Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 117/118 (1941)

Heft: 2

Artikel: Zur allgemeinen Formänderungstheorie der verankerten Hängebrücke

Autor: Stüssi, F.

DOI: https://doi.org/10.5169/seals-83367

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wenn ein Wettbewerb entschieden ist und sogar die Tagesblätter es über sich gebracht haben, eine kleine Anzahl von Architekten mit Namen zu nennen (in einem Winkel der Lokalnachrichten sind die paar von der Jury auserwählten dem Publikum namhaft gemacht worden), da beginnt dann eine Ausstellung eigener Art: bis auf die Laureati verharrt die ganze Menge in Stillschweigen. Fünfzig, achtzig, hundert Autoren bieten ihre Beiträge zu der brennenden Frage des Tages, dem Neubau des Rathauses, der Anlage eines Stadions, der Neufassung der ganzen Stadt; und fünfundvierzig von den fünfzig, vierundsiebzig von den achtzig, zweiundneunzig von den hundert bedekken ihr Gesicht mit den Händen, sie wollen nicht bekannt werden. Hat gestern noch ein Motto, schelmisch oder selbstbewusst, einen Zipfel der Anonymität gelüftet, so wird heute das Leben durch eine dürre Zahl gedeckt. Nur selten durchbricht einer diese merkwürdige, gespensterhafte Haltung und heftet lächelnd seine Karte unter die bisher stumme Arbeit, gibt zum Werk die Unterschrift.

Aber, wie gesagt, das ist nicht üblich. Man könnte sogar behaupten, «es stört».

Weshalb stört so was? Weshalb ist es nicht üblich? Weshalb soll die Riesenarbeit eines Wettbewerbsprojektes Autor hat vielleicht mit diesem Kraftaufwand sein Letztes gegeben und wendet sich nun der Versicherungsbranche zu weshalb soll all die Arbeit, die nach kurzen vierzehn Tagen ja sowieso ins Nichts versinken wird, soll diese Arbeit nicht wenigstens während der Ausstellung gewürdigt werden können? Denn der Name — darüber sind wir uns doch wohl alle einig -Name gehört zum Werk. Er ist ein Bestandteil des Werkes. Ohne Name und Unterschrift hat das Werk etwas Unsicheres, Unbestimmtes; es verliert an Interesse, es wird zum Abstraktum. Wenn ein Impresario auf die Idee verfiele, in den Programmen «seiner» Konzerte die Namen der Komponisten zu unterdrücken würde je ein Mensch solch ein Konzert besuchen? Und ist es denn zufällig oder gar «unwürdig», dass der Galeriebesucher ängstlich und beflissen in seinem Katalog blättert, um zum Werk auch den Namen des Autors zu finden? Und gilt das nicht in erhöhtem Mass hier, wo es sich ja nicht um Werke handelt, die man äusserstenfalls ja auch «an sich» geniessen kann, sondern nur um Pläne, um Skizzen zu Werken?

Der Name ist doch ein Programm, ein Masstab; zum mindesten heftet sich da und dort ein bestimmtes Interesse an den Namen. Der Name ist wichtig, bei lebenden Autoren doppelt wichtig, denn nun treten noch Möglichkeiten auf, — vielleicht schwache Möglichkeiten nur, zugegeben —, dass ein Menschendasein eine Wendung nimmt, einen Aufschwung erlebt; dass sich der Name in ein Gedächtnis einprägt — zufällig — und nach Jahren vielleicht irgendwie zu einer Begegnung führt, zu einem Erlebnis wird.

Dieses schamhafte Verschweigen der Namen der «Durchgefallenen», jahrzehntelang geübt, hat seine Wirkung nicht verfehlt. Seine Wirkung auf die Teilnehmer selbst. Wahr und wahrhaftig — wir halten uns für «durchgefallen», wenn der Spruch der Jury neben uns vorbeigegangen. Solch ein «Durchfall» ist eine peinliche Sache. Nur verstohlen vertraut der unglückliche Autor den Intimsten an, wo seine Arbeit hängt. Und dabei hat sich doch seine Ueberzeugung, seine Auffassung von dem zur Diskussion stehenden Problem nicht geändert — im Gegenteil: just heute, heute mehr denn je, ist er überzeugt, dass er auf dem rechten Wege war. Gerade jetzt, wo Arbeit neben Arbeit steht. Wo ja «jedes Kind sehen kann» usw.

Aber dann gibt es Kollegen, wenn die nicht «herausgekommen» sind, so schämen sie sich wirklich. Sie würden niemals einwilligen, dass nun an dem «verunfallten» Projekt ihr Name prangte, niemals, um keinen Preis. Ja, es soll sogar Leute geben, die nur mit säuerlichem Gesicht einen zweiten oder gar dritten oder vierten Preis entgegennehmen; von einem «lausigen» Ankauf gar nicht zu reden. (Seit Jahrzehnten wagt es deshalb kein Preisrichter mehr, eine Ehrenmeldung auszusprechen, die übrigens, um dem Unsinn die Krone aufzusetzen, ja ebenfalls anonym sein müsste.)

Wir sind natürlich nicht so. Wir halten es immer für ehrenhaft und anständig, wenn der Mann zu seiner Arbeit steht. Wenn es für ältere Kollegen — zugegeben — etwas Peinliches haben mag, das mit der Namennennung auch bei Durchfall —, für die jüngeren ist das durchaus nicht der Fall.

Da kommen nun ganz subtile Geister, die geben zu bedenken, dass die nachträgliche Nennung der Namen der Nichtprämiierten, namentlich wenn es Namen sind von einem gewissen Klang, für die Jury und für den Auslober sehr unerfreulich sein kann: das sehe fast so aus wie die Aufforderung zu einer

nochmaligen Ueberprüfung des Urteils, wie ein Protest. Und befürchten Diskussionen und Reklamationen und unendliche Verwicklungen.

Wir sind nicht so prüde. Wir halten diese «neue Mode» sogar für gesund — gerade hinsichtlich der Jury. Wir erwarten von einer solchen obligatorischen Namennennung, dass die Jury ihrer Arbeit eine erhöhte Aufmerksamkeit schenkt. Sie wäre ja in wirklich er Verlegenheit, wenn hinter den Prämiierten nun wirklich berühmte Namen auftreten würden und sich deren Projekte bei näherem Hinsehen — das ist es! — als ganz merkwürdig interessant und «preiswürdig» herausstellen sollten.

Ein Vorschlag also, ein ernsthafter Vorschlag, es möchten nach der Veröffentlichung der Preisgerichtsurteile in der üblichen Ausstellung der Wettbewerbsprojekte alle Arbeiten mit dem Namen des Autors ausgezeichnet werden, alle, als Obligatorium.

Braucht es da besondere «Vorkehren»? Braucht es da tiefsinnige Betrachtungen und weitschichtige Besprechungen «im Schoss» soundso vieler Kommissionen?

Wir glauben es nicht. Wir halten dafür, dass es genügt, wenn bei der nächstbesten Gelegenheit, das heisst bei der Vorbesprechung irgendeines Wettbewerbsprogramms ein Preisrichter die Frage aufwirft: «Wollen wir?» Und wenn dann der juristisch gebildete Behördevertreter im Dossier früherer Wettbewerbe herumblättert und absolut keinen Präzedenzfall finden kann und nun beginnt, «Bedenken zu hegen», so braucht besagter Preisrichter nur ein paar vernünftige Fragen zu stellen — und der erste Versuch kommt zustande.

Ein Versuch. Wir wissen es nicht, ob nun die wirklich grossen Kollegen einem «solchen» Wettbewerb die Teilnahme versagen — wir wissen es nicht. Aber wir glauben es nicht. Gewiss, die Kollegen sind überrascht, wenn zwischen den Androhungen für den Fall, dass Perspektiven geliefert werden, und den Verlockungen für den Fall, dass man das Rechte trifft, die merkwürdige Bestimmung sich findet, dass nach dem Spruch der Jury alle Kuverts geöffnet werden und dass alle Entwürfe, die guten wie die bösen, mit dem Verfassernamen gezeichnet werden. Es wird ja nicht alles in unbedenklicher Zustimmung aufleuchten. Das Gute bricht sich ja bekanntlich nicht von selbst Bahn. Aber ein Versuch — ein Versuch ist zu wagen.

Und wohin wird der Versuch führen? Es ist vielleicht gut, ihn am rein Menschlichen zu messen. Da scheint er uns natürlich. Er scheint uns vernünftig, und die bisherige Praxis kommt uns unnatürlich vor und unverständlich, um nicht zu sagen unvernünftig. Das war vielleicht nicht immer so. Aber heute — so will uns scheinen — ist diese Praxis hart geworden und unnatürlich.

Bieten wir der Jugend eine Chance!

Hans Bernoulli.

Zur allgemeinen Formänderungstheorie der verankerten Hängebrücke

Von Prof. Dr. F. STUSSI, E. T. H., Zürich

4. Veränderliches Trägheitsmoment (Schluss von Seite 4)

Zur Berechnung der Biegungslinien von Trägern mit veränderlichem Trägheitsmoment werden in der Baustatik gewöhnlich die reduzierten Feldweiten

$$s'_m = s_m \frac{J_c}{J_m}$$

anstelle einer Reduktion der Momente eingeführt. Man nimmt dabei für jedes Feld ein konstantes mittleres Trägheitsmoment an. Dieses Vorgehen besitzt den Vorteil, dass für die eingeführte Verteilung der Steifigkeit und für polygonale Momentflächen die Durchbtegungen genau erhalten werden, während sich bei Einführung reduzierter Momente und Anwendung der Trapezformel Fehler ergeben können, die an sich klein sind, die aber etwa bei Kontrollen auf Grund des Reziprozitäts-

gesetzes sich als Differenzen unangenehm bemerkbar machen können. Wir rechnen deshalb auch hier mit den reduzierten Feldweiten.

Fürveränderliche Feldweiten und mit den Längenbezeichnungen der Abb. 6 lauten unsere Grundgleichungen

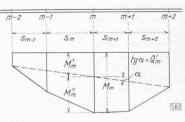


Abb. 6

$$K_m = rac{M_m + 1 - M_m}{s_{m+1}} - rac{M_m - M_{m-1}}{s_m}$$
 . . (25 a)

und

$$R_{m} = \left[(M_{m-1} + 2 M_{m}) s'_{m} + (2 M_{m} + M_{m+1}) s'_{m+1} \right] \frac{1}{6 E J_{c}} = \frac{\eta_{m+1} - \eta_{m}}{s_{m+1}} - \frac{\eta_{m} - \eta_{m-1}}{s_{m}} \dots (25 b)$$

Die Zusammenfassung dieser Grundgleichungen in ein fünfgliedriges Gleichungsystem zwischen K und η unter Elimination von M gelingt nun nicht allgemein, sondern sie ist nur dann möglich, wenn der trapezförmige Anteil M' der Momentfläche M sich heraushebt. Bezeichnen wir die Winkeländerungen infolge der Momentenanteile M' mit R', so lautet diese Bedingung $\alpha R'_{m-1} + \gamma R'_{m+1} = (\alpha + \gamma) R'_{m}$; . . . (26)

 α und γ sind die noch zu ermittelnden Grössen, die den Aufbau des Gleichungsystems bestimmen werden. Wir drücken die Momente M' durch M'_m und die Neigung Q'_m aus

$$\begin{array}{l} M'_{m-2} = M'_{m} - Q'_{m} \left(s_{m-1} + s_{m}\right) \\ M'_{m-1} = M'_{m} - Q'_{m} s_{m} \\ M'_{m+1} = M'_{m} + Q'_{m} s_{m+1} \\ M'_{m+2} = M'_{m} + Q'_{m} \left(s_{m+1} + s_{m+2}\right) \end{array}$$

und führen diese Werte in Gleichung 25 ein und erhalten nach kurzer Zusammenfassung

$$\alpha \left[(3M'_{m} - Q'_{m}(s_{m-1} + 3s_{m})) s'_{m-1} + + (3M'_{m} - 2Q'_{m}s_{m}) s'_{m} \right] + + \gamma \left[(3M'_{m} + 2Q'_{m}s_{m+1}) s'_{m+1} + + (3M'_{m} + Q'_{m}(3s_{m+1} + s_{m+2})) s'_{m+2} \right] = \\ = (\alpha + \gamma) \left[(3M'_{m} - Q'_{m}s_{m}) s'_{m} + + (3M'_{m} + Q'_{m}s_{m+1}) s'_{m+1} \right] . \quad (26a)$$

Da M'_m und Q'_m von einander unabhängig sind, zerfällt Gleichung 26 a durch Zusammenfassung der Glieder mit M'_m und derjenigen mit Q'_m in zwei Bestimmungsgleichungen

$$\begin{split} M'_m) \colon &\alpha(s'_{m-1} + s'_m) + \gamma(s'_{m+1} + s'_{m} + 2) = \\ &= (\alpha + \gamma)(s'_{m} + s'_{m+1}) \; . \end{aligned} \tag{27 a} \\ Q'_m) \colon &- \alpha \left[(s_{m-1} + 3s_m) s'_{m-1} + 2s_m s'_m \right] + \\ &+ \gamma \left[2s_{m+1} s'_{m+1} + (3s_{m+1} + s_{m+2}) s'_{m+2} \right] = \\ &= (\alpha + \gamma) \left(-s_m s'_m + s_{m+1} s'_{m+1} \right) \; . \qquad (27 b) \\ \text{Aus Gleichung 27 a folgt} \end{split}$$

$$\underline{s' = \text{konst.}} \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (28)$$

Damit liefert Gleichung 27 b

$$\alpha (s_{m-1} + 4s_m + s_{m+1}) = \gamma (s_m + 4s_{m+1} + s_{m+2})$$

oder

$$\frac{\alpha}{\gamma} = \frac{s_m + 4s_{m+1} + s_{m+2}}{s_{m-1} + 4s_{m} + s_{m+1}}$$

Wir führen

$$\alpha_{m} = \frac{s_{m} + 4 s_{m+1} + s_{m+2}}{6 s'} = \beta_{m+1}$$

$$\gamma_{m} = \frac{s_{m-1} + 4 s_{m} + s_{m+1}}{6 s'} = \beta_{m}$$
(28 b)

ein.

Damit können wir nun aus der Gleichung 25b eine der Gleichung 11 entsprechende Grundgleichung durch die Gruppierung

$$\beta_{m+1}R_{m-1} - (\beta_m + \beta_{m+1})R_m + \beta_m R_{m+1}$$

aufbauen, wobei die Momente ${\it M}\,$ mit Gleichung 25a durch die Knotenlasten ${\it K}\,$ eliminiert werden können. Führen wir noch die Abkürzungen

$$egin{align} U_m &= rac{6\,E\,J_m}{s^{\,\prime 2}} \;, \;\; U_c &= rac{6\,E\,J_c}{s^{\,\prime 2}} \ arphi_m &= rac{J_m}{J_c} \;, \;\; s_m = s^\prime\,q_m \ \end{array}$$

ein, so erhalten wir nach einigen nicht sehr kurzweiligen und deshalb hier nicht wiedergegebenen Zwischenrechnungen:

$$\frac{\eta_{m-2} U_{m-1} \beta_{m+1} - \eta_{m-1} [U_{m-1} \beta_{m+1} + U_m (\beta_m + 2\beta_{m+1})] + \dots + \eta_m [U_m (\beta_m + 2\beta_{m+1}) + U_{m+1} (2\beta_m + \beta_{m+1})] - \dots + \eta_m + 1 [U_{m+1} (2\beta_m + \beta_{m+1}) + U_{m+2} \beta_m] + \eta_m + 2 U_{m+2} \beta_m = \dots + I_m +$$

Damit ist die gestellte Aufgabe grundsätzlich gelöst. Die Einführung der von der Formänderung herrührenden Anteile K_N der Knotenlasten \overline{K} analog zu den Gleichungen 12 und 13, bzw. 15 bietet keine Schwierigkeiten; sie wird am besten numerisch durchgeführt.

Zur Bestimmung der reduzierten Feldweiten s' haben wir also die Werte $\frac{J_c}{J}$ über die Spannweite aufzutragen und diese Fläche in inhaltgleiche Teile zu teilen. Für konstantes Trägheitsmoment werden diese Teile gleich lang; wir sehen daraus, dass sich für konstantes J die Grundgleichung Gl. 11 im allgemeinen nur für $\Delta x = \text{konst.}$, wie bei veränderlichem J nur für s' = konst. aufstellen lässt. Eine Ausnahme*ist, wie bereits ausgeführt, für abnormale Endfelder möglich.

5. Zahlenbeispiel

Der Rechnungsgang soll noch am Beispiel der Abb. 7 veranschaulicht werden. Diese Tragwerksform ist beim Bau der San Francisco-Oakland-Bridge durch G. E. Beggs, R. E. Davis und H. E. Davis⁴) durch Modellmessung und kürzlich durch K. Klöppel und K. Lie²) rechnerisch als fünffach statisch unbestimmtes System untersucht worden. Es weist gegenüber dem Tragwerk mit durchlaufendem Versteifungsträger wesentlich geringere Stützenmomente auf.

Die Berechnung dieses äusserlich einfach statisch unbestimmten Tragwerks (Abb. 7) wurde für folgende Werte durchgeführt:

 $=2\cdot 180,\!2^m$, $L_t=2\cdot 167,\!9^m$ Mit $a=rac{arDelta\,x}{2}$ besitzen die in der Matrix des Gleichung-

systems einzuführenden Knotenlasten K_N in den Knotenpunkten 3 und 4 die folgenden abnormalen Werte

$$\Delta x K_{3, N} = (\eta_2 - 3 \eta_3) N$$

 $\Delta x K_{4, N} = (-3 \eta_4 + \eta_5) N;$

in den normalen Zwischenpunkten dagegen ist

$$\Delta x K_{m, N} = (\eta_{m-1} - 2 \eta_m + \eta_{m+1}) N$$

Die Tabelle 1 zeigt die Aufstellung des Gleichungsystems Gl.14, wobei die Belastungsfälle $H\!=\!1, (y''), p_{\text{tot}} =\!1^t/m', P_5 =\!1^t, R_5 =\!-1, R_0 =\!-1$ untersucht werden sollen. Die Einflusslinie $e_0 M$ aus $R =\!-1$ soll deshalb für zwei benachbarte Schnitte berechnet werden, damit die Anwendung der im 3. Abschnitt aufgestellten Rekursionsformeln gezeigt werden kann. Die angenommene Feldteilung $\varDelta x =\! 20^m$ ist vielleicht etwas zu gross; bei endgültigen Ausführungsberechnungen würde etwa die doppelte Felderzahl angenommen werden müssen.

In Tabelle 2 ist die numerische Auflösung des Gleichungsøystems dargestellt, unter Aufspaltung in symmetrische und

Tabelle 1: Gleichungssystem Gl. 14

Kn. pkt.	Festwerte (Matrix)								Belastun	gsglieder	infolge	
	η_1	η_2	η_3	η_4	η_5	η_6	$\eta_7 = \eta_m$	H = 1	$p_{ m tot.} = 1{ m t/m'}$	$P_5 = 1 \text{ t}$	$R_5=1$	$R_{_6}\!=\!1$
1	5U+7N	- 4 U - 2 N	U - N					$5 \Delta x^2 y^{\prime\prime}$	$5 \Delta x^2 p$			
2	-4U-2N	6 U + 6 N	- 4 U - N	U			- <u>-</u> -	$5.5 \Delta x^2 y''$				
3	U – N	- 4 U - 2 N	6U + 11N	-4U + 3N	U - N			$3,5 \angle J x^2 y''$	$6 \Delta x^2 p$			
4		U - N	-4U + 3N	6~U+11~N	- 4 U - 2 N	U - N		$3,5 \angle J x^2 y''$	$6 \angle x^2 p$	$\Delta x P_{5}$	- U 1 x R,	
5			U	- 4 U - N	6U+6N	-4U-2N	U - N	5,5 \(\Delta x^2 y'' \)	$6 \angle x^2 p$	$4 \Delta x P_{h}$	$2U \triangle x R_5$	- U ∆ x R
6				U - N	-4U-2N	6U+6N	-4U-2N	$6 \Delta x^2 y''$	$6 \angle x^2 p$	$\Delta x P_5$	- U \(\alpha \) R ₅	2 U 1 x R
7					U - N	- 4 U - 2 N	6 U + 6 N	$6 \Delta x^2 y^{\prime\prime}$	$6 \angle x^2 p$			- U ∆ x R
							usw.	usw.	usw.			

⁴⁾ Tests on structural models of proposed San Francisco-Oakland suspension bridge. Univ. of California Press, 1933.

Tabelle 2: Reduktion des Gleichungssystems

NT			N	A atri	x				Belastu	ngsglieder	infolge	
Nr.	η_1	η_2	η_3	η_4	η_5	η_6	η_m	H=1	$p_{ m tot.} = 1 { m t/m'}$	$P_5 = 1 \text{ t}$	$R_5 = 1$	$R_{_6} = 1$
	Symmet	rische und	antimeti	rische An	teile:							
1	82700	— 62200	13900					12,000	2000			
2	62200	96600	— 61100	15000				13,200	2400			
aus 1	62200	46782	10454					9,025	1504			
2′	_	49818	_ 50646	15000				22,225	3904			
3	13900	_ 62200	102100	_ 56700	13900			8,400	2400			
aus 1	-13900	10454	_ 2336					_ 2,017	_ 336			
aus 2'		51746	52606	15581				23,085	4055			
3′			47158	_ 41119	13900			29,468	6119			
4	-	13900	56700	102100	— 62200	13900		8,400	2400	10,000	_ 150000	
aus 2'		13900	14131	_ 4185				- 6,201	_ 1089			
aus 3′			42569	_ 37118	12547			26,600	5524			
4'				60797	_ 49653	13900		28,799	6835	10,000	150000	
5			15000	— 61100	96600	_ 62200	13900	13,200	2400	40,000	300000	150000
			15000	13079	_ 4421	=		9,373	_ 1946	1		
				48021	39219	10979		22,747	5399	7,899	118479	
			_	_	52960	_ 51221	13900	26,574	5853	47,899	181521	150000
	Symmet	rische An	teile:									
6,				13900	62200	110500	- 62200	14,400	2400	10,000	150000	300000
				13900	11352	_ 3178		- 6,584	— 1563	2,286	+ 34295	
					50848	_ 49178	13346	25,514	5620	45,989	174282	144018
				_	_	58144	48854	33,330	6457	53,703	58577	155982
m				-	27800	- 124400	96600	14,400	2400			300000
					27800	26887	_ 7297	-13,949	_ 3072	_ 25,143	— 95285	+ 78739
						97513	81933	55,897	10829	90,065	98239	261596
					2 -	_	7370	56,348	10157	64,922	2954	40335
	Antimet	rische An	teile:									
6_a				13900	_ 62200	82700				10,000	150000	300000
aus 4'				13900	11352	_ 3178				_ 2,286	+ 34295	
aus 5'					50848	49178				45,987	174282	144018
$6_a{'}$				_	_	30344			7	53,703	58577	155982

Tabelle 4: Belastungszustand H=1

	$\eta H = 1$	$K_0 \equiv K_{y''}$	K_N	\overline{K}	\overline{Q}	$\overline{M}_{H=1}$	Q_{0}	Q_N	$\overline{Q}_H = 1$	e_H
A 1 2 3 4 5 6 m	m 0 0,8596 1,3610 1,8394 3,1719 5,2626 6,9973 7,6456 · 10 - 3	t 0,120 0,120 0,060 0,060 0,120 0,120 0,120 0,120	t 0,01970 0,00127 0,22865 0,23392 0,01958 0,05975 0,07131 ₃	t 0,10030 0,11873 -0,16865 -0,17392 0,10042 0,06025 0,04869	t 0,06147 - 0,03883 - 0,15756 0,01109 0,18501 0,08459 0,02434	mt 0 1,229 0,453 — 2,698 - 2,477 1,224 2,915 3,402	t 0,720 0,600 0,480 0,360 0,360 0,240 0,120 0	0,6029 0,5894 0,5709 0,5956 0,3489 0,1012 0,1150 0,0695 0	0,1171 0,0106 - 0,0909 - 0,2356 0,0111 0,2588 0,1250 0,0505 0	0 0,1496 0,2369 0,3202 0,5521 0,9160 1,2180 1,3308

antimetrische Lastanteile. In der antimetrischen Gleichungsgruppe ändert sich gegenüber der symmetrischen nur die Gleichung 6; Gleichung 7 fällt wegen $\eta_7 = 0$ im antimetrischen Lastfall aus. Die Tabelle 2 enthält alle bei der Reduktion erforderlichen Rechenoperationen; sie wird absichtlich vollständig wiedergegeben, weil vielfach ein unberechtigtes Vorurteil über den Arbeitsaufwand bei der Auflösung solcher Gleichungsysteme besteht. Die letzte der reduzierten Gleichungen enthält nur noch eine Unbekannte η ; die übrigen werden nun durch Rückwärtseinsetzen gewonnen. Die Ergebnisse sind in Tabelle 3 zusammengestellt 5).

In Tabelle 4 ist die Berechnung der Knotenlasten, Querkräfte und Momente infolge H=1 zusammengestellt. Die Querkraftsfläche infolge der Knotenlasten \overline{K} zur Berechnung der Momente

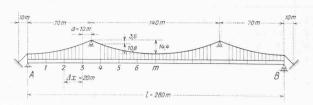


Abb. 7. Tragsystem des Zahlenbeispiels (vgl. Abb. 8)

⁵⁾ Zur Orientierung sei mitgeteilt, dass die Reduktion des Gleichungsystems Tabelle 2 mit einer kleinen Monroe-Rechenmaschine 38 Minuten erforderte, das Rückwärtseinsetzen. d. h. die Berechnung der Tabelle 3, benötigte 55 Minuten.

Zahlenbeispiel zur Allgemeinen Formänderungstheorie der verankerten Hängebrücke

Tabelle 5:	Belastungszustand	$p_{\text{tot.}} = 1 \text{ t/m'},$	$H_n = 162,35 \text{ t}$
------------	-------------------	-------------------------------------	--------------------------

	$\eta_{0\;p}$	$H_p \eta_{H} = 1$	η_P	$K_{0\;p}$	K_{N_p}	$\overline{K}_{0} _{p}$	$\overline{Q}_{0} _{P}$	$\overline{M}_{0 p}$	$H_p \overline{M}_{H=1}$	M_{p}
A	m 0	m 0	m 0	t	t	t	t	mt 0	mt 0	mt 0
1	0,1708	0,1396	0,0312	20,00	_ 3,366	16,634	10,418 — 6,216	208,4	199,5	8,9
2	0,2804	0,2210	0,0594	20,00	_ 0,429	19,571	- 6,216 $-$ 25,787	84,0	73,5	10,5
3	0,3822	0,2986	0,0836	20,00	— 47,641	_ 27,641	1,854	- 431,7	438,0	— 6,3
4	0,6195	0,5150	0,1045	20,00	— 48,532	_ 28,532	30,386	_ 394,6	_ 402,1	_ 7,5
5	0,9761	0,8544	0,1217	20,00	_ 3,504	16,496	13,890	213,1	198,7	14,4
6	1,2690	1,1360	0,1330	20,00	10,104	9,896	3,994	490,9	473,3	17,6
m	1,3782	1,2413	0,1369	20,00	12,012	7,988	5,994	570,8	552,3	18,5

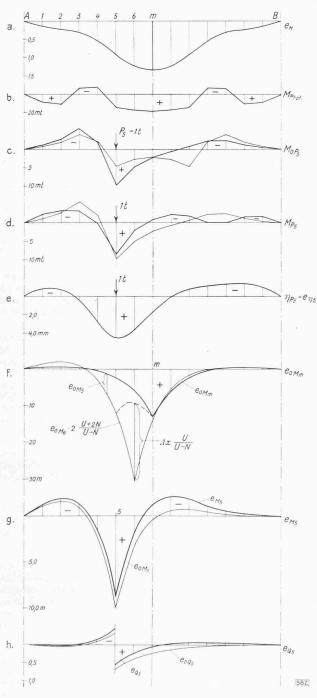


Abb. 8. Momentenflächen und Einflusslinien (vgl. Abb. 7)

Tabelle 3: Lösungen η₀ des Gleichungssystems

		Symmet	Ant	imetr. A	nteile			
	H=1	$p_{ m tot.}$ =1 t/m'	$P_5=1 t$	$R_5=1$	$R_6 = 1$	P_5 =1t	$R_5=1$	$R_6 = 1$
A	0 m	0 m	0 m	0 m	0 m	0 m	0 m	0 m
1	0,8596	0,1708	-0,085	- 0,5189	-0,3113	0,097	-0,5152	- 0,2081
2	1,3610	0,2804	0,168	-0,7994	-0,4796	0,326	-0,7579	- 0,3062
3	1,8394	0,3822	1,257	-0,4900	- 0,2940	0,882	-0,3263	- 0,1318
4	3,1719	0,6195	3,687	1,0006	0,6003	1,896	1,4155	0,5720
5	5,2626	0,9761	6,644	4,6224	2,7733	2,616	5,2945	2,1394
6	6,9973	1,2690	8,325	1,3442	7,2811	1,770	1,9304	5,1405
m	7,6456		8,809	0,4008	5,4729	0	0	0
	· 10 - 3		· 10 - 3		ž.	· 10 - 3		

erscheint treppenförmig abgestuft. Ihren wirklichen Verlauf können wir unter Beachtung von

$$-\overline{q}_{H=1} = 1 \, y'' + N \, \eta''_{H=1} = 1 \, y'' - N \, rac{M_{H=1}}{E \, J}$$

unschwer bestimmen; auch diese Berechnung ist in Tabelle 4

Der Festwert an der Elastizitätsbedingung Gleichung 8

$$a_{11} = \frac{L}{E_k \overline{F}_k} + y'' \int_A^B \eta_{H=1} dx =$$

$$= 2 \left(\frac{180.2}{0.48 \cdot 10^6} + 6.0 \cdot 10^{-3} F^m (\eta_{H=1}) \right)$$

Diese Fläche $F(\eta_{H=1})$ erstreckt sich nur über die aufgehängten Trägerteile, da für die nicht aufgehängten Strecken y'' = 0 ist. Sie ist polygonal zu denken; somit ergibt sich $F(\eta)$ aus der einfachen Summation

$$F^{m}_{(\eta)} = \frac{1}{2} \varDelta x (2 \eta_1 + 2 \eta_2 + \eta_3 + \eta_4 + 2 \eta_5 + 2 \eta_6 + \eta_m)$$
 infolge $H = 1$ somit
$$F^{m}_{(\eta H = 1)} = \frac{1}{2} 20,0 \cdot 41,618 \cdot 10^{-3} = 416,18 \cdot 10^{-3}$$

$$F^{m}(\eta_{H=1}) = rac{1}{2} 20.0 \cdot 41.618 \cdot 10^{-3} = 416.18 \cdot 10^{-3}$$
 woraus

 $a_{11} = 2 (0.3754 + 6.0 \cdot 0.41618) \cdot 10^{-3} = 5.7449 \cdot 10^{-3}$

Nun kann aus $\eta_{H\,=\,1}$ nach Gleichung 18 die Einflusslinie e_H für den überzähligen Kabelzug H berechnet werden; sie ist in der letzten Kolonne der Tabelle 4 enthalten und in Abb. 8a dar-

Tabelle 5 zeigt noch die Untersuchung einer Totallast p= 1,0 $^t/m^\prime$ auf der ganzen Brückenlänge. Der überzählige Horizontalschub ergibt sich mit

$$F^{m}_{(\eta)} \equiv 10 \cdot 7{,}7725 \equiv 77{,}725^{m^2}$$

zu

$$H_{p_{ ext{tot.}}} = - \; rac{2 \cdot 6.0 \cdot 10^{-3} \cdot 77,725}{5,7449 \cdot 10^{-3}} \; p = - \; 162,35' \; ext{für} \; p = 1'/m'$$

Auch bei unsymmetrischen Belastungsfällen liefern nur die symmetrischen Anteile der Durchbiegungen einen Beitrag an das Belastungsglied der Elastizitätsbedingung Gleichung 8.

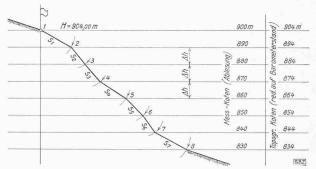
In Abb. 8b ist die Momentenfläche für diesen Belastungsfall skizziert; sie ist zur Momentenfläche aus ständiger Last ähnlich, wenn diese erst auf das fertige Tragwerk einwirkt. Abb. 8c zeigt die Momentenfläche infolge $P_5=1^l$ im Grundsystem, aus den symmetrischen und antimetrischen Anteilen zusammengesetzt; in Abb. 8d ist die Superposition zur Momentenfläche im statisch unbestimmten Tragwerk ersichtlich. In Abb. 8e ist die zugehörige Biegungslinie, d. h. die Einflusslinie für die Durchbiegung des Punktes 5 dargestellt.

Abb. 8f zeigt die Anwendung der Rekursionsformel Gleichung 24 zur Bestimmung der Einflusslinie $e_{_0M_m}$ aus den Einflusslinien $e_{_0M_6}$ und $e_{_0M_5}$; in Abb. 8g ist die endgültige Einflusslinie e_{M_5} und in Abb. 8h diejenige für die Querkraft Q_5 , e_{Q_5} skizziert.

Damit dürfte die Leistungsfähigkeit des vorgelegten baustatischen Verfahrens und der neuen Rekursionsformeln Gl. 24 und Gl. 21 erwiesen sein.

6. Schlussbemerkungen

Das untersuchte Tragwerk, die verankerte Hängebrücke unter Berücksichtigung der elastischen Formänderungen, ist äusserlich einfach und innerlich hochgradig statisch unbestimmt. Die äussere Ueberzählige, der Kabelzug H, ist auf Grund einer äussern Elastizitätsbedingung, Gleichung 2 zu bestimmen, während die innern Ueberzähligen, die Hängestangenkräfte, der «Formänderungsbedingung» Gleichung 3 gehorchen müssen. Für den Arbeitsaufwand einer praktischen Berechnung ist es wesentlich, die beiden Gruppen von Elastizitätsbedingungen trennen zu können, um möglichst leicht zu handhabende Gleichungsgruppen zu erhalten. Hier ist es gelungen, die Gruppe der «innern» Elastizitätsgleichungen in einem nur fünfgliedrigen Gleichungssystem zu formulieren, das wir ausserdem, und dies verkürzt den Arbeitsaufwand weiter, nicht für alle einzelnen Hängestangen, sondern nur für in Knotenlasten zusammengefasste Gruppen von solchen anschreiben mussten. Bei der hier vorgelegten baustatischen Lösung hat sich gegenüber einer auf der mathematischen Integration der Grundgleichung Gl. 6 beruhenden Berechnung der Vorteil ergeben, dass alle Hängestangenkräfte, auch die äussersten beim Verzweigungs- oder Unstetigkeitspunkt n, in einer und derselben Gleichungsgruppe einheitlich erfasst werden können.


Die Entwicklung neuer Bauformen und der Entwurf von Tragwerken grosser Spannweite ist in wirtschaftlicher Weise und mit beabsichtigtem Sicherheitsgrad nur bei sorgfältiger Verfolgung des Kräftespiels zuverlässig möglich und deshalb ist der Ausbau der Baustatik aufs engste mit dem Stand der konstruktiven Gestaltung verknüpft. Wenn auch heute zur Bewältigung der meisten «Normalfälle» der täglichen Berufspraxis einfache baustatische Methoden oder Gebrauchsformeln zur Verfügung stehen, so dürfen wir trotzdem die Entwicklung der Baustatik bei weitem nicht als abgeschlossen betrachten. Abgeschlossen wird diese Entwicklung vielleicht dann sein, wenn auch alle Möglichkeiten der baulichen Gestaltung ausgeschöpft sein werden und bis dahin ist glücklicherweise noch ein weiter Weg.

Auch die hier vorgelegte Untersuchung der verankerten Hängebrücke einer besonderen oder allgemeineren Bauart mit verschiedener Spannweite von Versteifungsträger und Kabel ist nicht abschliessend, weil sie ja nur, entsprechend der «üblichen Formänderungstheorie» einen Teil, allerdings den wichtigsten, der das Kräftespiel beeinflussenden Formänderungen, nämlich die lotrechten Durchbiegungen berücksichtigt. Ich habe bereits darauf hingewiesen 6), dass aber auch die waagrechten Kabel-Verschiebungen die Kabelkrümmung beeinflussen und dadurch und durch die Schiefstellung der Hängestangen das Kräftespiel merklich ändern. Diese zusätzlichen Einflüsse können nun aber ohne Schwierigkeit in einem zweiten Rechnungsgang berücksichtigt werden. Bei grossen Spannweiten oder weichem Versteifungsträger halte ich diese Verfeinerung der Berechnung für notwendig. Ebenso ist in solchen Fällen die Elastizitäts-Bedingung zu verfeinern¹). Auch erlaubt die Betrachtung nur einer ebenen Tragwand unter nur lotrechten Lasten keine abschliessende Beurteilung des wirklichen Tragwerks und seiner tatsächlichen Beanspruchungen.

Die Anwendung der gezeigten baustatischen Lösung der inhomogenen linearen Differentialgleichung vierter Ordnung ist selbstverständlich nicht auf die Untersuchung der allgemeineren Form der verankerten Hängebrücke beschränkt; sie wird vielmehr bei allen baustatischen Aufgaben, die einer solchen Gleichung gehorchen, eine übersichtliche und zuverlässige Lösung mit vernünftigem Arbeitsaufwand erlauben.

Aneroid-Geländeprofil-Aufnahmen

In der Ingenieurpraxis handelt es sich bei Aneroidmessungen, vorab in Kulturländern, gewöhnlich um einzelne Höhenmessungen, weniger aber um methodische Messungen grösseren Umfanges. So bleibt das Aneroid dem Ingenieur, dem Forsttechniker und dem Bergsteiger vorwiegend ein Behelfsinstrument, wenn kotierte Karten unzureichend oder nicht zur Hand sind. Das nachstehend skizzierte Messverfahren, das in der Literatur vielleicht übergangen oder nicht gewertet wurde, zeigt die praktische Anwendung des Aneroids für Profilaufnahmen im Gebirge. Die erzielbare Genauigkeit richtet sich natürlich nach der «Angabe» des Aneroids, nach der Methode und Finesse der Instrumentenablesungen. Für generelle Vorarbeiten, betreffend z. B. Luftseilbahnen, Bremsberge, Leitungen, Bachrunsen, Bergrutschbahnen usw. gelingt die Aneroidprofilaufnahme verblüffend rasch, bequem und mit meistens hinreichender Genauigkeit. Der Messvorgang ist der folgende:

Die Höhenablesung erfolgt, zur möglichsten Eliminierung von Ablesefehlern, nur in konstanten Höhenabständen, also z. B. alle 2 m, 5 m, 10 m oder auch alle 25 m, je nach der Teilung der Aneroidskala und der angestrebten Genauigkeit der Aufnahme. Die zugeordneten variablen Längen werden, von der unteren oder oberen Messtation ausgehend, nur schief gemessen, mit Messchnur oder Messband (S1, S2...). Markante Geländepunkte wie Kanten. Kehlen, Felsköpfe, können nach Länge und Höhe zwischengeschaltet werden. Die Messung kann repetiert werden; die Berücksichtigung des Standfehlers und der Messungsausgleich erhöhen die Genauigkeit. Gleich einfach wie die Feldarbeit ist die Planarbeit. Das Geländeprofil ergibt sich aus den Zirkelschnitten der schiefen variablen Längen S mit den zugeordneten, in konstanten Abständen liegenden Messhorizontalen H, ausgehend wieder von der untern oder obern Messtation. Diese Methode ist sehr einfach und praktisch.

Solche Profilaufnahmen können gegebenenfalls weiterhin verwertet werden. Die Auswertung verschiedener paralleler oder radialer Querprofile, die, auf eine Bezugsbasis oder auf einen Basispolygonzug eingemessen, angeschlossen sind, z. B. bei der untern oder obern Messtation, führt zur «aneroidisch topographischen Karte». Ihre Genauigkeit kann natürlich nicht jener normaler Karten entsprechen. Wir sind uns aber bewusst, dass mitunter aus Staffelprofilen behelfsmässig topographische Detailkarten erstellt werden, deren Genauigkeit ebensowenig der Wirklichkeit entspricht. Es ist einleuchtend, dass vorgezeichnete «Blitzmethode» für militärische Zwecke besonders geeignet und, wie viele Versuche gezeigt haben, auch für zivile Zwecke praktisch und vorteilhaft ist.

MITTEILUNGEN

Kondensations-Lokomotiven für Argentinien. Wegen schlechter Qualität oder völligem Mangel des Speisewassers auf gewissen argentinischen Bahnstrecken versuchen die dortigen Bahnverwaltungen alles, was den Wasserverbrauch der Lokomotiven herabsetzt. Auf Grund der Erfahrungen mit einer Probemaschine von Henschel in Cassel, bei der der Abdampf kondensiert und so als Speisewasser zurückgewonnen wurde, erhielt dieselbe Firma im Jahr 1937 den Auftrag für sechs weitere derartige Maschinen. Es handelt sich dabei um Maschinen mit Kolbenantrieb und Oelfeuerung; diese erleichtert das Unterbringen des Kondensators mit Luftkühlung auf dem Tender. An Stelle des Blasrohres tritt ein Saugzugventilator mit Abdampfturbine, deren Leistung sich selbsttätig der Belastung anpasst; ihr Abdampf wird ebenfalls dem Kondensator zugeführt. Zum Anfahren und Ingangsetzen dieser Hilfsgruppe dient eine besondere Frischdampfdüse. Die hohen Lufttemperaturen, die im Sommer bis auf 40 ° C am Schatten steigen, verlangen eine reichliche Bemessung

⁶⁾ F. Stüssi und E. Amstutz: Verbesserte Formänderungstheorie von Stabbogen und verankerten Hängebrücken. «SBZ», Bd. 116, Nr. 1 (Sonderdruck).