Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 117/118 (1941)

Heft: 26

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

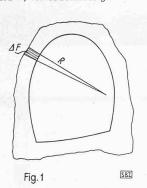
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

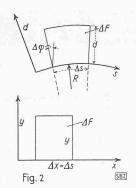
Download PDF: 16.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Band 118

Brünigbahn-Gepäcktriebwagen Fhe $^4/_6$ der SBB. — Zur Ausbildung des — Mitteilungen der Vereine.


INHALT: Cube réel d'une maçonnerie de tunnel. — Zur Vollendung Maschineningenieurs. — Nekrologe: Otto Casparis. — Mitteilungen: Neuere der Fresken Paul Bodmers im Fraumünster-Durchgang in Zürich. — Kunst- und Pflanzen-Fasern. Eidg. Technische Hochschule. — Literatur.


Dieser Nummer ist das Inhalts-Verzeichnis des mit heute abschliessenden Bandes 118 beigelegt

Cube réel d'une maconnerie de tunnel

Par CH. DUBAS, ing. dipl., Bulle

La section transversale d'une maçonnerie de tunnel (Fig. 1) est une surface en forme d'anneau dont seul le périmètre intérieur (intrados) est formé de courbes mathématiques. Redressons cet intrados, qui deviendra l'axe horizontal d'un système rectangulaire équivalent. L'anneau primitif se transforme en un ruban; les longueurs s deviennent les abcisses x, et les épaisseurs d, les ordonnées y.

Pour chaque petit élément
$$\varDelta F$$
 (Fig. 2) on a:
$$\varDelta F = \frac{\varDelta \varphi}{2} \left[(R + d)^2 - R^2 \right] = \varDelta s \cdot y$$

avec

$$y=d+rac{d^2}{2\,R}$$
 (1)

Comme les d n'ont été mesurés que de place en place, on reliera les points du système rectangulaire deux à deux par des droites ou trois à trois par des paraboles.

On obtiendra, par la première méthode, pour des Δx inégaux:

$$F = \frac{\Delta x_1}{2} y_1 + \frac{\Delta x_1 + \Delta x_2}{2} y_2 + \dots + \dots + \frac{\Delta x_{n-2} + \Delta x_n - 1}{2} y_{n-1} + \frac{\Delta x_n}{2} y_n$$

$$F = c_1 y_1 + c_2 y_2 + \dots + c_{n-1} y_{n-1} + c_n y_n + \dots$$
 (2)

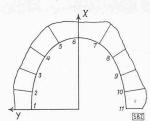
et s'ils sont égaux:

$$F = \frac{\Delta x}{2} \left(y_1 + 2y_2 + \dots + 2y_{n-1} + y_n \right) \quad . \quad . \quad (3)$$

$$F = \frac{\Delta x}{2} \left(y_1 + 2y_2 + \dots + 2y_{n-1} + y_n \right) \qquad (3)$$
 ou par le deuxième procédé (Simpson)

$$F = \frac{\Delta x}{3} \left(y_1 + 4y_2 + 2y_3 + 4y_4 + \dots + 2y_{n-2} + y_{n-1} + 4y_n \right) (4)$$

On aurait pu redresser chaque élément autour de sa fibre moyenne en conservant les épaisseurs d. Les Δx cessent alors d'être constants, les formules (3) et (4) sont inemployables; dans la formule (2) les c_n deviennent fonction de $d_{n-1} = y_{n-1}$ et de $d_n=y_n$, l'établissement de tables (cf. exemples) devient impossible. Avec un seul rayon moyen par section, ces difficultés disparaissent, mais l'erreur peut être importante.


Exemple le plus simple : Voûte circulaire avec Δx égaux (d' est la distance depuis les cintres; 8 cm de couchis; R=250 cm). On établit aisément une table de transformation donnant, à l'aide de (1), y en fonction de d':

$$y = d' - 8 + \frac{(d' - 8)^2}{500}$$

On obtient par exemple, pour une section donnée selon Fig. 3, d'après la formule (4) les chiffres suivantes:

Der S.I. A. ist für den Inhalt des redaktionelle Nachdruck von Text oder Abbildungen ist nur mit Zustimmur	n Teils seine g der Redak	r Ver	elnsc ind r	rgan nur n	ne ni nit g	cht v enau	eran ier C	twor Quelle	tlich enan	gabe	gestattet	Nr. 26
'une maçonnerie de tunnel ing. dipl., Bulle transversale d'une maçonnerie de tunnel (Fig. 1) e en forme d'anneau dont seul le périmètre inté-	Points	1	2	3	4	5	6	7	8	9	$\Sigma_{ m Simpson}$	$F = rac{\varDelta x}{3} \Sigma_s$ $= 0.327 \Sigma_s$ (m^2)
) est formé de courbes mathématiques. Redres-	d' (em)	62	68	75	69	88	84	63	65	68		
os, qui deviendra l'axe horizontal d'un système quivalent. L'anneau primitif se transforme en un	y (cm)	60	67	76	68	93	88	61	63	67	1 721	5 660

Exemple le plus compliqué : Voûte en ellipse avec Δx inégaux.

plier par: 1

Point	X	Y	R	8	18
	m	m	m	m	m
1,11	0	2,750	6,41	0	1,05
2, 10	1	2,671	6,11	1,02	1,0
3,9	2	2,418	5,21	2,05	1,1
4,8	3	1,925	3,83	3,17	1,1
5,7	3,8	1,170	2,49	4,29	1,2
6	4,2	0	1,80	5,54	1,2

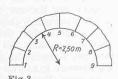
R variant de point en point, on peut établir une table à entrée double donnant, pour les différents points, y en fonction de d':

d'	$y_{1,11}$	$y_{2,10}$	2 2 2 1
cm	cm	cm	
61	55,2	55,3	
62	56,3	56,4	
63	57,4	57,5	
		20.0	

Dans notre cas, la formule (2) devient:

$$F = 0.51 \, y_1 + 1.025 \, y_2 + 1.075 \, y_3 +$$

$$+1,12y_4+1,185y_5+1,25y_6+\dots$$
 [m²]


Les différents termes de cette somme peuvent, elles aussi, être mis en table:

d′ cm	0,51 y _{1,11} m ²	1,025 y _{2,10} m ²					
61	0,282	0,567					
62	0,287	0,578					
63	0,293	0,589					
	1.0	100000000000000000000000000000000000000					
ř		1 A 1 TO 1					

A l'aide d'une table pareille, on obtient, par exemple, pour une section donnée les chiffres au bas de la page.

Si on avait bétonné la voûte du deuxième exemple jusqu'à une distance quelconque (entre 4 et 5), on pourrait sans nouvelles mesures calculer la section réelle bétonnée. Les valeurs $c_{\scriptscriptstyle 1}\,y_{\scriptscriptstyle 1}$, $c_{\scriptscriptstyle 2}\,y_{\scriptscriptstyle 2}$, $c_{\scriptscriptstyle 3}\,y_{\scriptscriptstyle 3}$, resteraient les mêmes, une interpolation linéaire entre $y_{\scriptscriptstyle 4}$ et $y_{\scriptscriptstyle 5}$ donnerait $y_b = a\,y_{\scriptscriptstyle 4} + b\,y_{\scriptscriptstyle 5}$, d'où

$$F = rac{arDelta \, x_b}{2} \, \left(y_4 + y_b
ight) = rac{arDelta \, x_b}{2} \, \left(y_4 + a \, y_4 + b \, y_5
ight) = c_4' y_5 + c_5' \, y_5'$$

	Points											m²
	1	2	3	4	5	6	7	8	9	10	11	$F = \Sigma \Delta F$
d' [cm]	65	70	68	64	63	61	67	70	70	70	67	
ΔF [m ²]	0,303	0,667	0,683	0,673	0,724	0,760	0,782	0,750	0,706	0,667	0,315	7,030