y,3.
Das heisst es sei 4L, — k,y.3. Der vom elektrischen Netze
aufgenommene Leistungsiiberschuss sei proportional der fliich-
tigen Drehzahlabweichung y,3, d. h. es gelte 4L, — k,¥Y,3-

Fiir die Beschleunigung ¥,3 des Rotors lisst sich dann schreiben:

Zbya(i:JLe ‘—JLa:key03— kayaa' (3v)
oder wenn wir setzen:
1 k
Zy e Z,, und c¢'; = }:‘:
Ye3 = C'y (Zsflju3 +Ya3) - - . . o (3)

Hilt man den Eingang der Glieder in der Bezugsstellung fest,
wobei Y., =0 (g =1, 2, 3) zu setzen ist, so ist der Ausgang
dennoch einer «Eigenbewegung» fdhig, denn die verbleibende
homogene Gleichung hat die Losung:

Z!I

Yag = @€

wobei e die Basis der natijrlgichen Logarithmen ist. Z, ist daher
die Zeit, die verstreicht, bis eine Auslenkung y,, auf den e-ten
Teil abgeklungen ist. Wir nennen sie «Folgezeity, da sie dariiber
Auskunft gibt, wie rasch der Ausgang den Bewegungen des Ein-
ganges folgt. Fir Z, und Z, sind die Ausdriicke Schluss- oder
Stellzeit gebrduchlich. Nun seien Y,,und Y,, die Masse, die
die Bezugsstellung festlegen. Teilen wir die Gleichungen 1, 2, 3
beidseitig durch Y, , und klammern rechts Y,, aus, so erhalten
wir das Gleichungssystem:

Tog=1Cg(Zy%yy+ Tag) 9=1,2,3 . . . (4)
Hierin ist ¢, — ¢'; ¥, ,/Y ., eine dimensionslose Konstante. Auch
die Grossen %,;=—Yey/Yeg, Tag = Yag/Ya, sind dimensionslos.
Wir nennen sie, wie iiblich, «bezogene Abweichungen». Ergénzen
wir die Gleichungen (3a) durch die Bedingungen x,{ =— %,2,
Xy2 = X3, 43 = T, 1 und eliminieren die {iiberzidhligen Unbe-
kannten, so erhalten wir die Regulier-Differentialgleichung dritter
Ordnung mit:

ag

a‘,x“+a|a':,,l+a2.i;|-|-a3:i;,;0. .. (D)
a, ot A
€, C3Cy
a, =2, 4+ 2, + Z,
a, =2,2,+ 2,2, 4 2,2,
a s 7 70l

3 273

wobei die Punkte Ableitungen nach der Zeit bedeuten. Man be-
merkt sofort, dass die Koeffizienten dieser Gleichung symme-
trische Funktionen der Konstanten der Glieder sind. Es ist daher
fiir den zeitlichen Verlauf der Abweichungen gleichgiiltig, in
welcher Reihenfolge die Glieder geschaltet werden, oder in wel-
cher Reihenfolge drei gegebene Zeitgrossen als Folgezeiten oder
drei dimensionslose Grossen als Konstante auf die Glieder ver-
teilt werden.

Wir nennen eine Anordnung von Gliedern nach Abb. 1, wo
ein Glied an das andere gereiht ist und schliesslich das letzte
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wieder mit dem ersten verbunden ist, eine geschlossene Kette.
Allgemein werden die Glieder nicht immer so einfacher Art sein,
wie in unserem Beispiel, sondern Ableitungen hdherer Ordnung
enthalten. Ein hdufig vorkommendes Glied, bei dem z. B. ausser
der ersten Ableitung der Abweichung auch die zweite eine Rolle
spielt, ist das trdge Drehzahlpendel mit Oelkatarakt. Héitten wir
ein solches Pendel in unser Beispiel einbezogen, so wére die
Ordnung unserer Differentialgleichung auf 5 angestiegen. Noch
uniibersichtlichere Verhiltnisse liegen vor, wenn die Glieder nicht
nur hintereinander, sondern teilweise parallel geschaltet sind,
wodurch die Ketten zu «Netzen» erweitert werden. Man stelle
sich z. B. neben dem Gliede 1 ein zweites Glied 1’ mit der Zeit-

konstanten Z’ vor; es ist dann ., 1 = . 1’. Mittels eines Verbin-
dungshebels zwischen den Stangen des Servomotors K; und K’
Lot 4 Zg1’

kann leicht z,2 — gemacht werden. Die beiden Glie-

2
der 1 und 1’ sind dann parallel geschaltet. Aehnliche Schaltungen
kommen bei Isodromsteuerungen vor.

Wir wollen uns ferner bewusst bleiben, dass wir die Glieder
unseres Beispieles vereinfachend idealisiert haben, indem wir
voraussetzten, dass sie einen Eingang und einen Ausgang haben,
derart, dass Storungen am Eingang auf den Ausgang, nicht
aber Storungen am Ausgange auf den Eingang iibertragen wer-
den. Solche Glieder nennen wir gerichtete Glieder. Allgemeine
Glieder, in denen eine Stérung sowohl vorwérts, wie auch riick-
wirts wandern kann, ergeben weniger iibersichtliche Resultate.
Allgemein erh#lt man, wie eben angedeutet, Gleichungen von

der Form: n

% =3cpz™ =0 . . . . . . . (6)
m =0

worin (™) die m-te Ableitung der Abweichung x nach der Zeit z

bedeutet. Diese Gleichung wird bekanntermassen durch den An-

satz: B =T & o T P R it I T, e

2™ — gefzgm —gEm . . . . . . (8)
befriedigt, worin a eine Konstante, e die Basis der natiirlichen
Logarithmen, & ein Parameter und 2z die Zeit ist. Man erhilt

aus (6) dann

U= _Fcm—0 . . . . . . (9
&z m =0
Sind die n-Losungen =, dieser charakteristischen Gleichung ge-
funden, so hat die allgemeine Losung der Gleichung (6) die

Form: 2

n
l=2a,e>"% .

r=1
wobei die Konstanten a, den Anfangsbedingungen anzupassen sind.

Wir sahen, dass unser einfaches einleitendes Beispiel bereits
schon auf eine Differentialgleichung dritter Ordnung fiihrte, so-
dass eine charakteristische Gleichung dritten Grades zu lésen
wire. Das Aufsuchen der Losungen von Gleichungen hoheren
als zweiten Grades ist aber im allgemeinen immer miihsam.
Man hat sich daher in der Literatur meist begniigt, mittels
einer von Hurwitz angegebenen Determinante zu entscheiden,
ob die Losungen nur negative oder auch positive Realteile ent-
halten. Im ersten Fall ist der Regler moglicherweise brauchbar,
da die freien Schwingungen mit der Zeit abklingen, im zweiten
Fall dagegen sicher unbrauchbar.

Neuerdings hat Feiss?) eine Methode angegeben, die in vielen
Fillen auf Grund eines Kriteriums von Nyquist die gleiche Ab-
schidtzung mittels rechtwinkliger Vektordiagramme ermdoglicht.
Ferner werden in einer Untersuchung von Bilharz3), allerdings
unter Zuhilfenahme weniger elementarer mathematischer Mittel,
interessante graphische Sitze aus der Hurwitz-Determinante
abgeleitet. Alle diese Mittel geben eine wertvolle Orientierung,
geniigen aber dem praktisch tdtigen Konstrukteur nicht. Er
muss wissen, wie lange es schlimmsten Falles geht, bis die
Schwingungen der von ihm entworfenen Regler abgeklungen sind.

Wir zeigen im Folgenden, dass fast so einfach wie im Ver-
fahren von Feiss, mittels schiefwinkliger Vektordiagramme ent-
schieden werden kann, ob die Losungen der Reguliergleichung
eine bestimmte Mindestddmpfung aufweisen. Dies ist ndmlich
dann der Fall, wenn in den Losungen

(10)

& = ¢ty + w,i = g, (coS ¢, + i8in p,) = g, Pr (11)
o, < e < 0 (12a)

1
> |:/r,| = l,/,,,l > o b1 1 (12b)

ist, wobei «, und ¢, zwei bestimmte Zahlen sind. Die Unglei-
chung (12a) nennen wir «Bedingung der absoluten Mindest-

2) R. Feiss: Bestimmung der Regelungsstabilitit an Hand des Vektor-
bildes. «Z.VDI» (1940), Nr. 43.

Ferner derselbe: Eine neue Methode zur Bestimmung der Stabilitit
von Regulierungen. SBZ, Bd. 118 (1941). Nr. 6, S. 61*.

8) H. Bilharz: Geometrische Darstellung eines Satzes von Hurwitz fir
Frequenzgleichungen fiinften und sechsten Grades. Z. angew. Math. Mech.
Bd. 21, 1941, Nr. 2.

didmpfung», die Ungleichung (12b) «Bedingung der relativen
Mindestdimpfung». Der Sinn dieser Bezeichnungen wird Klar,
wenn man die in Gleichung (10) paarweise auftretenden Partial-

Losungen mit konjugiert komplexen Exponenten &,, =, und kon-

jugiert komplexen Konstanten a,, a, zu reellen Gliedern zu-

sammenfasst. Man erhédlt dann beispielsweise:
l, = a'ye*r*sin (2, + 0,?) (13)

diejenige Abklingzeit an, die

Offenbar gibt hiernach d, — — “1
5
verstreicht, bis die Schwingungsausschldge auf den e-ten Teil
des anfénglichen Ausschlages abgeklungen sind. Teilt man diese
Abklingzeit durch die Schwingungszeit 27/w,, so erhdlt man in
— -217tg ¢r die Anzahl der in der Abklingzeit enthaltenen
Schwingungen, welche meist gebrochen und daher nicht an-
schaulich ist. Am deutlichsten tritt die Rolle von ¢ als Ddmp-
fungscharakteristikum hervor, wenn man das Verhiltnis v,
zweier aufeinander folgender Schwingungsamplituden berechnet.
Dieses Verhéltnis bestimmt sinnfillig die Form der Schwingungs-
Kurven. Dasselbe gilt dann auch von ¢r, denn es gilt
v, = €2zcot ¢, Dagegen legt «, sozusagen nur den Zeitmass-
stab des Schwingungsbildes fest.
Nach allem setzt also die Bedingung (12a) der Abklingzeit

eine obere Schranke d, — — % , wiahrend die Bedingung (12b)
e

die Grosse einer Schwingungsamplitude unter einen bestimmten

Bruchteil v, — €7 °°t?e der vorangehenden Amplitude beschrénkt.

Im Vergleiche mit der vorhergehenden Schwingung liegt der

«relative» Charakter dieser Schranke.

Versetzen wir uns mit Abb. 2
in die Zahlenebene, so beschridn-
ken die Bedingungen (12a) und
(12b) die Lésungen der charak-

" teristischen Gleichung auf einen
o sich gegen das negativ Unendliche
f offnenden, zur reellen Axe sym-
i metrischen Trapezbereich, dessen
',T*l sichtbaren Rand wir durch eine
/ Doppellinie hervorgehoben haben.
Ist die Bedingung (12b) erfiillt,
so wird, wie aus der Abb. hervor-
geht, die Bedingung (12a) sicher
erfiillt, wenn die noch engere,
aber bequemere Bedingung

0 > Qe (12c¢)

eingehalten wird. Wir fithren, um mit unseren Betrachtungen
im Endlichen bleiben zu konnen, noch eine weitere Schranke o',
ein und fordern zusitzlich ¢ < ¢'.. Diese Bedingung hat dann
iiberdies einen praktischen Wert, wenn zwecks Vereinfachung
der Reglergleichungen die Massen gewisser Elemente vernach-
ldssigt wurden, was oberhalb einer bestimmten Schwingungs-
Frequenz nicht mehr zulédssig ist, sodass Losungen hoherer Fre-
quenz wegbedungen werden miissen.

Wir verwenden im Folgenden eine Ueberlegung, von der in
spezieller Form sowohl schon Hurwitz4) bei der Ableitung seiner
Determinante, als auch neuerdings Raid®) bei der vereinfachten
Begriindung des Kriteriums von Nyquist ausgehen.

Es seien (vgl. Abb. 3) &, 1 und
&,2 zwei feste Punkte in der
Zahlenebene. Ferner sei £ ein
Punkt eines geschlossenen
doppelpunktfreien Weges in
derselben. [5] bedeute die Ge-
samtheit dieser Punkte, also
den Weg selbst. Der Punkt &
durchlaufe nun den Weg [:]
einmal in positivem Umlauf-
sinn, wobei das Innere des um-
fahrenen Bereiches links liegt.
Dann nimmt das Argument
von (£—5,) um 27 oder um Null zu, je nachdem &,, wie
&, 1, im Innern des umfahrenen Bereiches, oder wie &, 2 ausser-
halb desselben liegt.

Nun kann aber die linke Seite der Gleichung (9) bekannt-
lich als Produkt aus n Faktoren (: — £,) aufgefasst werden,
d. h. es gilt, wenn ¢, =—1 vorausgesetzt wird:

—Wm‘ts: Mathematische Annalen 46. 1895. S. 273.

%) D. G. Raid: The necessary Conditions for Instability (or Self Oscil-
lation) of electrical circuits. The wireless Engineer, Nov. 1937, S. 588. Vgl.
auch R. Feiss: Untersuchung der Stabilitiit von Regulierungen anhand des
Vektorbildes. Diss. Zirich 1939, S. 57 bis 67.

‘_,:'%

Abb.3
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o TTTE o By | e Mldms bt 5 (1)

Liegen daher k von den = Nullstellen des Polynoms wu inner-
halb [§], so ist der Argumentzuwachs von u gleich 2kn. Das
heisst, die [:] entsprechende Kurve [x] umschlingt den Null-
punkt 0 der Zahlenebene kmal; ¢ umlduft 0 kmal in positivem
Sinn. Da nun der Regler dann die geforderte Mindestddmpfung
hat, wenn alle Nullstellen des Polynoms u innerhalb der ge-
schlossenen Randkurve [&] des in Abb. 2 schraffierten Fécher-
bereiches liegen, gilt folgendes

Déampfungskriterium A : Ein Regler hat dann und nur dann
die geforderte Mindestddmpfung, wenn das durch das Polynom u
der charakteristischen Gleichung n-ten Grades (9), (14) ver-
mittelte konforme Bild [¢] des Fécherbereichrandes [&] den
Nullpunkt der Zahlenebene mmal umschliesst.

Es ist leicht, ¢ aus & zu ermitteln. Zu diesem Zweck setzen
wir § = g€’ in (9) ein und erhalten:

n .
u = Z‘C,,, Qm eim @y

(]
n .!l
=2cpo"cosme + iZcpom sinme . . . (15)
m=0 m=0

Das bedeutet, dass der Realteil von u als Projektion eines gleich-
winkligen Polygonzuges mit dem Aussenwinkel ¢ und den Seiten-
lingen ¢, o™ auf die reelle Axe aufgefasst werden kann, wih-
rend der Imaginérteil durch die Projektion des gleichen Polygon-
zuges auf die imagindre Axe zu deuten ist. Das Ende dieses
Polygonzuges entspricht daher dem Zahlenpunkt . Dieser Sach-
verhalt ist in Abb. 4 fiir ein Polynom dritten Grades dargestellt.

Beim Umfahren des in Abb. 2 ~
wiedergegebenen Bereiches - o5
sind offenbar ¢ konstant und 7’ 0
o verinderlich, beziehungsweise % : ;
o konstant und ¢ verdnderlich N .
zu wéihlen. o

Die eben skizzierte Methode
lasst sich mit Vorteil etwas
modifizieren, da  Regulier- M
systeme, wie schon aus unse-
rem einleitenden Beispiel her-
vorgeht, aus in sich geschlos-
senen Ketten von mindestens
zwei hintereinander geschalteten Gliedern bestehen. Schneiden
wir die Kette vorerst nur an einer Stelle durch, so kdnnen wir in
praktischen Fillen fast immer feststellen, dass die Storungen,
ganz so, wie wir dies von den einzelnen Gliedern unseres Bei-
spieles voraussetzten, nur in einer Richtung durch die Kette
gehen. Wir haben es dann mit einer gerichteten Kette zu tun,
die einen Eingang und einen Ausgang hat.

Wir nennen eine solche Kette «linear {iibertragend» oder

schlechthin «linear», wenn ihr Verhalten durch ein lineares Dif-
ferential-Polynom etwa wie folgt beschrieben werden kann :

i3

Gl
SHF=C,

8

u/’
TGosing:

0 Co

Abb. 4

n (m)

Lo =1C( Xy =2 L) e ] e 2(16)
=1

m=
Hierin sei z, die Eingangsstorung, x, die daraus folgende Schwan-
kung am Ausgang, und ¢, y, seien die charakteristischen Kon-
stanten der Kette. Wird nun nachtrédglich der Eingang wieder
mit dem Ausgang verbunden, d. h. wird die Gleichung x, = z,
wieder erzwungen, so erhélt man die vollstdndige Regulierglei-
chung der geschlossenen linearen Kette:

n m

U= c(x, + E;',,,ac(a)) () ey TN (17,)
m =

Macht man fiir z, den Ansatz (7), (8), so erhdlt man mit

n m
E=14ZymE - « « + « « « (18)
m=1
16) : e
AL A g=2e _ct (16 )
xa
und mit W=10c—T1 5 o n S a e a(19)
aus (17) wieder die Gleichung (9):
u=0

Fur festes x,, d.h. fiir x, — z,#*, verschwindet & mit seinen
Potenzen. Es gilt z,* = cx,*. Der reelle Proportionalitdtsfaktor
¢ sei «feste Uebersetzung» benannt. Fiir die komplexe Grosse ¢
hingegen, die ausser vom Bau der Kette auch vom Charakter der
gewihlten Stoérschwingungen abhéingt, schlagen wir die Bezeich-
nung «fliichtige Uebersetzung» vor, wihrend wir 3 schlechthin
Uebersetzung nennen. Aus unserem Didmpfungskriterium folgt,
dass das Bild [¢{ — 1] des Randes [&{] des Fiédcherbereiches der
Abb. 2 den Nullpunkt, oder, was gleichbedeutend ist, dass der
Weg [C] den Punkt /¢ der reellen Axe nmal umschliessen muss,
damit die Bedingungen der Mindestdimpfung erfiillt sind. Das

Randbild mag als nm-schleifige, in sich geschlossene Kurve un-

iibersichtlich sein, kann aber mittels der Abbildungsfunktion
n

Y = ]/?, wobei nur einer der n Wurzelwerte zu betrachten ist,

in eine Kurve {iibergefiihrt werden, die sdmtliche n Wurzeln

n
1 ¢ : U
— einmal umschliessen muss. Die Konstruktion von C erfolgt

wieder nach Abb. 4. Die Seiten des Polygons haben, wie aus dem
Vergleich der Gleichungen (9) und (18) folgt, die Léngen 1,

7105 7208 ..

Zerfillt die Kette wie in unserem Eingangsbeispiel in g ge-
richtete «lineare» Glieder, und ist der Ausgang a eines jeden
Gliedes g mit dem Eingang e des folgenden verbunden, so be-
steht folgendes Gleichungssystem:

ng (m)
Teg=Cg (Tyg+ = 1«,/5,,,96”) oL (20)
m=

Lag = Lo (z+1) - ¢ ¢ o . (20%)
wobei g die Zahlen 1, 2, 3 bis ¢ annimmt. Aus diesem System

ldasst sich, &dhnlich wie in unserem Beispiel, durch Elimination
eine Differentialgleichung von der Form (6) gewinnen. Der Grad

n
YnO" -

dieser Gleichung ist n — i!‘ n,. Ist die Kette aufgeschnitten, so
=1

ist unter den Gleichunggn (20*) eine weniger vorhanden, als
unter den Gleichungen (20). Setzen wir, ohne die Allgemeinheit
der Betrachtung zu beriihren, voraus, der Schnitt befinde sich
nach dem letzten Gliede gq. Dann ist die fllichtige Abweichung
Z.q am Ausgang dieses Gliedes identisch mit der Abweichung
z, am Ende der Kette. Fiihren wir fiir letztgenannte den An-
satz (7), (8) ein, so erhalten wir:

To gi— DLl et 0T S (2 1)

n
Bq —.Cq (14 5 Pamw ) e o e (22)
m=
die Uebersetzung des letzten Gliedes sei. Setzen wir das erhal-
tene z., in die Gleichung des vorletzten Gliedes (¢ — 1), so
folgt, da fj, bei gegebenem ¢ eine Konstante ist:
Ze(g—1) = 3¢ B (g—1)%a
Setzt man ., 1, in die drittletzte Gleichung ein und so weiter,
so erhdlt man schliesslich die z, erzeugende Stérung x, — 2,1 zu:

wobei

q
Te =2, I B
g=1
und unter Beriicksichtigung der Definitionsgleichung (16a):

B=1I g . o - « v . . (23
g=1

Die «totale» Uebersetzung der aufgeschnittenen Kette ist
gleich dem Produkte der Uebersetzungen der Kettenglieder.
Dieser Satz libertrédgt sich auf die festen Uebersetzungen, sodass
sich die Analogie mit Hebel und Réderiibersetzungen wie schon
im Eingangsbeispiel aufdridngt. Auf Grund der Gleichungen
(23), (19), (16a) und (9) ist ferner die in unserem Beispiel
festgestellte Unabhidngigkeit der Losungen der Regulier-Differen-
tialgleichung von der Reihenfolge der Glieder allgemein erwiesen.
Die Gesamtheit der Losungen der Gleichung # — 0 ist gleich der
Gesamtheit der Nullstellen der Einzellibersetzungen 3,. Die
Gleichungen 3, — 0 sind oft nur ersten Grades, wie in unserem
Beispiel, oder dann zweiten Grades in §, wie im erw&dhnten Fall
eines trigen Drehzahlpendels, und kénnen daher leicht errechnet
werden.

Es liegt nahe, die Nullstellen der einzelnen Uebersetzungen
direkt mit den Losungen der charakteristischen Gleichung der
geschlossenen Kette in Beziehung zu bringen und so zu einem in
der Anwendung praktischeren Ddmpfungskriterium zu gelangen:

Wir sahen, dass das Argument von g um 2kn zunimmt,
wenn sich &k Nullstellen von # in unserem Fécherbereiche be-
finden und ¢ dessen Rand einmal in positivem Sinne durchliuft,
Unter den gleichen Voraussetzungen nimmt das Argument von
(8 — 1) um 2hn zu, wenn der Bereich h Nullstellen von (g — 1)
g—1

i {
somit um 27 (h — k). Da fund 3 — 1 gleichen Grades sind und
daher gleichviele Losungen haben, liegen, sofern alle Losungen
von # in unseren Ficherbereich fallen, dann und nur dann simt-
liche Liosungen von (2 — 1) in dem selben Bereiche, wenn das

enthédlt. Das Argument des Quotienten

1
— 1 = 5 wichst

1
Argument von (1 — F) nach einem Umlauf von & unverédndert

bleibt. Wir erhalten hieraus unmittelbar ein
Ddampfungskriterium B: Ein aus einer gerichteten Kette

bestehender Regler hat dann die geforderte Mindestdimpfung,

wenn die Eigenschwingungen seiner hintereinandergeschalteten,
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gerichteten Glieder Mindestddmpfung aufweisen und iberdies
entweder das konforme Bild [1 — 1_) des Fiécherbereichrandes
den Nullpunkt der Zahlenebene nichi umschliesst, oder aber das
Bild [%—] des Fidcherbereichrandes den Punkt - 1 der Zahlen-

ebene nicht umschliesst.

Es steht natiirlich frei, die zu steuernde Maschine mitsamt
dem Regler als ein einziges gerichtetes Glied aufzufassen, dessen
Anfang und Ende miteinander verbunden sind. Setzt man

gleichzeitig | ge | = - so geht unser Kriterium in jenes von

74
E ’
Nyquist iiber.

Setzt man wieder ¢{ anstelle von g3, so geht die Schlussbedin-

nl
gung von B in folgende iiber: Das Bild [T1 des Féacherbereich-
<

randes darf den Punkt L ¢ der reellen Axe nicht umschliessen.

Endbeispiel

Wir wenden zum Schlusse die gewonnene Erkenntnis auf
unser Eingangsbeispiel an. Aus den Gleichungen (4) folgt, dass
die 3, der Glieder je nur eine Nullstelle

4
Sg ‘N Tg
haben. Ordnen wir diese nach der Grosse ihrer Absolutwerte, so
lisst sich sofort folgende Bedingung anschreiben:
1 1 17 e

‘“g’]- < ”Zg:_; < ’Z’gj Z 10y g = T a0 . (24)
Auf Grund eines Abschitzungssatzes der Algebra?®) ldsst sich
sogar entscheiden, ob die Losungen der Gleichungen (9) inner-
halb der Schranken und ¢,, ¢,/ liegen. Ist die Ungleichung 24
erfiillt, so liegen die %, sicher innerhalb des Fédcherbereiches und
das Diampfungskriterium B kann angewandt werden. Die in
Abb. 4 wiedergegebene Konstruktion des Polynomwertes ergibt
fiir jedes der drei Glieder ein Dreieck mit der reellen Einheit
als Grundlinie und dem Aussenwinkel ¢,. Zeichnet man diese
Dreiecke mit der gleichen Basis ineinander, so erhélt man
Abb. 5, in der gleichzeitig der Aus-

druck i mittels Hilfskreisen um

den Nullpunkt und Parallelen mit
der Neigung ¢, aus den Einzelwerten
&, & G konstruiert ist. Das Argu-
ment von { ist gleich — (¢, + ¢y + ¢3),
wobei das Minuszeichen infolge der

1
Symmetrie des Randbildes [TI be-
B

ziiglich der reellen Axe auch ver-
nachlidssigt werden kann.

Abb.5

Wir fithren der Uebersichtlichkeit halber noch zwei in der
Reglertechnik geldufige Grossen ein: Die Ungleichférmigkeit §
des Regeltriebes gibt an, wie viele Prozente feste Drehzahl-
abweichung %, nétig sind, um — 19/, feste Hubabweichung
x*,3 des Turbineneinlassorganes zu erzeugen. Sie ist offenbar
entgegengesetzt gleich der Teiliibersetzung des Steuerbetriebes,
d. h. es gilt: f=—c¢c, il ooy (25)
Wird dabei die Bezugsstellung Y,3 des Turbineneinlassventils
von seinem Leerlaufhub aus gemessen, so sagt § bei gerad-
liniger Hub-Leistungscharakteristik auch aus, wie viele Dreh-
zahlprozente nétig sind, um — 19/, feste Leistungsabweichung
ZUu erzeugen.

In den meisten Veroffentlichungen wird Glied 3 in entarteter
Form angenommen. Diese Form entsteht, wenn die Lastaufnahme
des Netzes unabhingig von der Drehzahl ist. Die Konstante k,
in Gl. (3v) verschwindet dann. In Gleichung 3 verschwindet ¢,
und Z, wichst liber alle Grenzen, das Produkt ¢,’ Z, bleibt aber
endlich. Wir nennen das Produkt ¢;Z, — Z,3, auf das sich
diese Eigenschaft iibertrdgt, «Anlaufzeit» der Maschine und

erhalten "
Ze3=124q3%,3

Nehmen wir hierin z, 3 fest gleich x,3* an und integrieren beid-
geitig von 2 — 0 ausgehend iiber die Zeit, so erhalten wir
Bx*,3=12,3%,3

d. h. Z,3 ist diejenige Zeit, die verstreicht, bis bei 1°/, fester
Eingangsabweichung die Drehzahl- bzw. Ausgangsabweichung
von 1°/, entsteht.

Wir wahlen § — 0,10, Z, — 0,28, Z, — 18, Z,3—=6s.

In Abb. 6 sind die mit diesen Werten und drei verschiedenen

Bereichwinkeln ¢, = (% - Tnz)' (; 4+ %) (; -+ Z) erhal-

vy 0. Perron: Algebra 1I, Verlag Walter de Gruyter & Co. 1933, S. 83,
Satz 21,

tenen konformen Randbilder 4, B, bzw. D, nebst dem Einheits-
kreise K eingetragen. Diesen Kurven entspricht », — 0,186;
0,026 bzw. 0,0019, d.h. geniigend geddmpfter, gut geddmpfter
bzw. praktisch aperiodischer Regelvorgang, sofern der durch ¢
gegebene Punkt der negativ-reellen Axe nicht umschlossen wird.
In unserem Fall mit ¢ — — 0,3 ist demnach geniigende, aber
nicht gute Dimpfung nachgewiesen. Eine solche, ja sogar prak-
tisch aperiodischer Verlauf der Reglerabweichungen kann offen-
bar erreicht werden, wenn man ¢ vergrossert und so den durch
¢ gegebenen Punkt mehr nach links riickt. Wir haben auf unseren
Bildkurven A4, B, D eine Reihe verschiedener Punkte hervor-
gehoben und die ihnen entsprechenden o-Werte angeschrieben.
Verbindet man Punkte gleicher g-Werte, so erhdlt man, wie
strichpunktiert angedeutet, orthogonale Trajektorien zu den
Kurven 4, B, D, unter ihnen wire das Bild der Bereichrandstiicke
e, 00" zu finden.

Der Augenschein lehrt, dass in unserem Fall der genaue
Verlauf der Kurven 4, B, D nicht von Belang ist, wenn nur ihre
Schnittpunkte mit der reellen Axe gegeben sind und zudem
bekannt ist, zwischen welchen Schnittpunkten die Kurve ober-
halb und zwischen welchen sie unterhalb der Axe verlduft.
Allgemein ldsst sich zeigen, dass es schon geniigt, ausser der
Lage der Schnittpunkte noch zu wissen, ob die Axe an den
Schnittstellen von oben nach unten, oder umgekehrt durch-
stossen wird.

Bei der Anwendung unseres Verfahrens ergeben sich leicht
Ungenauigkeiten, wenn eine Zeitkonstante im Vergleich zu den
andern gross ist. Hier kann aber leicht rechnerisch nachkorri-
giert werden. Entartet Glied 3, wie schon angedeutet, so liegt
die Nullstelle von j, und folglich auch eine Nullstelle von g im
Nullpunkt der Zahlenebene. In der Losung Gl. (10) befindet
sich daher ein =zeitunabhingiger Summand, der weder die
absolute, noch die relative Ddmpfung verdndert und uns daher
nicht weiter interessiert. Soll das Kriterium B angewandt werden,
so stort zunidchst, dass der Exponent &, dieser Ldsung ausser-
halb des in Abb. 2 gegebenen Bereiches liegt. Sollen daher die
Losungen von § — 1-—0 sdmtliche im Bereich liegen, so muss die

i 1
Kurve Ll — ﬂ] den Nullpunkt einmal und nur einmal im glei-
chen Umlaufsinn umschliessen, wie [£] umlaufen wird. Das Gleiche

gilt fiir L;] im Bezug auf den Punkt | 1 der reellen Axe.

Zusammenfassung

Es wird gezeigt, wie durch eine konforme Abbildung des
Randes eines zur negativ-reellen Axe der Zahlenebene symme-
trischen Ficherbereiches entschieden werden kann, ob die Eigen-
schwingungen eines Reglertriebes vorgeschriebenen Mindest-
diampfungsbedingungen geniigen. Die Punkte des Randbildes
werden mittels schiefwinkliger Vektordiagramme ermittelt.

Eine neue Form aufgeloster Staumauern

Seit langem ist man bestrebt, wirtschaftlichere Staukorper-
formen zu finden, als die klassische dreieckférmige Gewicht-
staumauer. Meistens wird als aufgeloste Staumauer der Typus
mit mehrfachen Gewdlben gewihlt. Bei dessen Berechnung treten
jedoch gewisse Schwierigkeiten auf, und der Bau wird durch
kompliziertere Schalungen wieder verteuert.

Berechnet man eine Gewichtsmauer unter Anwendung der
ausflihrlichen Methoden der Elastizititstheorie, so kann festge-
stellt werden, dass die Spannungsverteilung lings einer Hori-
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