**Zeitschrift:** Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

**Band:** 119/120 (1942)

Heft: 8

Inhaltsverzeichnis

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Ueber die Bemessung hölzerner Knickstäbe mit Hilfe von Nomogrammen. – Die Saaletalsperre bei Hohenwarte in Thüringen. – Die Beseitigung und Rückgewinnung von Oelen aus Abwässern. — Probleme der modernen Flugzeugführung und Navigation. - Massnahmen zur Erhöhung der Produktion der Wasserkraft-Elektrizitätswerke. Kirchen-Neubauten in Zürich-Friesenberg und -Seebach. — Vergrösserung

der St. Martinskirche in Visp. — Mitteilungen: Ein doppeltes Jubiläum. Die Eisenversorgung Japans. Bauten und Projekte der Jungen. Stiftung der LA für Kunst und Forschung. Gegenwärtige Produktionsmöglichkeit der schweiz. Laufwerke. Elektrodenfabrik der Werkzeugmaschinenfabrik Oerlikon. Eidg. Kriegs-Industrie- und Arbeitsamt. Die «Pilatus-Flugzeugwerke» in Stans. - Mitteilungen der Vereine. - Vortragskalender.

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Band 119

Nr. 8

## Ueber die Bemessung hölzerner Knickstäbe mit Hilfe von Nomogrammen

Von Prof. Dr. Ing. ARVO YLINEN, Technische Hochschule Helsinki

Zur Bemessung der im Brückenbau und Hochbau vorkommenden hölzernen Knickstäbe wird gewöhnlich das bekannte  $\omega$ -Verfahren angewandt. Hiernach wird die auf den Stab wirkende Druckkraft P mit der Knickzahl  $\omega$  multipliziert und die Kraft  $\omega$  P durch die Querschnittfläche F des Stabes dividiert. Die auf diese Weise erhaltene, gedachte Spannung  $\sigma$  muss kleiner oder höchstens ebenso gross wie die zulässige Druckspannung  $\sigma_{\mathrm{zul}}$ des verwendeten Holzmaterials sein, also

aterials sein, also 
$$\sigma = \frac{\omega P}{F} \le \sigma_{
m zul}$$

Die Knicklast ω wird durch die Gleichung

$$\omega = \frac{\sigma_{\text{zul}}}{\sigma_{d\,\text{zul}}} = \frac{\sigma_{\text{zul}}\,\nu}{\sigma_{K}}$$

definiert, wo $\sigma_K$ die Knickspannung,  $\nu$ den Sicherheitskoeffizienten und  $\sigma_{d\, ext{zul}} = \sigma_{ ext{K}}/
u$  die zulässige Druckspannung des Knickstabes bedeuten. Die Knickzahl ist eine Funktion des Schlankheitsgrades  $\lambda \equiv l/i$  des Stabes, wo l die Knicklänge des Stabes und i der dem kleinsten Trägheitsmoment J seiner Querschnittfläche ent-

sprechende Trägheitsradius 
$$i=\sqrt{\frac{J}{F}}$$
 ist.

Die erforderliche Querschnittfläche des Stabes kann mit Hilfe des  $\omega$ -Verfahrens nicht direkt berechnet, sondern sie muss durch Probieren ermittelt werden, weil die Knickzahl vom Schlankheitsgrad des Stabes abhängt und dieser wiederum durch Vermittlung des Trägheitsradius von der Querschnittfläche und dem Trägheitsmoment abhängig ist. Da beide unbekannt sind, müssen die Abmessungen der Querschnittfläche zuerst angenommen, der Schlankheitsgrad und die ihm entsprechende Knickzahl berechnet und schliesslich geprüft werden, ob diese Werte der obigen Ungleichung genügen. Ist dies nicht der Fall, so müssen die Abmessungen der Querschnittfläche geändert und muss die Rechnung so oft wiederholt werden, bis das gewünschte Ergebnis erreicht ist.

Im folgenden geben wir ein Verfahren, mit dessen Hilfe die erforderliche Querschnittfläche des Stabes direkt ohne wiederholtes Probieren bestimmt werden kann. Zu diesem Zweck nehmen wir als Ausgangspunkt die von Engesser!) verallgemeinerte Euler'sche Knickformel  $\sigma_K = \frac{\mu \pi^2 T_K}{\lambda^2}$  . . . . . . . . (1)

die für alle Werte des Schlankheitsgrades Gültigkeit hat. In der Formel bedeutet  $\mu$  den durch die Befestigungsart der Enden bestimmten Einspannkoeffizienten und  $T_K$  den Knickmodul. Der Wert des Einspannkoeffizienten schwankt innerhalb der Grenzen  $\mu_{4} \leq \mu \leq 4$  . In der Praxis kommt meistens  $\mu = 1$  in Frage und zwar in dem Falle, wo beide Enden des Stabes gelenkig gelagert sind. Sofern die Enden des Stabes fest eingespannt sind, ist

Der Wert des Knickmoduls  $T_K$  schwankt je nach dem, ob es sich um ein Ausknicken im elastischen oder im unelastischen Bereich handelt. Im elastischen Bereich, wo die Knickspannung kleiner als die Proportionalitätsgrenze  $\sigma_P$  des Materials ist, ist der Knickmodul TK gleich dem Elastizitätsmodul E des Materials. Für Nadelholz kann man  $\pi^2 E \equiv 1\,000\,000~{
m kg/cm^2}$  nehmen. Für den Fall, dass die Stabenden gelenkig gelagert sind, erhält man dann aus der Formel (1)

Die Formel gilt, wenn  $\lambda > 100$  ist.

Im unelastischen Bereich fällt der Knickmodul allmählich unter den Wert  $T_K = E$  und wird Null, wenn die Druckspannung die Druckfestigkeit des Materials erreicht. In welcher Weise diese Verkleinerung vor sich geht, hängt von der Form des Druckstauchungsdiagramms oberhalb der Proportionalitätsgrenze und von der Form des Querschnittes ab.

Da die Anwendung des mit Hilfe des Druckstauchungsdiagramms ermittelten Knickmoduls im Zusammenhang mit der Formel (1) in der Praxis mühsam wäre, wird die Knickspannung im unelastischen Bereich gewöhnlich mit Hilfe einer empirischen Formel angegeben. Die gebräuchlichste von diesen ist die Formel von Tetmajer

 $\sigma_K=\alpha-\beta\,\lambda\,\ldots\,\ldots\,\,. \eqno(3)$  Hierbei kann die Einwirkung der Befestigungsart der Stabenden berücksichtigt werden, indem man der Formel eine allgemeinere 

 $\mu = 1$  setzt.

Die Koeffizienten  $\alpha$  und  $\beta$  sind Konstanten, deren Werte von der Beschaffenheit des verwendeten Materials abhängen. a entspricht zunächst der Druckfestigkeit des Materials. Für Nadelholz kann man  $\alpha = 300 \text{ kg/cm}^2$  und  $\beta = 2 \text{ kg/cm}^2$  nehmen. Die Formel (3) erhält dann die Form

$$\sigma_K = 300 - 2\lambda \dots \dots \dots (5)$$

die gilt, wenn  $0 \le \lambda \le 100$  ist.

Nachdem wir derart die Grösse der Knickspannung im unelastischen Bereich durch die Formel von Tetmajer definiert haben, kann der Ausdruck für den ihr entsprechenden Knickmodul abgeleitet werden. Durch Eliminieren von λ aus den Formeln (1) und (4) findet man

$$T_K = \frac{\alpha^2 \sigma_K}{\beta^2 \pi^2} \left( 1 - \frac{\sigma_K}{\alpha} \right)^2 \dots \dots (6)$$

 $T_K = \frac{\alpha^2 \, \sigma_K}{\beta^2 \, \pi^2} \left(1 - \frac{\sigma_K}{\alpha}\right)^2 \, . \qquad . \qquad . \qquad (6)$  Im elastischen Bereich ist  $T_K = E$ , wie oben dargelegt worden ist. Wenn man den Ausdruck des Knickmoduls (6) in die verallgemeinerte Euler'sche Formel (1) einsetzt, können beide Seiten mit  $\sigma_K$  gekürzt werden. Indem man den Klammerausdruck mit der Querschnittfläche F erweitert, wobei  $\sigma_K F$  die Knickkraft 

muss das Trägheitsmoment I der Querschnittfläche als Funktion

wo k der sogen. Profilwert der Querschnittfläche ist. Dieser ist eine dimensionslose Grösse, deren Wert nur von der Form der Querschnittfläche abhängt. Für geometrisch ähnliche Querschnittformen, wie z. B. für den Kreis und das Quadrat, ist er eine Konstante. Indem man das Trägheitsmoment aus der Gleichung (8) in die Formel (7) einsetzt und diese Gleichung mit der Grösse

$$\left(rac{lpha\,F}{P_K}
ight)^2$$
 multipliziert, kann man sie auf die Form bringen:

$$\left(\frac{\alpha F}{P_K}\right)^2 - \left(2 + \frac{\beta^2 k l^2}{\alpha \mu P_K}\right) \frac{\alpha F}{P_K} + 1 = 0 \quad . \quad . \quad (9)$$
 Löst man diese Gleichung nach der Grösse  $\frac{\alpha F}{P_K}$  auf, so erhält

$$rac{lpha\,\mathrm{F}}{P_K} = 1 + rac{eta^2\,k\,l^2}{2\,lpha\,\mu\,P_K} \pm \sqrt{\left(1 + rac{eta^2\,k\,l^2}{2\,lpha\,\mu\,P_K}
ight)^2 - 1}$$

 $\frac{\alpha\,F}{P_K} = 1 + \frac{\beta^2\,k\,l^2}{2\,\alpha\,\mu\,P_K} \pm \sqrt{\left(1 + \frac{\beta^2\,k\,l^2}{2\,\alpha\,\mu\,P_K}\right)^2 - 1}$  Die Knickkraft ist  $P_K = \nu\,P$ , wo  $\nu$  den Sicherheitskoeffizienten und P die zulässige Druckkraft bezeichnen. Indem man  $P_K = vP$  einsetzt, kann die Formel

$$F = \frac{vP}{\alpha} \left[ 1 + \frac{\beta^2 k \, l^2}{2 \, \alpha \, v \, \mu P} \, \pm \, \sqrt{\left(1 + \frac{\beta^2 \, k \, l^2}{2 \, \alpha \, v \, \mu P}\right)^2 \, - \, 1} \right] (10)$$
 geschrieben werden. Wir sehen, dass der Ausdruck der Quer-

schnittfläche aus zwei Faktoren zusammengesetzt ist. Der erste

Faktor,  $\frac{vP}{\alpha}$  bezeichnet die erforderliche Querschnittfläche des

Stabes unter der Voraussetzung, dass keine Knickgefahr besteht. Setzt man nämlich die Stablänge l=0, so erhält man gerade  $F=rac{vP}{lpha}$  . Der zweite Faktor, der Ausdruck in den eckigen

Klammern, gibt an, wieviel mal die Grundfläche  $\frac{vP}{a}$  genommen

werden muss, damit der Stab aushält ohne auszuknicken, wenn <sup>2)</sup> Ylinen, Arvo: Die Knickfestigkeit eines zentrisch gedrückten geraden Stabes im elastischen und unelastischen Bereich. Diss. Helsinki 1938, S. 96. (Siehe die Besprechung dieses Buches in «SBZ», Bd. 118, S. 168).

<sup>&</sup>lt;sup>1</sup>) Engesser, F.: Ueber die Knickfestigkeit gerader Stäbe, in «Zeitschrift des Arch. und Ing. Vereins zu Hannover», 1889, S. 455, sowie: Ueber Knick-fragen, in «Schweiz. Bauzeitung», 1895, Bd. 26, S. 24.