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Reglerschwingungen und schiefwinklige Vektor-Dia
Von Dipl. Ing. ALBERT DÜTHI, Zürich

Die rechnerische Behandlung von Reglerproblemen führt,
wenn von Diskontinuitäten, wie Reibungen und toten Spielen,
abgesehen wird und gegebenenfalls nur kleine Abweichungen
von einem Gleichgewichts-, bzw. Bezugszustande untersucht
werden, auf lineare homogene Differentialgleicfflingen mit
konstanten Koeffizienten. Es sei einleitend für einen einfachen Fall
eine solche Gleichung hergeleitet. Gegeben sei eine in Abb. 1
schematisch dargestellte Turbine mit mittelbar wirkendem
Drehzahlregler; T ist die Turbine, G der Generator.
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Wir unterscheiden verschiedene «Glieder», die vot mit
strichpunktierten Linien umsäumt haben. Deren erstes bestehe u. a.
aus einem DrehzahlpendelP und einem Steuerschieber S,, der den
Oelfluss von und zu einem Servomotor M, beherrscht. Ein
Rückführhebel ff, sei an der Muffe des Pendels, am Steuerschieber
und an der Stange des federbelasteten Servokolbens K,
angelenkt. Das Pendel sei stabil, reibungs- und trägheitslos ; dann
entspricht innerhalb des Hubbereiches der Muffe jeder Drehzahl
eine Muffenstellung. Können die Rückwirkungen des zweiten
Gliedes im Vergleich zu den Stellkräften des Kolbens K,
vernachlässigt werden, so entspricht jeder «festen» Muffenstellung
eine «feste» Stellung des Servokolbens. Unter «fest» verstehen
wir, dass die Muffe, bzw. der Kolben im Momente der Betrachtung

und schon lange Zeit vorher bewegungslos waren. Bewegt
sich die Muffe, so weicht der Steuerschieber von seiner Mitjgfli
läge ab und der Kolben K, gerät in Bewegung. Wir sprechen
dann von flüchtigen Stellungen und Hüben, die nur durch
Momentanmessungen festgestellt werden können. Im folgenden
seien ye \, ym, y,, ya\ die flüchtigen kleinen Abweichungen der
Pendeldrehzahl, des Muffen-, Schieber- bzw. Kolbenhubes, ye\*,
ym*, ya* dagegen die entsprechenden festen Abweichungen von
einer festen Bezugsstellung. Aus Abb. 1 folgt dann, dass die
Schieberabweichung y, proportional ya\ — y„i* ist. Ferner sei die
Servokolbengeschwindigkeit ytt\ proportional y, Dann folgt,
wenn Z, eine positive Konstante ist:

— zi3/il Va\ — 3/ol*
Nun ist, da für feste Abweichungen der Steuerschieber in Mittellage

steht und daher der Hebel ff, beim Uebergang in eine
andere Stellung um einen festen Punkt der Schieberaxe gedreht
wird, 3/0i* proportional ym*. Ferner ist mit Rücksicht auf die
das Pendel betreffenden Voraussetzungen und unter Annahme,
dass die Rückwirkungen des Hebels ff, auf die Pendelmuffe
vernachlässigt werden können, ym* ym Konstante j/ei1). Hieraus
folgt

c'iî/oi* ye\
') Besteht zwischen ye\ und y„, keine lineare Beziehung, so ersetzen

wir näherungsweise, wie üblich, die Kurve der Beziehung zwischen beiden
Grössen durch deren Tangente im Bezugspunkte. Hiervon machen wir
ständig Gebrauch ohne darauf zurückzukommen. Die Berechtigung hierzu
schöpfen wir unter Beschränkung auf genügend kleine Abweichungen aus
dem Reihenentwicklungssatze von Taylor.

gramme

wobei C, eine negative Konstante ist. Aus den obigen zwei
Gleichungen folgt schliesslich die Bewegungsgleichung des ersten
Gliedes: ye,=c'1(Ziyal +yai)r (1)
Hierin hat die Konstante Z1 die Dimension einer Zeit, da andernfalls

die rechtsseitige Klammer unhomogen wäre. Die reelle
Konstante c\ nennen wir «feste» Uebersetzung, da für feste
Abweichungen ya, verschwindet und daher»das «Hebelgesetz» ye\*
c\ya\* gilt-

Uebergehend zum zweiten Gliede mit dem Steuerschieber £f2,
dem Servomotor M2 und dem Rückführhebel ff2 erkennt man
die gleichen Gesetzmässigkeiten wie beim ersten Gliede. Wieder
soll die Rückwirkung des dritten Gliedes, genauer, des Turbinen-
Einlassventiles V, gegenüber der Stellkraft des Servomotors Ma
vernachlässigbar sein. Man erhält die Bewegungsgleichung:

2/e2 c'2(Z2j/'a2 + ya2) B (2)
Die Konstante c2 ist infolge der anderen Schieberanordnung
diesmal positiv. Wir betrachten schliesslich das letzte Glied
bestehend aus: der Turbine T mit Einlassventil V, Generator Gf und
Netz N. Der dem Turbinenrotor zugeführte Leistungsüberschuss
4Le sei proportional der flüchtigen Ventilhubabweichung j/e3.
Das heisst es sei JL8 keye3. Der vom elektrischen Netze
aufgenommene ^eistungsüberschuss sei proportional der flüchtigen

DrehzahlabweieSung ya3, d. h. es gelte /ILa kayaz.
Für die Beschleunigung 3/'a3 des Rotors lässt sich dann schreiben:

ZbVaZ JLe — dLa keye3 — kaya3. (3v)
oder wenn wir setzen :

m/mm kzb- _ z3, und c3
n>a Ke

3/e3 C'8(Z,2/a3 + 2/o3) • (3)
Hält man den Eingang der Glieder in der Bezugsstellung fest,
wobei ye. 0 (<jr 1, 2, 3) zu setzen ist, so ist der Ausgang
dennoch einer BEigenbewegung» fähig, denn die verbleibende
homogene Gleichung hat die Lösung:

Vag ae
wobei e die Basis der natürlichen Logarithmen ist. Ze ist daher
die Zeit, die verstreicht, bis eine Auslenkung yal auf den e-ten
Teil abgeklungen ist. Wir nennen sie «Folgezeit», da sie darüber
Auskunft gibt, wie rasch der Ausgang den Bewegungen des
Einganges folgt. Für Z, und Z, sind die Ausdrücke Schluss- oder
Stellzéœ gebräuchlich. Nun seien Ye „ und Ya g die Masse, die
die Bezugsstellung festlegen. Teilen wir die Gleichungen 1, 2, 3

beidseitig durch Ye g und klammern rechts Ya g aus, so erhalten
wir das Gleichungssystem:

«eg cg(Zgxag + xag) g 1,2, 3 (4)
Hierin ist cg
die Grössen x eg

,YagJYeg eine dimensionslose Konstante. Auch
yegjYeg, xag yagjYa, sind dimensionslos.

Wir nennen sie, wie üblich, «bezogene Abweichungen». Ergänzen
wir die Gleichungen (3 a) durch die Bedingungen xa\ xe2,
xa2 xei, xa$ xe\ und eliminieren die überzähligen
Unbekannten, so erhalten wir die Regulier-Differentialgleichung dritter
Ordnung mit:

a0xe 1 -f. a\ xei+ a2Xei-r a3xei=0 (5)

1- J_
1 2 1

Z, + Z, + Z3

Z, Z, + z, z„ + z, z3
H z, z, zs

wobei die Punkte Ableitungen nach der Zeit bedeuten. Man
bemerkt sofort, dass die Koeffizienten dieser Gleichung symmetrische

Funktionen der Konstanten der Glieder sind. Es ist daher
für den zeitlichen Verlauf der Abweichungen gleichgültig, in
welcher Reihenfolge die Glieder geschaltet werden, oder in
welcher Reihenfolge drei gegebene Zeitgrössen als Folgezeiten oder
drei dimensionslose Grössen als Konstante auf die Glieder
verteilt werden.

Wir nennen eine Anordnung von Gliedern nach Abb. 1, wo
ein Glied an das andere gereiht ist und schliesslich das letzte

«0

|
«2
a.
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wieder mit dem ersten verbunden ist, eine geschlossene Kette.
Allgemein werden die Glieder nicht immer so einfacher Art sein,
wie in unserem Beispiel, sondern Ableitungen Sherer Ordnung
enthalten. Ein häufig vorkommendes Glied, bei dem z. B. ausser
der ersten Ableitung der Abweichung auch die zweite eine Rolle
spielt, ist das träge Drehzahlpendel mit Oelkatarakt. Hätten wir
ein solches Pendel in unser Beispiel einbezogen, so wäre • die
Ordnung unserer Differentialgleichung auf 5 angestiegen. Noch
unübersichtlichere Verhältnisse liegen vor, wenn die Glieder nicht
nur hintereinander, sondern teilweise parallel geschaltet sind,
wodurch die Ketten zu «Netzen» erweitert werden. Man stelle
sich z. B. neben dem Gliede 1 ein zweites Glied 1' mit der
Zeitkonstanten Z,' vor; es ist dann xe\ =xe\'. Mittels eines
Verbindungshebels zwischen den Stangen des Servomotors K, und K,'
kann leicht xe

xa\ +*.!' gemacht werden. Die beiden Glieder

1 und 1' sind dann parallel geschaltet. Aehnliche Schaltungen
kommen bei Isodromsteuerungen vor.

Wir wollen uns ferner bewusst bleiben, dass wir die Glieder
unseres Beispieles vereinfachend idealisiert haben, indem wir
voraussetzten, dass sie einen Eingang und einen Ausgang haben,
derart, dass Störungen am Eingang auf den' Ausgang, nicht
aber Störungen am Ausgange auf den Eingang übertragen werden.

Solche Glieder nennen wir gerichtete Glieder. Allgemeine
Glieder, in denen eine Störung sowohl vorwärts, wie auch
rückwärts wandern kann, ergeben weniger übersicnlliche Resultate.
Allgemein erhält man, wie eben angedeutet, Gleichungen von
der Form: »

u =-Sema;(m) — 0 (6)
m 0

worin %(m> die m-te Ableitung der Abweichung x nach der Zeit s
bedeutet. Diese Gleichung wird bekanntermassen dusch den
Ansatz: Xz=ae%z (7)

a;(m> ae?*£m x£m (8)
befriedigt, worin a eine Konstante, e die Basis der natürlichen
Logarithmen, g ein Parameter und z die Zeit ist. Man erhält
aus (6) dann

0 (9)BBHi
Sind die «-Lösungen gr dieser charakteristischen Gleichung
gefunden, so hat die allgemeine Lösung der Gleichung (6) die
Form:

l :are'= (10)

wobei die Konstanten ar denAnfangsbedingungen anzupassen sind.
Wir sahen, dass unser einfaches einleitendes Beispiel bereits

schon auf eine Differentialgleichung dritter Ordnung führte,
sodass eine charakteristische Gleichung dritten Grades zu lösen
wäre. Das Aufsuchen der Lösungen von GleieEungen höheren
als zweiten Grades ist aber im allgemeinen immer mühsam.
Man hat sich daher in der Literatur meist begnügt, mittels
einer von Hurwitz angegebenen Determinante zu entscheiden,
ob die Lösungen nur negative oder auch positive Realteüe
enthalten. Im ersten Fall ist der Regler möglicherweise brauchbar,
da die freien Schwingungen mit der Zeit abklingen, im zweiten
Fall dagegen sicher unbrauchbar.

Neuerdings hat Feissa) eine Methode angegeben, die in vielen
Fällen auf Grund eines Kriteriums von Nyquist die gleiche
Abschätzung mittels rechtwinkliger Vektordiagramme ermöglicht.
Ferner werden in einer Untersuchung von Bilharz8), aUerdings
unter Zuhilfenahme weniger elementarer mathematischer Mittel,
interessante graphische Sätze aus der Hurwitz-Determinante
abgeleitet. Alle diese Mittel geben eine wertvolle Orientierung,
genügen aber dem praktisch tätigen Konstrukteur nicht. Er
muss wissen, wie lange es schlimmsten Falles geht, bis die
Schwingungen der von ihm entworfenen Regler abgeklungen sind.

Wir zeigen im Folgenden, dass fast so einfach wie im
Verfahren von Feiss, mittels schiefwinkliger Vektordiagramme
entschieden werden kann, ob die Lösungen der Reguliergleichung
eine bestimmte Mindestdämpfung aufweisen. Dies ist nämlich
dann der Fall, wenn in den Lösungen

êr ar -\- OJri Qr (cos <pr -\-1 sin q>r) Qrel1'r (11)

«r < a« < 0 (12a)
1

71 è I SPr | > 1 ÎP« I > (12b)

ist, wobei ae und <pe zwei bestimmte Zahlen sind. Die Ungleichung

(12a) nennen wir «Bedingung der absoluten Mindest-

') R. Feiss : Bestimmung der Regelungsstabilität an Hand des Vektorbildes.

«Z.VDI» (1940), Nr. 48.
Ferner derselbe : Eine neue Methode zur Bestimmung der Stabilität

von Regulierungen. SBZ, Bd. 118 (1941). Nr. 6, S. 61*.
*) H. Bilharz: Geometrische Darstellung eines Satzes von Hurwitz für

Frequenzgleichungen fünften und sechsten Grades. Z. angew. Math. Mech.
Bd. 21. 1941. Nr. 2.

dämpfung», die Ungleichung (12b) «Bedingung der relativen
Mindestdämpfung». Der Sinn dieser Bezeichnungen wird klar,
wenn man die in Gleichung (10) paarweise auftretenden Partial-
Lösungen mit konjugiert komplexen Exponenten £r, "gr und
konjugiert komplexen Konstanten ar, Htr zu reellen Gliedern zu-
sammenfasst. Man erhält dann beispielsweise:

lr a'rear* sin (s0 + mTz) (13)

Offenbar gibt hiernach dr diejenige Abklingzeit an, die
ttr

verstreicht, bis die Schwingungsausschläge auf den e-ten Teil
des anfänglichen Ausschlages abgeklungen sind. TeUt man diese
Abklingzeit durch die Schwingungszeit 2njtoT, so erhält man in

5— *-g 9»r die Anzahl der in der Abklingzeit enthaltenen

Schwingungen, welche meist gebrochen und daher nicht
anschaulich ist. Am deutlichsten tritt die Rolle von <p als Dämp-
fungscharakteiistikum hervor, wenn man das Verhältnis vT
zweier aufeinander folgender Schwingungsamplituden berechnet.
Dieses Verœltnis bestimmt sinnfällig die Form der Schwingungs-
Kurven. Dasselbe gut dann auch von <pr, denn es gilt
vr =e2ncot yr. Dagegen legt ar sozusagen nur den Zeitmassstab

des Schwingungsbildes fest.
Nach allem setzt also die Bedingung (12 a) der Abklingzeit

eine obere Schranke d. .während die Bedingung (12b)

die Grösse einer Schwingungsamplitude unter einen bestimmten
BruchteU ve e * cot fe der vorangehendenAmplitude beschränkt.
Im Vergleaate mit der vorhergehenden Schwingung liegt der
«relative» Charakter dieser Schranke.

Versetzen wir uns mit Abb. 2
in die Zahlenebene, so beschränken

die Bedingungen (12 a) und
(12 b) die Lösungen der
charakteristischen Gleichung auf einen
sich gegen das negativ Unendliche
öffnenden, zur reellen Axe
symmetrischen Trapezbereich, dessen
sichtbaren Rand wir durch eine
Doppellinie hervorgehoben haben.
Ist die Bedingung (12b) erfüllt,
so wird, wie aus der Abb. hervorgeht,

die Bedingung (12 a) sicher
erfüllt, wenn die noch engere,
aber bequemere Bedingung

q >o0 (12c)
eingehalten wird. Wir führen, um mit unseren Betrachtungen
im Endlichen bleiben zu können, noch eine weitere Schranke (>',
ein und fordern zusätzlich q <[ o'e. Diese Bedingung hat dann
überdies einen praktischen Wert, wenn zwecks Vereinfachung
der Reglergleichungen die Massen gewisser Elemente vernachlässigt

wurden, was oberhalb einer bestimmten Schwingungs-
Frequenz nicht mehr zulässig ist, sodass Lösungen höherer
Frequenz wegbedungen werden müssen.

Wir verwenden im Folgenden eine Ueberlegung, von der in
spezieller Form sowohl schon Hurwitz4) bei der Ableitung seiner
Determinante, als auch neuerdings Raid6) bei der vereinfachten
Begründung des Kriteriums von Nyquist ausgehen.

Es seien (vgl. Abb. 3) gv j und
§v2 zwei feste Punkte in der
Zahlenebene. Ferner sei g ein
Punkt eines geschlossenen
doppelpunktfreien Weges in
derselben, [g] bedeute die
Gesamtheit dieser Punkte, also
den Weg selbst. Der Punkt £

durchlaufe nun den Weg [g]
einmal in positivem Umlaufsinn,

wobei das Innere des
umfahrenen Bereiches links liegt.
Dann nimmt das Argument
von (g—fV) um 2 7t oder um Null zu, je nachdem gv, wie
S,, i, im Innern des umfahrenen Bereiches, oder wie £,. 2 ausserhalb

desselben liegt.
Nun kann aber die linke Seite der Gleichung (9) bekanntlich

als Produkt aus n Faktoren -~ — gv) aufgefasst werden,
d. h. es gilt, wenn c„ =1 vorausgesetzt wird:

') A. Hurwitz: Mathematische Annalen 46. 1896. S. 273.

') D. a. Raid: The necessary Conditions for Instability (or Self
Oscillation) of electrical circuits. The wireless Engineer, Nov. 1987, S. 588..Vgl.
auch R. Feiss: Untersuchung der Stabilität von Regulierungen anhand des
Vektorbildes. Diss. Zürich 1989, S. 57 bis 67.

tzb

K3

tzb"Abb.2

Abb.3
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nu ïv) (14)

Liegen daher ft von den n Nullstellen des Polynoms g innerhalb

[g] so ist der Argumentzuwachs von g gleich 2kn. Das
heisst, die [£] entsprechende Kurve [gì umschlingt den
Nullpunkt 0 der Zahlenebene ft mal; g umläuft Oft mal in positivem
Sinn. Da nun der Regler dann die geforderte Mindestdämpfung
hat, wenn alle Nullstellen des Polynoms g innerhalb der
geschlossenen Randkurve [§J des in Abb. 2 schraffierten
Fächerbereiches liegen, gilt folgendes

Dämpfungskriterium A : Ein Regler hat dann und nur dann
die geforderte Mindestdämpfung, wenn das durch das Polynom g
der charakteristischen Gleichung n-ten Grades (9), (14)
vermittelte konforme Bild [g] des Fächerbereichrandes [g] den
Nullpunkt der Zahlenebeiie wmal umschliesst.

Es ist leicht, g aus £ zu ermitteln. Zu diesem Zweck setzen
wir |= ge'f in (9) ein und erhalten:

2cmQmelm^
m 0

(15)2cmQmcos m y + iScmom sin m<
m=0 m=0

Das bedeutet, dass der Realteil von g als Projektion eines
gleichwinkligen Polygonzuges mit dem Aussenwinkel <p und den Seitenlängen

cmgm auf die reelle Axe aufgefasst werden kann, wäh-.
rend der Imaginärteil durch die Projektion des gleichen Polygonzuges

auf die imaginäre Axe zu deuten ist. Das Ende dieses
Polygonzuges entspricht daher dem Zahlenpunkt g. Dieser
Sachverhalt ist in Abb. 4 für ein Polynom dritten Grades dargestellt.

Beim Umfahren des in Abb. 2

wiedergegebenen -^Bereiches
sind offenbar <p konstant und
q veränderlich, beziehungsweise
p konstant und tp veränderlich
zu wählen.

Die eben skizzierte Methode
lässt sich mit Vorteil etwas
modifizieren, da Reguliersysteme,

wie schon aus unserem

einleitenden Beispiel
hervorgeht, aus in sich geschlossenen

Ketten von mindestens
zwei hintereinander geschalteten Gliedern bestehen. Schneiden
wir die Kette vorerst nur an einer Stelle durch, so können wir in
praktischen Fällen fast immer feststellen, dass die Störungen,
ganz so, wie wir dies von den einzelnen Gliedern unseres
Beispieles voraussetzten, nur in einer Richtung durch die Kette
gehen. Wir haben es dann mit einer gerichteten Kette zu tun,
die einen Eingang und einen Ausgang hat.

Wir nennen eine solche Kette «linear übertragend» oder
schlechthin «linear», wenn ihr Verhalten durch ein lineares
Differential-Polynom etwa wie folgt beschrieben werden kann :

n (m)
xe c 'xa -4- Sym xa (16)

m \
Hierin sei xe die Eingangsstörung, xa die daraus folgende Schwankung

am Ausgang, und c, ym seien die charakteristischen
Konstanten der Kette. Wird nun nachträglich der Eingang wieder
mit dem Ausgang verbunden, d. h. wird die Gleichung xe xa
wieder erzwungen, so erhält man die vollständige Reguliergleichung

der geschlossenen linearen Kette:

Abb.4

Macht man für x.

n (n
c(xa -f. Symxa

m \

den Ansatz (7),

0- av

(8), so erhält man mit

(17)

Ç 1 + Sym £
m=l

(18)

(16 a)

(19)

aus (16)
xa

und mit ,« et -
aus (17) wieder die Gleichung (9):

g 0
Für festes xa, d. h. für xa xa*, verschwindet £ mit seinen
Potenzen. Es gilt xe* c xa*. Der reelle Proportionalitätsfaktor
c sei «feste Uebersetzung» benannt. Für die komplexe Grösse t
hingegen, die ausser vom Bau der Kette auch vom Charakter der
gewählten Störschwingungen abhängt, schlagen wir die Bezeichnung

«flüchtige Uebersetzung» vor, während wir ß schlechthin
Uebersetzung nennen. Aus unserem Dämpfungskriterium folgt,
dass das Bild [et,— 1] des Randes [£] des Fächerbereiches der
Abb. 2 den Nullpunkt, oder, was gleichbedeutend ist, dass der
Weg [Ç] den Funkt ljc der reellen Axe nmal umschliessen muss,
damit die Bedingungen der Mindestdämpfung erfüllt sind. Das

Randbild mag als w-schleifige, in sich geschlossene Kurve
unübersichtlich sein, kann aber mittels der Abbildungsfunktion

y y Ç wobei nur einer der n Wurzelwerte zu betrachten ist,
in eine Kurve übergeführt werden, die sämtliche n Wurzeln

einmal umschliessen muss. Die Konstruktion von Ç erfolgt

wieder nach Abb. 4. Die Seiten des Polygons haben, wie aus dem
Vergleich der Gleichungen (9) und (18) folgt, die Dängen 1,
YiQ < Y2 e3 • • • Y* Q" •

Zerfällt die Kette wie in unserem Eingangsbeispiel in q
gerichtete «lineare» Glieder, und ist der Ausgang a eines jeden
Gliedes g mit dem Eingang e des folgenden verbunden, so
besteht folgendes Gleichungssystem:

«8 (">)
xeg \t^ag -f~ ^ Y gm %ag)

m=l
(20)

xag xe(g + \) (20*)
wobei g die Zahlen 1, 2, 3 bis q annimmt. Aus diesem System
lässt sich, ähnlich wie in unserem Beispiel, durch Elimination
eine Differentialgleichung von der Form (6) gewinnen. Der Grad

dieser Gleichung ist n '= È ng. Ist die Kette aufgeschnitten, so

ist unter den Gleichungen (20*) eine weniger vorhanden, als
unter den Gleichungen (20). Setzen wir, ohne die Allgemeinheit
der Betrachtung zu berühren, voraus, der Schnitt befinde sich
nach dem letzten Gliede q. Dann ist die flüchtige Abweichung
xaq am Ausgang dieses Gliedes identisch mit der Abweichung
xa am Ende der Kette. Führen wir für letztgenannte den
Ansatz (7), (8) ein, so erhalten wir:

ßqt&a

wobei (1 +
7lq
2 y, £m)

(21)

(22)

die Uebersetzung des letzten Gliedes sei. Setzen wir das erhaltene

xe„ in die Gleichung des vorletzten Gliedes (q — 1), so
folgt, da ß„ bei gegebenem £ eine Konstante ist:

Ce(ï' ¦1) ßqß (q—\)xa
Setzt man are(4_i, in die drittletzte Gleichung ein und so weiter,
so erhält man schliesslich die xa erzeugende Störung xe xe\ zu :

q
xe xa n ßg

f i
und unter Berücksichtigung der Definitionsgleichung (16 a):

ß & ßg (23)

Die «totale» Uebersetzung der aufgeschnittenen Kette ist
gleich dem Produkte der Uebersetzungen der Kettenglieder.
Dieser Satz überträgt sich auf die festen Uebersetzungen, sodass
sich die Analogie mit Hebel und Räderübersetzungen wie schon
im Eingangsbeispiel aufdrängt. Auf Grund der Gleichungen
(23), (19), (16a) und (9) ist ferner die in unserem Beispiel
festgestellte Unabhängigkeit der Lösungen der Regulier-Differen-
tialgleichung von der Reihenfolge der Glieder allgemein erwiesen.
Die Gesamtheit der Lösungen der Gleichung ß 0 ist gleich der
Gesamtheit der Nullstellen der Einzelübersetzungen ßg. Die
Gleichungen ßg 0 sind oft nur ersten Grades, wie in unserem
Beispiel, oder dann zweiten Grades in £, wie im erwähnten Fall
eines trägen Drehzahlpendels, und können daher leicht errechnet
werden.

Es liegt nahe, die Nullstellen der einzelnen Uebersetzungen
direkt mit den Lösungen der charakteristischen Gleichung der
geschlossenen Kette in Beziehung zu bringen und so zu einem in
der Anwendung praktischeren Dämpfungskriterium zu gelangen :

Wir sahen, dass das Argument von ß um 2fcjr zunimmt,
wenn sich k Nullstellen von ß in unserem Fächerbereiche
befinden und £ dessen Rand einmal in positivem Sinne durchläuft.
Unter den gleichen Voraussetzungen nimmt das Argument von
(ß — 1) um 2 hn zu, wenn der Bereich h Nullstellen von (ß — 1)

enthält. Das Argument des Quotienten ¦£-—¦-— =1 wächst
P ß

somit um 2n (h — ft). Da ß und ß — 1 gleichen Grades sind und
daher gleichviele Lösungen haben, liegen, sofern alle Lösungen
von ß in unseren Fächerbereich fallen, dann und nur dann sämtliche

Lösungen von (ß — 1) in dem selben Bereiche, wenn das

Argument von (1 — 1 nach einem Umlauf von £ unverändert

bleibt. Wir erhalten hieraus unmittelbar ein
Dämpfungskriterium B : Ein aus einer gerichteten Kette

bestehender Regler hat dann die geforderte Mindestdämpfung,
wenn die Eigenschwingungen seiner hintereinandergeschalteten,
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gerichteten Glieder Mindestdämpfung aufweisen und überdies

entweder das konforme BUd 1 — des Fächerbejsichrandes

den Nullpunkt der Zahlenebene nicht umschliesst, oder aber das

Bild I -r- des Fächerbereichrandes den Punkt 4- 1 der Zahlen-
Iß I

ebene nicht umschliesst.
Es steht natürlich frei, die zu steuernde Maschine mitsamt

dem Regler als ein einziges gerichtetes Glied aufzufassen, dessen
Anfang und Ende miteinander verbunden sind. Setzt man

gleichzeitig | q>e \ — so geht unser KStferium in jenes von

Nyquist über.
Setzt man wieder et, anstelle von ß, so geht die Schlussbedingung

von B in folgende über : Das Bild -y
I des Fäch^»reich-

randes darf den Punkt + c der reellen Axe nicht umschliessen.

Endbeispiel
Wir wenden zum Schlüsse die gewonnene Erkenntnis auf

unser Eingangsbeispiel an. Aus den Gleichungen (4) folgt, dass
die ßg der Glieder je nur eine Nullstelle

-1

haben. Ordnen wir diese nach der Grösse ihrer Absolutwerte, so
lässt sich sofort folgende Bedingung anschreiben:

9' < H < H < W^ < *«' • • ¦ • (24)
Zg 1 Lt 2 6g 3

Auf Grund eines Abschätzungssatzes der Algebra0) lässt sich

sogar entscheiden, ob die Lösungen der Gleichungen (9) innerhalb

der Schranken und çe, ç>e' liegen. Ist die Ungleichung 24

erfüllt, so liegen die gg sicher innerhalb des Fächerbereiches und
das Dämpfungskriterium B kann angewandt werden. Die in
Abb. 4 wiedergegebene Konstruktion des Polynomwertes ergibt
für jedes der drei Glieder ein Dreieck mit der reeüen Einheit
als Grundlinie und dem Aussenwinkel <pe. Zeichnet man diese
Dreiecke mit der gleichen Basis ineinander, so erhält man
Abb. 5, in der gleichzeitig der Aus-

1
druck

C
mittels Hilfskreisen um

ihi

Abb.5

den Nullpunkt und Parallelen mit
der Neigung <pe aus den Einzelwerten
fi Ca ia konstruiert ist. Das Argument

von Ç ist gleich — (y, m q>a -\- <p3),

wobei das Minuszeichen infolge der

Symmetrie des Randbildes -y
bezüglich der reellen Axe auch
vernachlässigt werden kann.

Wir führen der Uebersichtlichkeit halber noch zwei in der
Reglertechnik geläufige Grössen ein: Die Ungleichförmigkeit S

des Regeltriebes gibt an, wie viele Prozente feste
Drehzahlabweichung x*a \ nötig sind, um — 1 <yo feste Hubabweichung
x*e3 des Turbinenelnlassorganes zu erzeugen. Sie ist offenbar
entgegengesetzt gleich der Teilübersetzung des Steuerbetriebes,
d.h. es gilt: 4 — c,c2 (25)
Wird dabei die Bezugsstellung Yez des Turbineneinlassventils
von seinem Leerlaufhub aus gemessen, so sagt â bei
geradliniger Hub-Leistungseharakteristik auch aus, wie viele
Drehzahlprozente nötig sind, um — 1 °/0 feste Leistungsabweichung
zu erzeugen.

In den meisten Veröffentlichungen wird Glied 3 in entarteter
Form angenommen. Diese Form entsteht, wenn die Lastaufnahme
des Netzes unabhängig von der Drehzahl ist. Die Konstante ka
in Gl. (3v) verschwindet dann. In Gleichung 3 verschwindet c3'
und Z3 wächst über alle Grenzen, das Produkt c3' Z3 bleibt aber
endlich. Wir nennen das Produkt c8 Z3 — Za 3, auf das sich
diese Eigenschaft überträgt, «Anlaufzeit» der Maschine und
erhalten _ I

a>e3 Za3*a3
Nehmen wir hierin xa 3 fest gleich xe 3* an und integrieren
beidseitig von z — 0 ausgehend über'die Zeit, so erhalten wir

zx*e3 — ZJ13Xa3
d.h. Z„3 1st diejenige Zeit, die verstreicht, bis bei 1 % fester
Eingangsabweichung die Drehzahl- bzw. Ausgangsabweichung
von l°/o entsteht.

Wir wählen â 0,10, Z, 0,2 s, Z, 1 s, Za 3 6 s.

In Abb. 6 sind die mit diesen Werten und drei verschiedenen

Bereichwinkeln „.„ B ^ + -|L.j ; (IL + IL) ; (^ + ILj erhal-

•) 0. Perron: Algebra II, Verlag Walter de Gruyter & Co. 1938, S. 88,

Satz 21.

tenen konformen Randbilder A, B, bzw. D, nebst dem Einheitskreise

K eingetragen. Diesen Kurven entspricht ve 0,186 ;

0,026 bzw. 0,0019, d. h. genügend gedämpfter, gut gedämpfter
bzw. praktisch aperiodischer Regelvorgang, sofern der durch c
gegebene Punkt der negativ-reellen Axe nicht umschlossen wird.
In unserem Fall mit c — 0,3 ist demnach genügende, aber
nicht gutej|ämpfung nachgewiesen. Eine solche, ja sogar praktisch

aperiodischer Verlauf der Reglerabweichungen kann offenbar

erreicht werden, wenn man â vergrössert und so den durch
c gegebenen Punkt mehr nach links rückt. Wir haben auf unseren
Bildkurven A, B, D eine Reihe verschiedener Punkte
hervorgehoben und die ihnen entsprechenden p-Werte angeschrieben.
Verbindet man Punkte gleicher p-Werte, so erhält man, wie
strichpunktiert angedeutet, orthogonale Trajektorien zu den
Kurven A, B, D, unter ihnen wäre das Bild der Bereichrandstücke
Qe, ge' zu finden.

Abb.6

Der Augenschein lehrt, dass in unserem Fall der genaue
Verlauf der Kurven A, B, D nicht von Belang ist, wenn nur ihre
Schnitaspunkte mit der reeUen Axe gegeben sind und zudem
bekannt ist, zwischen welchen Schnittpunkten die Kurve oberhalb

und zwischen welchen sie unterhalb der Axe verläuft.
Allgemein lässt sich zeigen, dass es schon genügt, ausser der
Lage der Schnittpunkte noch zu wissen, ob die Axe an den
Schnittstellen von oben nach unten, oder umgekehrt durch-
stossen wird.

Bei der Anwendung unseres Verfahrens ergeben sich leicht
Ungenauigkeiten, wenn eine Zeitkonstante im Vergleich zu den
andern gross ist. Hier kann aber leicht rechnerisch nachkorrigiert

werden. Entartet Glied 3, wie schon angedeutet, so liegt
die Nullstelle von ßs und folglich auch eine Nullstelle von ß im
Nullpunkt der Zahlenebene. In der Lösung Gl. (10) befindet
sich daher ein zeitunabhängiger Summand, der weder die
absolute, noch die relative Dämpfung verändert und uns daher
nicht weiter interessiert. Soll das Kriterium B angewandt werden,
so stört zunächst, dass der Exponent £3 dieser Lösung ausserhalb

des in Abb. 2 gegebenen Bereiches liegt. Sollen daher die
Lösungen von ß — 1= 0 sämtliche im Bereich liegen, so muss die

Kurve 1 — den Nullpunkt einmal und nur einmal im glei-
L ß

chen Umlaufsinn umschliessen,wie [g] umlaufen wird. Das Gleiche

gilt für 7] im Bezug auf den Punkt -4- 1 der reellen Axe.

Zusammenfassung
Es wird gezeigt, wie durch eine konforme Abbildung des

Randes eines zur negativ-reellen Axe der Zahlenebene
symmetrischen Fächerbereiches entschieden werden kann, ob die
Eigenschwingungen eines Reglertriebes vorgeschriebenen Mindest-
dämpfungsbedingungen genügen. Die Punkte des Randbildes
werden mittels schiefwinkliger Vektordiagramme ermittelt.

Eine neue Form aufgelöster Staumauern
Seit langem ist man bestrebt, wirtschaftlichere Staukörperformen

zu finden, als die klassische dreieckförmige Gewicht-'
Staumauer. Meistens wird als aufgelöste Staumauer der Typus
mit mehrfachen Gewölben gewählt. Bei dessen Berechnung treten
jedoch gewisse Schwierigkeiten auf, und der Bau wird durch
kompliziertere Schalungen wieder verteuert.

Berechnet man eine Gewichtsmauer unter Anwendung der
ausführlichen Methoden der Elastizitätstheorie, so kann festgestellt

werden, dass die Spannungsverteilung längs einer Hori-
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