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Die Knicklast gegliederter Stäbe
Von Dipl. Ing. ERN ST AMSTUTZ. Mitarbeiter von Prof. Dr. F. Stüssi,Zürich

Zur Knickstabilität gegliederter Stäbe, hauptsächlich der
zweiteiligen Stäbe mit Vergitterung oder Laschenbindungen, hat
sich seit ungefähr drei Jahrzehnten, nachdem das Problem du^M
einige Einstürze aktuell geworden war, eine umfangreiche Literatur

angesammelt. Im folgenden soll auf möglichst kurze und
leicht verständliche Art eine prägnante, allgemein für alle
gegliederten Stäbe gültige Formel (15) abgeleitet werden, die es
dem praktisch tätigen Statiker mit elementaren baustatischen
Mitteln ermöglicht, jeden Sonderfall rasch und sicher zu lösen.

Im Anschluss werden nebst Ableitung bereits bekannter Formeln
einige Einflüsse näher untersucht, die bisher m. W. ausser acht
gelassen wurden, obwohl sie die Knicklast bedeutend herabsetzen
können.
1. Die allgemeinen Grundbeziehungen

Der ungünstige Einfluss der Unterteilung eines Stabes auf
seine Knicklast beruht auf zusätzlichen, durch die Querkräfte
verursachten Verformungen. Beim Vollstab bleiben diese
Verformungen so klein, dass sie dort praktisch ohne Belang sind.
Zur Ableitung der Grundformeln gehen wir am sichersten direkt
von dieser Erkenntnis aus, indem wir in der Differentialgleichung
der ausgebogenen Stabaxe diesen Einfluss berücksWitigen. (In
der Literatur finden sich auch Ableitungen mit Hilfe von
Energiebetrachtungen.)

Die elastische Durchbiegung r/M eines Balkens infolge von
Momenten M ist bekanntlich gegeben durch

M
mm — -jB (1)

worin B EJ die Biegesteifigkeit (Elastizitätsmodul x
Trägheitsmoment) bedeutet (Abb. 1).

Die Querkräfte Q erzeugen Verzerrungen, die eine zusätzliche

Neigung der elastischen Linie
G M1

*'<? X T" (2)

erzeugen (Abb. 2). S sei als Schubsteifigkeit bezeichnet; sie ist
diejenige Querkraft, die bei unbeschränkter Proportionalität die
Neigung ti'q 1 (45°) erzeugen würde. Aus (2) gewinnt man
durch Differentiation qi jj/[h

v"q T S- (3)

wobei konstante SchubSifigkeit vorausgesetzt wird, eine
Annahme, die meist genau, sonst aber angenähert erfüllt sein wird.
Die Gesamtverformung ist also gegeben durch

M M"
V" V"M + V"Q - -ß- + -g- (4)

Wir betrachten nun den Knickstab (Abb. 3). Bei Erreichen
der Knicklast Pkr wird sich eine bei den üblichen Voraussetzungen
(gerade Stabaxe, zentrische Belastung, homogenes Material)
vorerst noch unendlich kleine Ausbiegung rj einstellen. Durch
die Verwölbung der Stabaxe hat der Stab die quer gerichteten
Ablenkungskräfte

- h + Pkrrj" (5)
aufzunehmen (Abb. 4). Diese sind die Ursache der im Stabe
wirkenden Biegemomente M:

— h + M" + Pkrri" (6)
Durch Einsetzen dieser Gleichgewichtsbedingung in die

Verformungsbedingung (4) gewinnen wir die Differentialgleichung
des Knickproblems:

-:, W(i-»)
(S:

(8)

n
M" M
~PiTr= ~~B

Für den Vollstab

B M" 0 (7)

oo) ergibt dies speziell:
PokrM + BM" 0

Lösungen dieser Gleichungen sind bekanntlich nur für
ausgesuchte Werte von Pokr möglich, wovon uns hier nur der
niederste — die Euler'sche Knicklast •— interessiert, die unter der
Voraussetzung B konst. bekanntlich folgenden Wert hat:

n* B
P„fcr -jr- O)

Der Vergleich von Gleichung (7) und (8) zeigt, dass für den

gegliederten Stab eine verminderte Biegesteifigkeit B ll ~^|

einzuführen ist. Im übrigen ist die Lösung die selbe, insbesondere
ist auch das Moment, wenn B konst., durch eine Sinuslinie
dargestellt. Die Knicklast ergibt sich also für den gegliederten
Stab aus

Pkr\
Pkr Pdcr g

Pokr
*)

oder

nr= ——
1 + S

i 1 1

Pkr Pokr + ~s

(10)

(11)

(12)

Diese ForSïel ist — wie im nächsten Abschnitt gezeigt wird
— als Gebrauehsformel nicht geeignet; sie ist hier nur ihres
klaren Aufbaues wegen wiedergegeben.

8. Der unelastische Bereich
Die Biegesteifigkeit B darf mit dem Werte EJ nur eingesetzt

werden, solange die Knickspannung okr ~: die Propor-F
tionalitätsgrenze nicht überschreitet. Im plastischen Bereich
ersetzt man den Elastizitätsmodul E durch den Knickmodul
Tk, dessen Sinn in Abb. 5 als Modul einer ideellen linearen
Spannungsverteilung (Abb. 5b) zum gleichwertigen Ersatz des

wirklichen Spannungsbildes (Abb. 5 a) in Erinnerung gerufen wird.
Mit B TkJ bleiben die bisherigen Ableitungen gültig. Die

Formel (12) ist gleichwohl im plastischen Bereich nicht verwendbar,

da der Wert Pokr mit dem zu Pkr gehörenden Wert Tk zu
berechnen wäre, dieser aber noch nicht bekannt ist. Da ferner
in der Praxis die Bestimmung der Knicklast im plastischen
Bereich direkt auf Versuchsergebnisse (Tetmajer'sche Formel)
gegründet wird, die die kritische Spannung in Funktion des
Schlankheitsgrades X (Knicklänge lk: Trägheitsradius i) ausdrücken, ist
es zweckmässig und üblich, für gegliederte Stäbe (wie auch bei
andern Stabilitätsproblemen) eine ideelle Schlankheit Xu
einzuführen, mit der die Knicklast wie für einen Vollstab zu
berechnen ist.

Die für den plastischen Bereich erweiterte Euler'sche Formel
lautet : n% Tk

Xid3

FUr den Gliederstab gemäss (11):
MM

<*k>

mm
Die ideelle Schlankheit X-t,i ist also gegeben durch

X,i ¦K'?)

(13)

(14)

(15)

Dies ist die Grundformel für alle gegliederten Stäbe.

3. Der Gitterstab
Gitterstäbe haben meist eine Ausfachung nach Abb. 6.

Vorausgesetzt sei gelenkiger Anschluss der Füllstäbe und Zentrierung

auf die Schweraxe der Gurtung. Zur Berechnung der
Schubsteifigkeit betrachten wir die Verformung <î eines
Stabfeldes (Abb. 7) unter der Querkraft Q. Die Anwendung der

Tu

Ufi "SM

Abb.1

V*'*

Abb. 2

m

rf-dx

ri-dx

arclg

m
Abb. 5 Abb. 4 Abb. 5 a Abb.5b

\arctg Tk

\± mm
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Arbeitsgleichung auf die Füllstäbe (der Anteil der Gurtungen
ist schon im Momentenanteü berücksichtigt) ergibt:

S2o is _ rid\a d sg h
Ô QZ -[(I)" + i3 (16)

BF ||§ l\hf EFD ' EFp
Die Schubsteifigkeit S ist definiäraosgemäss die Querkraft für
ô e ; woraus

j. d* _^_
S eh*EFD ^ eEFp

Nach (15) ist somit die ideelle Schlankheit

k£ X* i1 +
OphrF

S
x* 1 + ^/Z_J__ + Z_M1(i8)m E \FD eh"^ FP e/jigj!||

über 1-^-(i)%ernachlässigt werden, es ist dann

Xc±i
2 h
h (20')

Q I M*ci ds=Q 2 - +
h mBJ | L 16 STk<Tg 4 3EJR

Bei den Gurtungen muss die Abminderung der Biegesteifigkeit
durch Einführen des Knickmoduls Tk an Stelle von E
berücksichtigt werden, bei den Bindeblechen, die ja nicht unter
Vorspannungen stehen, ist hingegen der Elastizitätsmodul E
einzusetzen. Wir benötigen die Schubsteifigkeit S, d. i. die Querkraft
Q für 3 e, somit wird

1 °2 eh
~S 24 Tk 3g + 12 EJR '

Gemäss (15) ergibt sich die ideelle Schlankheit zu

XU" X* 1 + 7i»Tk2Fg +
eh

-)] (23)

-~MMm
fi i

Abb. 10

Im plastischen Bereich wäre genau genommen in ookr der zu
okr gehörende Ktaickmodul einzuführen, da der Fehler hier aber
nur ein verhäÜnismässig kleines Korrekturglied betrifft (im
Gegensatz zu Formel 12), dürfen wir ohne weiteres den zu aokr

gehörenden Knickmodul einführen, also ookr nach der Tetmajer-
schen Formel berechnen. Im elastischen Bereich setzen wir
zweckmässig für ookr den Eulerwert algebraisch ein und erhalten so
die etwas einfachere Formel

r F da F h~\^ "2 + ^[-fjtw + -fjt\ ¦ ¦ ¦ (19)

Für das System nach Abb. 6 a entfällt das zweite Glied in der
Klammer.
lf. Der Rahmenstab

Als Rahmenstab bezeichnet man das in Abb. 8 dargestellte,
vielfach statisch unbestimmte System. Genaue Untersuchungen
mit Hufe von überzähligen Grössen sind für die Knicklastberechnung

schon durchgeführt worden ; eine derart umständliche
Berechnung ist jedoch gar nicht notwendig, da es sich hier lediglich

darum handelt, die Steifigkeit des Gesamtsystems, nicht
aber die Schnittkräfte im Einzelnen zu erfassen. Zu diesem
Zwecke nehmen wir genau genug die Lage der Momentennullpunkte

in den Feldmitten der Gurtungen und der Riegel an,
umsomehr als die Riegel im allgemeinen sehr steif sind.

Die Schlankheit des Vollstabes berechnet man zu

X -£- worin i3 (m + ig* mit ig2 —f- ist. (20)

Bei schlanken Gurtungen mit grossem Abstand h kann ig2 gegen-

Wir berechnen nun die Schubsteifigkeit S und denken uns
hierfür das in Abb. 9 dargestellte, zwischen den Momentennullpunkten

herausgeschnittene Element mit den Querkräften Q
belastet (die zugehörigen Gurtkräfte interessieren hier nicht).

Die Riegel sind im allgemeinen Bindebleche, die durch zwei
oder drei Nieten am Gurt angeschlossen sind. Dem entspricht
die abgeschrägte Momentenfläche nach Abb. 9. Bei angeschweiss-
ten Bindeblechen kann diese Momentenfläche als genau genug
vorausgesetzt werden.

Die Ausbiegung â unter der Querkraft Q berechnet sich mit
Hilfe der Arbeitsgleichung zu :

X1 \2iTkJg ' 12EJR
Das zweite Glied in der runden Klammer ist bei normaler

Ausführung so klein, dass wir E durch Tk ersetzen können, wo-

Abb.9

r i

u
Abb. 11

bei wir auf der sichern Seite bleiben. Führen wir noch die
Schlankheit Xt der Einzelgurtung mit der freien Knicklänge c

c2 FV TT C2 -T- (24)

ein, so finden wir schliesslich:

(25)

worin das letzte Glied fast immer vernachlässigt werden kann.
Die Formel

kd- mmm (25')

entspricht der altern Engesser'schen Knickformel. Sie begeht
eine Vernachlässigung, mit der wir tins nun noch auseinandersetzen

wollen.
Wie bekannt, vergrössert sich die Durchbiegung 60 eines

querbelasteten Stabes, wenn er zugleich axial gedrückt wird,
auf einen Wert â, der mit guter Näherung dem Gesetz

<* 4> p- (26)
1 üg|

gehorcht (Abb. 10), worin zum Ausdruck gebracht ist, dass bei
Belastung mit der Knicklast Plkr quergerichtete Kräfte nicht
mehr aufgebracht werden können. Die Formel (26) ist nur dann
streng richtig, wenn die elastische Linie infolge der quergerichteten

Kräfte mit der Knickfigur identisch ist. Sobald jedoch nur
die grobe Form der Biegelinie übereinstimmt, kann die Formel
als gute Näherimg verwendet werden.

Ein derart gedrückter Stab unter quergerichteten Kräften
ist nun aber die Gurtung des Rahmenstabes (Abb. 11).
Mit _ n*TkF.

(27)

und
Plkr

sm
TC*TkJ. I

Xid2

±n*TkJg

[tY
4n>>TkFg

X," (28)

ist also das zweite Glied in Gleichung (25) mit dem Faktor
1 1

Pi (29)

zu multiplizieren. Vernachlässigen wir, wie bereits begründet,
das letzte Glied, so geht (25) über in:

1
;*«»==*» + 12

X>\

¦ X,*
1 — 4V

man

(30)

Durch Erweitern mit (kd2 j—) findet

kd* - kd1 [x* + (1 + -g-j v] + x x* B I ° (31>

oder nach A.jja aufgelöst
X*

kd3 + 0,536 X•.'+!# + 0,286 X3 V + 0,288 V (32)

Gegenüber der Formel (25') ergeben sich bedeutend grössere

Schlankheiten und im Grenzfall bis zu 30°/0 kleinere Knicklasten.

Wie der Vergleich in Abb. 12 zeigt, berücksichtigt die heute
allgemein im Gebrauch stehende neuere Engesser'sche Formel

Xid* X* + k* (33)

TT3

durch die Aufrundung des Faktors -^ auf 1 den Verformungs-

elnfluss der Einzelgurtung angenähert. Man erhält die Knicklast

im elastischen Bereich und für die Üblichen Verhältnisse —/ nach

der Näherungsformel (33) bis zu 3°/0 zu klein (für extreme

Verhältnisse XL allerdings bis zu 7°/0 zu gross). Die einfach zu

handhabende Gleichung (33) genügt somit für praktische Zwecke.
Sofern der Einfluss der Riegel nicht zu vernachlässigen ist,

ehFrechne man mit X;d' c=! A2 -j- X,1 -I f— (34)
Jr
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Formel 25'
" 22 (genau)

» 23

Abb. 2 : Vergleich der Knickspannungen von
Rahmensl"äben im elastischen Bereich

I V

Abb. 13

5. Der nicht zentrierte Gitterstab
Bei der baulichen Durchbildung der Gitterstäbe ist man

meist bestrebt, die vielen Knotenbleche für: den Anschluss der
Füllstäbe zu ersparen. Es ist dann meist nicht möglich, die
Schweraxen zu zentrieren. Offensichtlich ist zu erwarten, dass
die Ausserachüassung einer so elementaren Konstruktionsregel
die Tragkraft bedeutend herabsetzen wird. Trotzdem wurden
bisher solche Stäbe nach der Formel (18) berechnet. Die
allgemeine Formel (15) erlaubt uns, auch solche Fälle mp Leichtigkeit

zu untersuchen.
Nach den bisherigen Ableitungen kann ich mich hierfür kurz

fassen und gebe daher die Ableitung für den Fall, dass die
Stabdehnungen vernachlässigt werden können, kommentarlos wieder.
Die Bezeichnungen gehen aus Abb. 13 hervor.

Aus den Gleichgewichtsbedingungen
Q1 — Q2 Q

und

folgt
Qi

Somit wird

kd2

WSË V

M

G G
U

Va — V
v — U

1 Ç M2ç i ds
e J TkJg

X2 m X2

V

2w
u

2w

ZTkJ,
n2Tk2F

m
w f
i uv
\w~

(35)

(36)

(37)

(38)

(39)

oder mit der Abkürzung A,

Stückes):

§§§§||§
- (Schlankheit des Zwischen-

¦BdfKg <40'

Um auch hier den Formänderungseinfluss der Einzelgurtung
7t2

zu berücksichtigen, runden w— zu 1 auf. Ferner wollen wir
jetzt noch die Dehnung der Streben berücksichtigen, die unter
der Strebenkraft

d i d u + v „ deD T(Ql + ea) T^tre T-
stehen. Dementsprechend erhält man vollständig:

Ookr

E

(41)

Kid' KL. fl + ^*L _L J!_ (±\t] + (/LX X,2 (42)
|_ ^ E FD eh2 \wf J ^ \w) ' | '

oder im elastischen Bereich auch
F d3

"FÖ~"ekd' X2 + n2 mmh2 \w I + X,2 (43)

Für das System Abb. 14 ergibt sich die entsprechende Formel:

kd2 X* 1 + Opki d»

eh2 +
F h)&)' + (44)

oder im elastischen Bereich speziell:
d3 Ft F

X1 + 7t*(-FÏ eh2 FP t)GH A,3 (45)

ìum L-
•0701

Abb. 16

W.P

Abb. 18

Abb. 14

Um den Einfluss der Exzentrizität
zu demonstrieren, sei das Beispiel
nachgerechnet, das F. Bleich in seinem
Buch «Stahlhochbauten» (l.Bd.S.159)
behandelt. Die Abmessungen gehen Abb. 15 SEI

aus Abb. 15 hervor. Für eine Knicklänge

von 8,0 m, also X 46 ermittelt
Bleich nach Formel (18) die ideelle Schlankheit zu

mMmm

h-317

Gemäss (42) erhält man jedoch mit Xt

¦ 1723 10,8
Aid" A-' 0,10 m )']

27,7
~2M 10,8

1,41 Xs
723 46

woraus man ersieht, dass der Einfluss der Exzentrizität weit
überwiegt und unbedingt berücksichtigt werden muss ; sofern es
überhaupt nicht wirtschaftlicher ist, die Stäbe zwecks Zentrierung

mittels Knotenblechen anzuschliessen.
6. Die freie Knicklänge bei eingespannten Stäben

Bei den Vollstäben unterscheidet man bekanntlich bezüglich
der Lagerimgsart die vier Eulerfälle nach Abb. 16 mit den
eingetragenen KnSbängen. Es fragt sich, ob diese effektiven Knick-
längen lk bzw. die entsprechenden Schlankheiten X durch die
Gliederung der Stäbe eine Veränderung erfahren. (Dies ist nicht
zu verwechseln mit der ideellen Schlankheit Xid, die eine reine
Rechnungsgrösse ohne anschauliche Bedeutung darstellt!)

Beim Vollstab hat eine vollständige Einspannung die Folge,
dass die elastische Linie die ursprüngliche Stabaxe an der
Einspannstelle tangieren musa. FUr den Gliederstab trifft dies offenbar

nur auf die Momentenanteile ij„ der Durchbiegungen zu,
die Querkraftanteile rj0 können sich jedoch ungehindert durch
die Einspannung einstellen. Die Randbedingung am eingespannten
Ende lautet daher:

VX S

Im Eulerfall 2 ist gemäss Abb. 17 zu setzen: Q0 Pkrtio'
Mit Bezug auf (46) folgt also Pkr S

(46)

(47)
(48)

Es ist dies ein gesonderter Knickfall, der nur eintreten wird,
wenn die normale Knicklast des Stabes mit lk 2 /„ höher liegt
als S. Unter Zuhilfenahme von (11) ergibt sich als Kriterium
für die Gültigkeit dieses Knickfalles:

Pokr > S (49)

m s
SgO (50)

d. h. der Sonderfall Pkr S ist überhaupt nie massgebend, der
Stab verdreht sich an der Einspannstelle nicht, es ist also wie
beim Vollstab mit lk 210 zu rechnen.

Die selbe Ueberlegung lässt sich für den Eulerfall S (beidseitig

eingespannter Stab) durchführen. Es ist also auch beim
gegliederten Stab die halbe Stablänge als Knicklänge anzunehmen.

Der Eulerfalll, erfordert eine besondere Behandlung (Abb. 18).
Die Druckkraft Pkr erfährt nämlich am gelenkigen Ende eine
Ablenkung (schraffierte Momentenfläche), sodass ein Einspannmoment

M0 entsteht. Die Querkraft Q0 an der Einspannstelle
beträgt hier:

¦Mo
<?o pkr v + -r-

%' aus (46) eingesetzt ergibt

M1-*)-*
Pkr entnehmen wir aus (11) und erhalten:

1 _ Pkr -1 _
P«kr x

S S + Pokr x £V
"

er

(51)

(52)

(53)
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Abb. 21 Versuchsstäbe

Abb. 19 »Effektive Schlankheit von Gifterstäben Abb. 20 Effektive Schlankheit von Rahmensfäben

(und Giiïersrâben im elastischen Bereich) Abb. 22 Versuchsvorrichtung gg

Gleichung (52) geht daher in die Form

J^=1 + ^î 1
über. Wie unter (1) gesagt wurde, verläuft das Moment nach
einer Sinuslinie, in unserem Falle

M a sin (~) (55)

- na (tcx\q _cos^—) (56)

An der Einspannstelle x Z0: M0 a sin (jt -£-) (57)

Q„ =-^L cos (rc 1) (58)

Diese Werte setzen wir in (54) ein und erhalten damit, wenn
wir noch Pokr _ fkd\2I S -\x
Gleichung (15) beachten, die Grundbeziehung

KM4H¥)" (5»,

die man mit A0 -4- auch schreiben kann

HB (* 1ctg (4) - (W (59'>

Für den Vollstab (S oo) liefert diese transzendente
Gleichung bekanntlich l/l0 0,70. Für S 0 erhält man hingegen
lß0 SS 1. Beim gegliederten Stab ist also die Wirkung einer
einseitigen Einspannung vermindert, sie kann im Grenzfall
überhaupt wirkungslos werden!

Das abweichende Verhalten der Gliederstäbe im Eulerfall 4
gegenüber den andern Lagerungsarten ist darauf zurückzuführen,
dass hier an der Einspannstelle auch ohne Neigung der elastischen

Linie eine Querkraft auftritt, während im FaU 2 dies aus
Gleichgewichtsgründen, im Fall 3 aus Symmetriegründen nicht
möglich ist.

Aus der aUgemeinen Grundgleichung (59) seien nun noch
die entsprechenden Speziai formein abgeleitet.

Ü§Üm\3
Für Gitterstäbe im plastischen Bereich setzen wir I —p nach

(18) ein, wobei im Korrekturglied genau genug ookr mit l 0,70 Z„

berechnet wird. Die Auflösung der transzendenten Gleichung
(59) für jeden Einzelfall wäre eine umständliche und zeitraubende

Probierarbeit. Ich habe daher auf empirischem Wege die
Näherungsformel „ /Ai<f\8

f..j-M+(7. «z° I is + (Mil
gefunden, deren maximaler Fehler gegenüber den genauen Werten
nach Gleichung (59') kleiner als l"/0 ist. Der Zusammenhang ist
in Abb. 19 auch graphisch dargestellt. Im elastischen Bereich
entwickeln wir auch hier zweckmässig eine Sonderformel, indem
wir auf Gleichung (19) zurückgreifen, die wir mit der Abkürzung

rp d" F hl^^»'I-fEIW + WT] ¦ ¦ ¦ ¦ (61)

in der Form Ay3 A3 + A,3 (62)
anschreiben. Die folgende Ableitung gilt damit auch für die
Rahmenstäbe (im elastischen und plastischen Bereich), für die
ja näherungsweise die selbe Formel Gleichung (33) gilt, lediglich

mit anderer Bedeutung für X1. Gleichung (59') geht also
über in / A„\ / A„\ f X, \3

(* ~r)ctg (n -f) 11 + a • • • • <63>

"¦"-"'Ha-(-»H n

Die Lösung findet
man mit grosser
Annäherung (Fehler kleiner

als l°/0) zu

A
2,6 + m
3,7 + m

(65)
Der Verlauf geht aus
Abb. 20 hervor.

In der Baupraxis
liegen vollständig
eingespannte Stäbe nur
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tfokr
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0.1

2
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1
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Abb. 23 ¦¦ Vergleich der gemessenen
Werte mit Formel 32

angenähert vor. Die EulerfäUe 3 und 4 haben jedoch als Grenzfälle

grosse praktische Bedeutung. Eine genaue Berechnung
musste die Nachgiebigkeit der Einspannimg berücksichtigen.
Die Abklärung dieser Frage für die Gliederstäbe übersteigt
jedoch den Rahmen dieser Abhandlung.
7. Modellversuche

Um die in Absatz 4 dargelegte zusätzliche Abminderung der
Knicklast bei Rahmenstäben infolge des Formänderungseinflusses
der Gurtstäbe zu belegen, habe ich an ZeUuloidmodellen mit
verschieden grossem Abstand der Bindungen die Knicklast bestimmt.
Die Abmessungen der Stäbe gehen aus Abb. 21 hervor.

Die direkte Messung der Knicklast erfordert grösste
Genauigkeit der Versuchseinrichtung und der Versuchstäbe
hinsichtlich Zentrierung und gerader Stabaxe. Um diese Schwierigkeiten

zu umgehen, habe ich die Knicklasten indirekt bestimmt
durch Vergleich der Durchbiegung unter quer gerichteten
Belastungen mit und ohne axiale Druckkraft gemäss Abb. 10.

Angenähert gilt „ 1

bzw. nach Pkr aufgelöst:

Ô:

Pkr P

P

1

(66)

(67)

Die Durchbiegungen â wachsen proportional mit der
Belastung p, solange P konstant bleibt; ô ist auch unabhängig von
einer allfälligen Exzentrizität der Axialkraft P.

Am besten führt man die Messung mit verschiedenen
Laststufen in der Gegend P ~. 1/2 Pkr durch. Für kleinere Werte P
ist Formel (67) sehr fehlerempfindlich, bei grösseren Werten
machen sich beim ZeUuloid unangenehme Kriecherscheinungen
bemerkbar. — Die verwendete Versuchsvorrichtung zeigt Abb. 22

schematisch.
Der Elastizitätsmodul wurde aus der Messung von ô0 für

P 0 durch Vergleich mit der Rechnung bestimmt. Mit
zunehmender Felderzahl des Stabes nahm der Wert regelmässig ab,
offenbar eine Folge der gesteigerten Belastung (Spannungs-Deh-
nungsdiagramm nicht genau linear). In untenstehender Tabelle
sind die Messresultate und der Vergleich mit der Rechnung kurz

Tabelle der gemessenen und gerechnete l Knickla sten

(Für alle Stäbe A 66,7)

Stab Messung Rechnung (Formel 32)

Nr. P
<*o

â
Pkr E I M Pkr

kg kg kg/cm2 kg
1 6,04 0,513 12,40 23 400 27,2 71,2 12,73

2 3,93 0,525 8,27 23 800 64,2 91,3 7,90

3 1,908 0,592 4,08 24 800 101 120,5 4,70

4 1,174 0,577 2,78 25 600 138 155 2,84

5 0,507 0,636 1,39 25 900 212 227 1,39
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Abb. 24. Die sechs Ver suchStäbe unter der Knicklast

zusammengefasst; die Messwerte sind Mittelwerte aus verschiedenen

Versuchen. Abb. 23 zeigt die gute Uebereinstimmung des
Versuches mit Gleichung (32), woraus man sieht, dass durch
einen kleinen Trick manche Probleme mit überraschend einfachen,

selbstverfertigten ModeUen und Messvorrichtungen untersucht
werden können, die sonst umfangreichere Mittel erfordern würden.
Die Modellphotographien (Abb. 24) zeigen die auftretenden
Knickfiguren, worin der Einfluss der Querkräfte deutlich erkennbar ist.
8. Zusammenfassung

Auf Grund der Formel (15) kann die Knicklast jedes
beliebigen gegUederten Stabes auf elementare Weise (Berechnung
einer Verschiebung mit Hilfe der Arbeitsgleichung) bestimmt
werden. Im plastischen Bereich ist darauf zu achten, ob für die
querversteifenden Teile der Elastizitätsmodul oder der Knickmodul

einzuführen ist. Für Gitterstäbe des üblichen Systems
wendet man allgemein Formel (18), im elastischen Bereich auch
einfacher Formel (19) an. Für Rahmenstäbe gut allgemein Formel

(33), wobei der Formänderungseinfluss der Einzelgurtung
angenähert berücksichtigt ist.

Weitere, unter Umständen erhebliche Abminderungen der
Tragfähigkeit, die bisher nicht berücksichtigt wurden, ergeben
sich bei Gitterstäben mit nicht auf die Schweraxen zentrierten
Füllstäben (Formeln 42 bis 45) und beim einseitig eingespannten
Stab (Eulerfall 4), wo mit wachsender Nachgiebigkeit der
Bindungen die Wiräsung der Einspannung verschwindet (Formeln
60 und 65). In den übrigen Eulerfällen (Abb. 16) ist die effektive

Knicklänge wie beim Vollstab einzusetzen.

Verleihung der Watt-Medaille an Professor Stodola
Anlässlich des 200. Geburtstages von James Watt (1736 bis

1819) hat die Institution of Mechanical Engineers of Great Britain
beschlossen, jedes zweite Jahr als ihre höchste Auszeichnung
eine goldene, Watts Bildnis tragende Münze einem Ingenieur
gleichviel welcher Nationahtät zu verleihen, der in Wissenschaft
und Forschung, Erfindung oder Produktion Weltruf erlangt hat.
Die James Watt International Medal ist bisher dreimal vergeben
worden, zum dritten Mal, wie hier in Bd. 116, S. 211 mitgeteUt,
an Dr. Aurei Stodola, Professor im Ruhestand an der E. T. H.
und Ehrenbürger der Stadt Zürich. An den in London am
24. Januar 1941 vollzogenen Akt der Uebergabe der Medaille an
den schweizerischen Gesandten zuhanden des Geehrten erinnert
ein von der I.M.E. herausgegebenes, mit Stodolas Photographie
geschmücktes Heft, in dem die bei dem Anlass gehaltenen Reden
festgehalten sind. Zur Begründung der für das Jahr 1941
getroffenen Wahl zog Dr. H. L. Guy eine Parallele zweier
Forschertätigkeiten, beide auf die thermischen Hauptmaschinen ihrer
Zeit, deren geistige Durchdringung, Konstruktion und Regelung
gerichtet und beide durch den Versuch ihre Einsichten ^^kräftigend

oder herrschende Vorurteile widerlegend, beide Forscher,
Watt und Stodola, in einem langen, arbeitserfüllten Leben die
Macht des Geistes über den Körper bezeugend.

Zu jenen glücklichen Wahlen, die den internationalen Ruf
nicht nur der eidgenössischen Hochschule, sondern auch der
Schweiz als Industrieland wesentUch gefördert haben, gehört die
1892 erfolgte Berufung Stodolas an das Eidgenössische
Polytechnikum. «Die von der Schweiz eingenommene hervorragende
Stellung in der Technik ist», um Dr. ;@üy zu zitieren, «in nicht
geringem Mass dem Geschick
und der Inspiration seines Werkes

und seines Lehrens
zuzuschreiben». Die Firmen vieler
Länder suchten und suchen den
Beistand eines Mannes, der in
seltener Verbindung Verstandeshelle,

Enthusiasmus und Lauterkeit

verkörpert, und der in der
Beherrschung von Naturkräften
wohl gerade deshalb eine so
glückUche Hand bewiesen hat,
weü sein tieferes Trachten nicht
so sehr der Bändigimg, als der
Erkenntnis der Natur gilt. Das
geht aus seiner im «Ruhestand»,
d. h. mit 70 Jahren — wer macht
es ihm nach? — unternommenen
Auseinandersetzung mit der
modernen Physik, Naturwissenschaft

und Philosophie hervor,
die ihren Niederschlag in seiner
Schrift «Die geheimnisvoUe
Natur» gefunden hat.

Einen eigentümlichen Ausklang
erfuhr diese im zweiten Weltkrieg
inmitten einer seiner grössten

Trümmerstätten abgehaltene, von etwa 200 Teilnehmern besuchte
Sitzung der Institution durch das Schlusswort von Lord Dudley
Gordon, in dem er daran erinnerte, dass «die Künste und
Wissenschaften so temporäre Grenzen wie jene zwischen den Ländern
überschreiten sj!» Der Name des ausgezeichneten Empfängers
dieser Denkmünze wird, wie jener von James Watt, bestehen,
wenn Kriege blosse Unglücksfälle in der Geschichte der Menschheit

geworden sein werden.»

Aus der neuesten Entwicklung des
Textilmaschinenbaues in der Schweiz
Von Dr. Ing. E. HONEGGER, Professor an der E. T. H., Zürich

Es ist allgemein bekannt, dass die Schweiz eine beachtenswerte

Textilmaschinenindustrie besitzt. Weniger bekannt dürfte
aber sein, dass dieser Zweig unserer Maschinenindustrie wert-
massig den grössten Export tätigt und dass es auf der Erde
nur zwei Staaten gibt, die als Lieferanten von TextUmaschinen
auf dem Weltmarkt wesentlich wichtiger sind als unsere kleine
Heimat.

Wie unser Export an Textilmaschinen im Laufe der letzten
50 Jahre gewachsen ist und wie er sich aus den verschiedenen
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Abb. 1. Zur Entwicklung des Schweizerischen Textilmaschinenbaues
Aussenhandel, aufgeteilt nach den Positionen der schweizerischen Handelstatistik
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