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Zur allgemeinen Formänderungstheorie der verankerten Hängebrücke
Von Prof. Dr. F. STÜSSI, E. T. H., Zürich

1. Grundgleichungen
Auf den Versteifungsträger einer Hängebrücke (Abb. 1)

wirken ausser den äusseren Belastungen q0 (Eigengewicht g,
Verkehrslast p) die Hängestangenkräfte, die wir bei dicht
ausgeteilten Hängestangen und bei Berücksichtigung nur der
lotrechten Kabelverschiebungen (übliche Formänderungstheorie)
mit H (y -f ijk") einführen können. Die Gesamtbelastung des
Versteifungsträgers im an den Hängestangen aufgehängten
Trägerteil beträgt somit

i 9o + H (y + vx") (i)
Der Horizontalzug H des Kabels ist mit einer Elastizitätsbedingung,

die die Unverschieblichkeit der Kabelendpunkte
ausdrückt, zu bestimmen. Bei frei verschieblichen Zwischenstutzpunkten

(Pendelstützen), d. h. bei über die Brückenlänge
gleichbleibendem Horizontalzug H, lautet diese Bedingung

F

+ attLt -f ly"rjKdx 0. (2)

n^K r pf-rr
dl

tF M^

Abb. l

»( L
Er Fr jy"nH \äx\ + ly'Vo

H-
EKFK jy"Vedx + KttLt

Die Kabeldurchbiegungen i^ unterscheiden sich von den
Durchbiegungen ijr des Versteifungsträgers um die
Hängestangenverlängerungen Ah:

1K V — 4h (3)
Gewöhnlich wird Ah vernachlässigt; aus Gl. 1 ergibt sich

dann mit tjz rjr ri die das Hängebrückenproblem
beherrschende Grundgleichung

q0 + Hy" + Htj- (EJrj")» (4)
Es bietet jedoch keine Schwierigkeiten, in einem zweiten

Rechnungsgang das Glied H {Ah)" als zusätzliches Belastungsglied
zu berücksichtigen.

Im Glied H rj" der Gl. 4, das den Einfluss der Formänderungen
ausdrückt, sind sowohl H wie if> von der Belastung q0 abhängig ;

das Problem ist nicht mehr linear, das Superpositionsgesetz
nicht mehr gültig. Ersetzen wir jedoch in diesem Glied Htj" den
mit der Belastung veränderlichen Kabelzug H durch einen
gedachten Festwert N, der grundsätzlich gleich gross sein soll wie
H, so erscheint die Grundgleichung linearisiert und das
Superpositionsgesetz ist wieder gültig1 )¦ Wir dürfen somit die
Belastung q0 in Teilbelastungen zerlegt denken, die einfach zu
behandeln sind, und diese Teilergebnisse superponieren, wobei nur
.zu beachten ist, dass der eingeführte Festwert N auch bei der
Untersuchung der Teilbelastungen dem Kabelzug Htot. des
gesamten Belastungszustandes entsprechen soll. Noch wichtiger
ist jedoch, dass wir nun, dank der Gültigkeit des Superpositionsgesetzes,

auch die Durchbiegungen r\ in Teildurchbiegungen
zerlegen dürfen:

V % + Hih i\v" %" + Hv"h \) ••.•••• W
Die Gl. 4 zerfällt damit in zwei voneinander unabhängig

lösbare Teilgleichungen
«o + N'k" (EJv»")" ì

und, nach Kürzung durch H, } (6)
ly" + Ni]"h= i — (EJrf'H^i)"

von denen sich die erste auf die gegebene äussere Belastung q0,
die zweite auf den Belastungszustand H 1 bezieht.

Wir können die beiden Lastanteile q0 und Nij"0 zusammenfassen

:

% % + N v ;
die zugehörigen Momente und Querkräfte im Grundsystem
einschliesslich Formänderungseinfluss sollen mit M„ und Q0 bezeichnet

werden. Die Momente und Querkräfte im wirklichen, einfach
statisch unbestimmten Tragwerk ergeben sich, nach Lösung der
Elastizitätsbedingung, aus der Superposition

M _r+Hlf^.i 1

(7)
Q ^ + h5h=,i j

Die Elastizitätsbedingung Gl. 2 kann nun so geschrieben
werden, dass sie eine direkte Bestimmung des überzähligen
Horizontalschubes H erlaubt:

<) F. Stüssi : Zur Berechnung verankerter Hängebrücken. «Abhandlungen-

I.V.B. H. Bd. 4, 1936.

H

dx -\- uttLi

O,o + «K
• (8)

EKFK + Jy"VH=i dx

Bei gleichen Spannweiten von Versteifungsträger und Kabel
kann aus Gl. 4 durch zweimalige Integration eine Grundgleichung

von der Form
M„ — H y — N?i ^ EJri"

gewonnen werden; auf diese Gleichung zweiter Ordnung bezieht
sich die bis heute fast ausschliesslich verwendete «normale»
Formänderungstheorie der verankerten Hängebrücke, wobei das
ausgeführte Tragwerk mit dem der Berechnung zu Grunde
gelegten meist nur annäherungsweise übereinstimmt, wie z. B. bei
Tragwerken nach Abb. 1.

Im Folgenden wird für die Gleichung 6 ein baustatisches
Auflösungsverfahren angegeben, das für konstante und
veränderliche Steifigkeit EJ des Versteifungsträgers anwendbar ist.
Während eine Integration der Grundgleichung in mathematischer
Form über die Unstetigkeitstellen bei den äussersten
Hängestangen hinaus nicht möglich ist, sodass dort unerwünschte, weil
den Rechnungsgang komplizierende Hilfsgrössen eingeführt werden

müssen1), fällt diese Schwierigkeit bei dem vorzuschlagenden
Lösungsverfahren dahin. Dieses Verfahren stellt die baupraktische

Lösung der inhomogenen linearen Differentialgleichung
vierter Ordnung mit veränderlichen Koeffizienten dar. Allerdings
soll zunächst, mit Rücksicht auf einfachste Darstellung, der Fall
konstanter Trägersteifigkeit, EJ EJC konst., für sich allein
behandelt werden.

Für die praktische Bemessung ist die Verwendung von
Einflusslinien zweckmässig. In unserm Grundsystem, d. h. dem der
linearisierten Differentialgleichung Gl. 6 gehorchenden
Versteifungsträger, ergibt sich die Einflusslinie für das Biegungsmoment
Mom als Biegungslinie % für eine an der Stelle m eingeführte
Winkeländerung _/</> R 1 ; die Einflusslinie im wirklichen
Tragwerk ergibt sich durch Superposition.

Bei der Berechnung der Durchbiegungen i/ ist in die Gl. 6
ein geschätzter Festwert N einzuführen, der im allgemeinen
mit dem für den zu untersuchenden Belastungsfall gültigen
Kabelzug H nicht übereinstimmen wird. Die Einflusslinien werden

deshalb am einfachsten für zwei verschiedene Werte von
N, Nt ç^ Hmi„ und N3 ç^ Hmax, berechnet, worauf die gesuchten
Schnittgrössen für N H durch Interpolation bestimmt werden
können. Wie nachstehend gezeigt werden soll, bestehen zwischen
den Einflusslinien für M„ und Q"B benachbarter Schnitte des
Grundsystems einfache Beziehungen, die die Aufstellung von
Rekursionsformeln erlauben. Damit müssen nur einige wenige
Einflusslinien durch Lösung der Grundgleichung Gl. 6 direkt
bestimmt werden, worauf alle übrigen leicht aus diesen berechnet
werden können.

') K. Klöppel und K. Lie : Hängebrücken mit besonderen Stutzbedingungen
des Versteifungsträgers, «Stahlbau» 1940. S. 109 ff. Siehe auch

A. Hertwig: Beitrag zum Hängebrückenproblem, «Stahlbau» 1940, S. 105 ff.
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2. Die baupraktische Lösung der Differentialgleichung GL 6
für E J konst.

Wenn wir bei der Lösung irgendeiner baustatischen Aufgabe

zu einer Belastung q0 die Durchbiegungen rja benötigen, so
zeichnen oder rechnen wir zwei SeUpolygone : ein erstes, das uns
aus den Belastungen qa die Biegungsmomente M0 und ein zweites,
das uns aus den reduzierten Momenten M0jEJc die Durchbiegungen

rj0 liefert. Dabei fassen wir die Belastungen gewöhnlich
mit der Trapezformel zu Knotenlasten zusammen, die für gleiche
Trägerteile Ax die Werte

T, tlXKm -g- (q„ 1 + 4«m + «m + l)

•Bm
Atm

(9a)

(9b)(üfm_1 + 42tfm +Mm + 1)

besitzen.
Beim ersten Seilpolygon wird die Differentialgleichung

q — M" ersetzt durch die Beziehung
Mm-i-2Mm + Mm + iK„ Ax (10 a)

(10 b)

das zweite SeUpolygon stellt mit
r, Vm — l—^Vm + Vm+lJtm —-dx

die Differentialgleichung M/EJC — rf dar.
Bei unserer Aufgabe, der Lösung der GL 6, besteht nun einzig

die Besonderheit, dass die Belastung qö" durch die
Durchbiegungen r;0 beeinflusst ist. Dies hat zur Folge, dass wir die
beiden Gleichungssysteme 10 a und 10 b nicht mehr je für sich
allein auflösen können, sondern durch Elimination von M zu
einem einzigen Gleichungssystem zusammenfassen müssen. Dies
ist jedoch nach meiner Meinung kein Grund dafür auf die
Anwendung der baustatischen Zusammenhänge der Gleichungen 9
und 10, die durch Carl Culmann und Otto Mohr in graphischer
Form in die Baustatik eingeführt wurden, und denen wir einige
der wesentlichsten Fortschritte der Baustatik seit den Arbeiten
von Louis Navier verdanken, hier zu verzichten.

Bei der Aufstellung eines einzigen Gleichungsystems zwischen
den Werten K und rj unter Elimination von M handelt es sich
aus praktischen Gründen darum, Gleichungen mit möglichst
wenig GUedern zu erhalten. Der Ersatz der linearen inhomogenen

Differentialgleichung zweiter Ordnung durch die
Beziehungen der Gleichungen 9 und 10 führt auf ein dreigliedriges
Gleichungssystem3), der Ersatz der Gleichung vierter Ordnung
auf ein fünfgliedriges.

Die gesuchte Elimination von M gelingt, wenn wir die
Gleichung 10 b für die Teilpunkte m — 1 und m -f- 1 einmal, für den
Teilpunkt m doppelt und mit negativem Vorzeichen anschreiben,
wobei wir die Abkürzung U 6 EJJjx1 einführen:
[Gleichung (10c). am Fuss dieser Seite]

Damit können nun die M-Werte zu Gruppen zusammengefasst
und nach Gl. 10 a durch die Knotenlasten K ersetzt und dadurch
eliminiert werden. Die Addition dieser drei Gleichungen liefert
damit den gesuchten Zusammenhang zwischen K und q in der Form
der Gleichung (11) [am Fuss dieser Seite]

*) Siehe z. B. F. Stüssi: Baustatische Methoden, «Schweiz. Bauzeitung»
Bd. 107, S. 277 (1936) und : Die Stabilität des auf Biegung beanspruchten
Trägers, «Abhandlungen» I.V. B. H. Bd. 3, 1935 usw. — Die Brauchbarkeit
eines solchen Integrationsverfahrens ist auch von dritter Seite festgestellt
worden: vgl. JB. Chwalla: Die Kippstabilität gerader Träger mit
doppeltsymmetrischem I-Querschnitt, «Forschungshefte Stahlbau» 1939.

Die Knotenlasten haben wir hier mit 'S bezeichnet, weü sie
noch den Belastungsanteil JV^" enthalten. Dieser Anteil kann
nun sehr leicht zu Knotenlasten zusammengefasst werden; es
ist nämlich für einen normalen Zwischenpunkt

Kn N —
>im—l — 2»?m + 57m.fl

oder
AxK„

dx

(lm-1 — 2j?m -f

N

-l)N (12)

Das Belastungsglied der Gleichung 11 beträgt somit
[Gleichung (13) am Fuss dieser Seite]

Führen wir diese Gleichung 13 in Gleichung 11 ein, so
gelangen wir zum.gesuchten fünfgliedrigen Gleichungssystem.
[Gleichung (14) am Fuss dieser Seite]

Das durch die Winkeländerungen R ausgedrückte Belastungs-
güed werden wir bei der Berechnung von Einflusslinien für
Momente benötigen.

Bei den äussersten Hängestangen tritt für die Berechnung
der Knotenlast K^ eine Besonderheit auf (Abb. 2). Es ist hier:

JXKayN= y- (l + -~^Vn -M„+l] N (15)

^«¦K„ + i,(v= (rin — 2rin + 1 -f rjn + 2) N
und an Stelle einer Gleichung 14 ist beispielsweise für den Punkt qim Gleichungsystem folgende Gleichung 16 einzuführen:
[Gleichung (16) am Fuss dieser Seite]

In der Knotenlast K„tp/ ist ausser der Knotenlast infolge
der verteilten Belastung Nrj" des Feldes n -f- n + 1 auch die

Ablenkungskraft infolge der
plötzlichen Richtungsänderung
des Kabels bei n enthalten.
Die Berücksichtigung dieser
konzentrierten Einzellast, die
eine einfache Lösung bei
mathematischer Integration der
Differentialgleichung Gl. 6 verun-
möglicht, bietet also hier nicht
die geringsten Schwierigkeiten.

Wir haben noch zur
Vervollständigung unseres Gleichungssystems

die Randbedingungen
zu formulieren. Wegen «^ 0,
rjB 0 fallen für die
Endpunkte A und B die Gleichungen

aus.
Ferner Ist wegen der freien Drehbarkeit der Balkenenden

yja'' 0, t)b" 0. In unser Gleichungssystem übertragen bedeutet
dies, dass nicht nur die Knotenlasten K^ und Kr sondern auch
Ra und Rß von den Auflagern übernommen werden und unser
Gleichungssystem somit nicht belasten. Damit können wir die
Gleichung für den Knotenpunkt 1 wie folgt zusammensetzen:

4U»7, — 2Ur!l — 8M1—2Ms )_
Uiii — 2Vrii + UV3 Mi + 4afa + *i I"

4»(4K"1 + K^) UAx< — 2R[-\- K,)
Führen wir, beispielsweise für den Fall von bis zum Trägerende

angeordneten Hängestangen, nun noch die Trennung der
Knotenlasten K in K„ und Ky entsprechend Gleichung 13 ein,

Abb

n-i n+i

âx

In.

Urlm-2-2Urim-l-\-Urim

Urjm — 2Z7?7m_|-i + I7i7m + 2

M„ 2 + 4Mm
— 2M„

l +Mm
-i-&Mn

M„,
2Mm + 1

4Mm + i + Mn
(10 c)

UVn - iU, + 6t7t/m — iUym + i + Uijm+2 dx(.Km_i + 4g„, + Km + Q UAx(Rm 2R„ Rm+l) dl)

tftxCKn
4K„

+ Km-rl)

JxK„m-\ -fW(77„
+ ^*ffom +

+ AxKom + 1 +

2Vm-l + Vm)

^(4i7m-l - 8»;m + 4?/m + i)
N (rim — 2 J?m +1 + J/m 4_ 2)

dtt(Em-\ + 42Tm +Km+i) =Jx(Kom-1 + 4Kom + Kom + i) -\- N(??m_2 + 2 >jm-i 6 ?im + 2jfm + i -f ijm + a) (13)

(U - N)rjm. 2- (4U + 2N)iim-i + {SU + 6N)tjm - (4 U -f 2 N) Vm +1 + {U - N)i,m + 2

Ax(Kam~i + 4Kom + Kom + i) UJx{Ram-.i - 2Rom + R0„, .< i) (14)

Utj„.-2 -4Z7»7„- i+ 1

6 U + (s + 4'-^ j ivi »/„ - (iU + 2N)Vn + i+ (U - N) Vn+2 Ax (K0, „_ 1 + 4K0, " + *^>. n + l) (16)
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so ergibt sich die erste Gleichung unseres Gleichungssystems in
der Form
(5U + 73Qfr — (4U4-2JF)fr-+ (U — N) r/s

Ax (4K0, + Koa) UAx (— 2JB01 -f Roi) (14a)

Die Aufstellung eines
Gleichungssystems GL 14 für
beliebig veränderliche Feldweiten

Ax ist, wie wir im 4.
Abschnitt noch zeigen werden,
im allgemeinen nicht möglich.
Dies bedeutet jedoch keine
wesentliche Einschränkung

des Anwendungsbereichs,
wenn es wÄiigstens gelingt, ein

abnormales Endfeld e ^ Ax
einzuführen, um die Feldteilung, wie beispielsweise in dem in
Abb. 1 skizzierten Fall, der Form des Tragwerks anpassen zu
können. Für diesen Fall soll die Endgleichung noch angegeben
werden (Abb. 3).

Die Grundgleichungen lauten:HbU (fr _ 2 % + %) M, + 4M2 + Ma

Ax-K, =-(l + ^L")M1+M2
AxK\ S M, — 2M. 4- M,

Abb

dx ix

+ 2Mj

M,

mfim\dx r + M2

Durch Elimination der M ergibt sich daraus die Gleichung

Ax ,\ „I AxAx g Ax2
— r-6 _e e' U{$-

-. Ax [l2K, +
e

Sx
e + »)*]

WM

Führen wir noch die Knotenlasten Kn nach Gleichung 15
ein, so erhalten wir nach kurzer Zwischenrechnung für den Fall
der Abb. 3 die voUständige Endgleichung (14 b):
[am Fuss dieser Seite]
Für e a Ax stimmt Gleichung 14 b mit Gleichung 14 a überein.

Wir haben in Gleichung 9 b den Drehwinkel R durch die
sogenannte Trapezformel ansgedrückt. Für eine stetig gekrümmte
Momentenfläche könnten wir durchVerwendung der Parabelformel

Bm=^2Wj~(Mm-1 + 10Mm + Mm + l)
eine etwas grössere Genauigkeit erreichen, mussten dann aber
auf die Berücksichtigung von Einzellasten, wie sie hier vorkommen,

verzichten. Für die mit den äussersten Hängestangen
zusammenfallenden Knotenpunkte « musste wegen der Einzellast
K„_ N der Drehwinkel Rn etwa in der Form

B" 24 EJ (_ Mn~2 + 6Jlf»-l + 14M" + 6M»+1 - M«+2)

eingeführt werden. Das Gleichungssystem würde dadurch
umständlicher als bei Verwendung der Trapezformel, sodass der
Vorteil der etwas grösseren Genauigkeit durch die praktischen
Nachteile mehr als aufgewogen wird. Im übrigen beruhen ja
die bisher verwendeten Verfahren zur Ermittlung von Biegungslinien

(Stabzugverfahren, Verfahren der elastischen Gewichte)
auch auf der Trapezformel, ohne dass sich daraus bei nicht allzu
grossen Feldweiten wesentliche Nachteile für die Bemessungspraxis

ergeben würden.
Mit der Trapezformel führen wir polygonale Momentflächen

im Versteifungsträger ein. Diesen entspricht im Zusammenhang
unserer Gleichungen eine polygonale Form des Kabels, dessen
Durchbiegungen nur in den Knotenpunkten mit denen des
Versteifungsträgers übereinstimmen. Dieser Umstand ist bei der
Berechnung des Integrals fy"rjK dx bzw. frjicflx für y" konst.,
wie es bei der Auswertung der Elastizitätsbedingung benötigt
wird, zu beachten.

Nach der Auflösung des Gleichungssystems GL 14 können die
Knotenlasten ~K 2T0 -f. Kn und damit die Momente M^ und die
Querkräfte Q0 des Grundsystems nach den bekannten Verfahren
der Baustatik bestimmt werden. Die Durchbiegungen rj erlauben

nun auch die Auflösung der Elastizitätsbedingung Gl. 8, worauf
die endgültigen Schnittgrössen und Durchbiegungen sich aus
den in den Gleichungen 5 und 7 angegebenen Superpositionen
ergeben.

3. Einflusslinien und Rekursionsformeln
Da wir durch die Einführung des gedachten Festwertes N

unsere Grundgleichung linearisiert haben, gilt das Maxwell'sche
Reziprozitätsgesetz. Die Durchbiegungen tjH^i, die wir direkt
durch Auflösung des Gleichungsystems GL 14 für die Belastungen
q0H — l ly" erhalten, stellen somit schon die Belastungsglieder
a10 der Elastizitätsbedingung Gl. 8 für den Fall einer wandernden

Einzellast P 1 dar ; die Einflusslinie für den Kabelzug H
ergibt sich somit zu

VH l6ff (17)

Die Ordinaten von Einflusslinien sollen einheitlich mit e
bezeichnet werden. Es ist also H SPeg, M SPe/g usw. Dank
der Gültigkeit des Reziprozitätsgesetzes können wir auch die
Einflusslinien für die Durchbiegungen sehr einfach bestimmen:
die Einflusslinie e,; ist ja nichts anderes als die Biegungslinie
infolge Pm 1, die damit durch Gleichung 5 bestimmt ist zu

ei» ÏP»=l W. l + AJ>.-17ï l • • (18)

Die Einflusslinie für das Biegungsmoment Mm ist die
Biegungslinie infolge einer an der Stelle m eingeführten
Winkeländerung Rm 1. Für das Grundsystem, H 0, erhalten wir
diese Biegungslinie, indem wir Rm — 1 in die Belastungsglieder
des Gleichungssystems (14) einführen, also in den Gleichungen für

Knotenpunkt m — 1 das Belastungsglied — UAxl
Knotenpunkt m das Belastungsglied -{-2UAxl
Knotenpunkt *» + 1 das Belastungsglied — UAxl
Die Einflusslinie im statisch unbestimmten Tragwerk ergibt

sich darauf zu
eMm V0Rm l + MmH=1eH. (19)

Um die Einflusslinie für die Querkraft Qm im Grundsystem
zu erhalten, mussten wir die Balkenquerschnitte links und rechts
von m gegenseitig um den Betrag je 1 verschieben. Da unser
Gleichungssystem im übrigen sich nur auf gerade Ableitungen
von rj bezieht, ist die Einführung einer solchen Verschiebung,
die ja die erste Ableitung einer Winkeländerung darstellt,
unbequem. Wir können sie aber ersetzen dadurch, dass wir im
Knotenpunkt w@-1 die Winkeländerung

¦Bm —1 2Ax
und in m -\-1

Sm +1 — 2Ax
anbringen. Nun werden aber bei dieser Biegungslinie, die sich

|jl||fenüber der gewünschten, um die beiden in Abb. 4 schraffierten

J_>n

¦I '
12:

ZpSj
J_
;Z

/Je«7

,—~4>—
dx Ax

a äHH
2&X

dx

fe-l

* i~\ -' '171-1

f tlX
âx

Abb. 5

m-i m m+i

Abb. 4

Dreiecke unterscheidet, in unserm Gleichungssystem die
Formänderungseinflüsse Ky infolge der beiden Ablenkungswinkel
Rm—i und Rm+i mitberücksichtigt, obwohl sie In Wirklichkeit
nicht vorhanden sind. Wir korrigieren diesen Fehler dadurch,
dass wir diese Formänderungseinflüsse auch im Belastungsglied
aufnehmen, d. h. dort die korrigierten Winkeländerungen

n \ i / n•Em —1 \âx y Rm + 1 t) (20)2ûx \ U J 1 "'»-r-- 2dx
einführen. Nun brauchen wir aber für diese Belastungsglieder
das Gleichungssystem GL 14 gar nicht aufzulösen, wenn wir die
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A x A x*
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N 8(._,¦*)]»+ f„(^,)..,(^+,fr
: AX 12 X„, + &¦ + *)*. (14b)
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Abb. 3. Taubstummenanstalt Riehen bei Basel. Gesamtbild aus Süden

Einflusslinien e0jf _ i >7o ß | =1 und e0M ,-. schon berechnet
haben, sondern wir können direkt aus diesen beiden Linien
die Einflusslinie e,.n berechnen:° Vm

U — N
2AxU (e»Mm+l eoM„ (21)

Im Punkt m der so berechneten Einflusslinie haben wir
entsprechend Abb. 4 noch die zusätzlichen Ordinaten -- 1/2

beizufügen. Die Einflusslinie e q im statisch unbestimmten Tragwerk
ergibt sich nun aus der Superposition

eQ, eoQm + Qm[i ,teH (22)

Wir hätten die Querverschtépïing A e 1 statt nach Abb. 4

nun auch nach Abb. 5 durch zwei Winkeländerungen ersetzen
können. Unter Berücksichtigung dertaprmänderungen mussten
wir dann die korrigierten Winkeländerungen

und

Rj,

R*

dx
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1 mAx V
affi
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in die Belastungsglieder unseres Gleichungssystems einführen,
oder aber wir können e„n direkt aus den Einflusslinien e„jwu*m omm — 1
und e0j|f berechnen:

eoQ„ dx \
U 4- 2N

Ü~ eoM„
am N

U m ¦ (23)

Vergleichen wir nun die Gleichungen 21 und 23, so stellen
wir fest, dass wir durch die Gleichsetzung
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gewinnen können. Im Punkt m (und nur in diesem) ist
entsprechend dem Unterschied zwischen den Abbildungen 4 und 5
das eingeklammerte Korrekturglied infolge der halben Quer-
verschiebung zu berücksichtigen.

Die Rekursionsformel Gleichung 24 erlaubt uns nun eine
erhebliche Abkürzung der Berechnung: Wenn wir für zwei be¬

nachbarte Schnitte die Einflusslinien
e0M durch Auflösung des Gleichungssystems

Gl. 14 gewonnen haben, so können

wir daraus mit Gleichung 24 die
übrigen Einflusslinien e„ u und mit
Gleichung 21 die Einflusslinien e0g berechnen,

allerdings mit einer Einschränkung.

Wir haben nämUch die
Rekursionsformel für an den Hängestangen
aufgehängte Felder abgeleitet und sie
gilt folglich auch nur für solche. Die
Rekursionsformel kann also bis zum
Knotenpunkt n einer. äussersten Hängestange,

nicht aber über diesen hinaus
verwendet werden. Ist also der
Versteifungsträger einer Hängebrücke nicht
durchgehend, sondern mit Untierbrechungen

aufgehängt, so ist für jeden
stetig aufgehängten Trägerteil die
direkte Bestimmung von zwei Einflusslinien

notwendig. Dabei steht für die
Enden auch die Einflusslinie e„ u, 0

zur Verfügung. Für die Bestimmung der
Einflusslinien eaQ in nicht aufgehängten
Trägerteilen gelten die Gleichungen 21
und 23, wenn hier N 0 gesetzt wird.

Abb. 5. Sehulfliigel vom Knaben-Wohnraum aus gesehen (Schluss folgt)
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