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INHALT : Die Berechnung von Flanschverbindungen. — Das Bürgerhaus

im Kanton Genf. — Mitteilungen : Der Wipper (Dumper), ein
Motorfahrzeug für Auahubtransporte. Ein Hallenbau aus Eisenbeton-Fertigteilen.

Ausführung beweglicher Wehrverschlüsse aus Eisenbeton? Zürcher

Heimatschutztagung im Sihlwald. Ein Ziegeldach aus Eisenbeton ohne
Lattenwerk. Eidg. Technische Hochschule. — Nekrologe : Erich Sutter. —

Wettbewerbe : Gestaltung des nördlichen Brückenkopfes der Lorrainebrücke

in Bern. — Sitzungs- und Vortrags-Kalender.
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Die Berechnung von Flanschverbindungen
Von Prof. M. TEN BOSCH, E. T. H., Zürich

Das Näherungsverfahren für die Berechnung, das der
Altmeister C. von Bach im Jahre 1891 vorschlug1), hat durch sein
klassisches Buch über Maschinenelemente die weiteste Verbreitung

gefunden. Es wird auch heute noch z. B. bei den nationalen
und internationalen Rohrnormen als Grundlage verwendet (z. B.
VSM 18300, Blatt 10/15). Dieses Verfahren geht von der
(erfreulichen) Tatsache aus, dass praktisch bewährte Ausführungs-
formen der Flanschen schon bekannt sind, macht irgend eine
Annahme über die Grösse der Kraftwirkimg (die in keiner Weise
mit den wirklich auftretenden Kräften übereinstimmt), schlägt
eine vereinfachte Spannungsberechnung vor (ebenfalls in
Abweichung von der Wirklichkeit) und berechnet damit (aus den
bekannten und bewährten Abmessungen) schliesslich die
sogenannten «zulässigen» Spannungen, die für den gleichen Werkstoff

aber keinesfalls konstant sind, und als Grundlage für die
Flanschberechnung dienen sollen. Es ist fast unbegreiflich, dass
ein so wertloses Rechenverfahren ein halbes Jahrhundert leben
kann. Als Schulmeister und als Ingenieur bin ich verpflichtet,
energisch dagegen zu protestieren, denn man gibt damit dem
Nachwuchs Steine statt Brot und fördert die gedankenlose
Nachahmung, statt zu selbständigem Denken anzuregen.*)

Das Näherungsverfahren geht nämlich von der Voraussetzung

aus, dass auf die Flanschverbindung nur der Flüssigkeitsdruck

im Rohr wirkt und zwar auf eine durch die Dichtung
etwas vergrösserte Fläche, also

P -^-JD„>pkg (1)

wenn p der Flüssigkeitsdruck in at und Da etwa gleich dem
Aussendurchmesser des Rohres in cm ist. Die wirklich auftretenden

Kräfte sind aber ganz andere. Zunächst werden die
Flanschschrauben angezogen (bevor Druck im Rohr ist), und
zwar recht kräftig angezogen, da das Rohr dicht halten muss.
Man kann etwa damit rechnen, dass die Schrauben-beim
Anziehen (ohne Flüssigkeitsdruck) mit einer Vorspannung belastet
sind, die 60 bis 75 °/„ der Streckgrenze des Schraubenwerkstoffes
beträgt, oder auch 2 bis 3 mal so gross wie der Betriebsdruck
ist. Zu dieser Vorspannung kommt der Betriebsdruck, der nicht
einfach addiert werden darf, sondern aus den Formänderungen
der Schrauben und der Flansche berechnet werden musss). Für
die Festigkeitsrechnung der Flansche ist es zweckmässig damit
zu rechnen, dass die Verbindung mit einer Gesamtkraft belastet
wird, die der Streckgrenze der Schrauben entspricht und die 3
bis 4 mal so gross wie die Betriebskraft nach Gl. (1) ist.
Deshalb ist auch die Schraubenberechnung (VSM 18 330/1) zu
beanstanden, die nur mit dem Betriebsdruck allein rechnet. Als Werkstoff

der Schrauben wird St. 38.13 oder für bessere Qualität
St. C. 35.61 verwendet. Diese Werkstoffbezeichnung ist aber für
den Konstrukteur irreführend, denn sie kennzeichnet nur das
Ausgangsmaterial; die fertigen Schrauben haben aber im
Anlieferungszustand (und dieser ist für den Konstrukteur wichtig)
bedeutend bessere Festigkeitseigenschaften. Nach den Versuchen
der EMPA beträgt z. B. die Bruchfestigkeit Kx von Schrauben
aus St. 38.13 nicht 38 sondern 58 kg/mm1 Es wäre deshalb eine
nützliche Aufgabe der Normenkommissionen, eine Mindeststreckgrenze

der normalen Schrauben festzulegen.
') O. Bach : Versuche über die Widerstandsfähigkeit ebener Platten.

Berlin 1891.

*) Das VSM-Normalienbureau teilt mir während der Drucklegung
mit, dass es diese Berechnungsblätter bei der Neuauflage weglassen wird.
Damit wäre der Zweck dieser Abhandlung erreicht. Bei der bereits
erfolgten weiten Verbreitung der Normblätter scheint mir aber die
Veröffentlichung der Berechnungsgrundlagen dennoch gerechtfertigt.

a) Vgl. z. B. ten Bosch: Vorlesungen über Maschinenelemente, 2.

Auflage, Springer, Berlin 1940, S. 158/59.

Das Näherungsverfahren von Bach war eigentlich von
Anfang an überflüssig, da die Theorie der Kreisplatten seit der
Mitte des 19. Jahrhunderts vollständig bekannt war. Vereinzelte
Veröffentlichungen in technischen Zeitschriften darüber von
Stephan (1897), Ensslin (1904) fanden nur wenig Beachtung,
wurden auch nicht in die Lehrbücher übernommen und blieben
deshalb den Ingenieuren unbekannt. Die Theorie der Kreisplatten
wird hier als bekannt vorausgesetzt; ich verweise z. B. auf meine
«Vorlesungen über Maschinenelemente», 2.Aufl., Springer, Berlin,
1940, Abschnitt 14.5.

1. Der lose Flansch
Ausgehend von dieser Theorie hat R.Wiederkehr8) die beim

losen Flansch auftretenden Kräfte am genauesten berücksichtigt.
Das Ergebnis seiner Rechnung ist, dass die grösste Spannung

ffmax die tangentiale Spannung am Rande der inneren
Bohrung (für r rB) ist (Abb. 1) :

ffmax 1 HL f2,6 ln^- + 0,7 r°' - r*2 ^ 5! (2)max 2nh* V n- B" /£« —r0*
K '

Diese Gleichung bildet eine zuverlässige Grundlage für die
Berechnung der Flanschringe. Aber gerade für die bei
Flanschen vorliegenden Verhältnisse lässt sich die Theorie der Kreis-
Platten noch bedeutend vereinfachen und zwar ohne Einbusse
der Genauigkeit. Die erste Vereinfachung*) geht von der
Beobachtungstatsache aus, dass die Meridiankurve der verbogenen
Mittelfläche für die bei Flanschringen vorliegenden Verhältnisse
praktisch ein Konus ist, also durch eine gerade Mantellinie
begrenzt wird. Wenn mit w die Durchbiegung der Mittelfläche an
irgend einer Stelle bezeichnet wird, so ist also dw/dr konstant
und dHo/dr* 0. Das bedeutet eine erhebliche Vereinfachung
für die Berechnung, da die allgemeinen Spannungsgleichungen
für die ringsum symmetrisch belastete Kreisplatte (vgl.
Vorlesung Maschinen-Elemente, S. 98) :

Em1z f d'w 1 dw

Ot

und r

m
Em'z

dr'

Ht dw
rm dr

1 daw

m*E
dr
iz*

m di
h3 I d3w

w \
r*~)

\(ms — 1) r
mit der Plattensteifigkeit N

12Nz dw

dr*
Ehsm2

+
d'w
dr1

1 dw
r dr

h3r

12 (m»

Or

nun übergehen in:¦1)
12Nz dw

und r :

dr ' h*rm
3N dw 4z* — h*

(3, 4)

(5)2h* dr r2

Diese Vereinfachung ist z. B. auch für die Berechnung von
Tellerfedern zulässig, die bei schwacher Neigung nach derTheorie
der ebenen Kreisplatten berechnet werden können. Für grosse
Neigungen gilt dafür die genaue Theorie von Meissner-Dubois6),
die aber so zeitraubend ist, dass ihre Verwendung in der Praxis
nur in seltenen Fällen möglich ist. Sie ist aber sehr wertvoll,
um die Zulässigkeit der vorgeschlagenen Vereinfachung zu prüfen,

die Almen und Laszlo8) auf Tellerfedern mit grosser
Neigung angewandt haben. Der Vergleich mit der genauen Theorie
zeigt für die grösste Spannung und für die grösste Formänderung

praktisch genau gleiche Werte'').

•) R. Wiederkehr: Die Berechnung der losen Flansche in «Technik und
Betrieb», (Zürich), Bd. 1, 1924, S. 121/27.

') Zuerst vorgeschlagen von W. A. Brecht und A. M. WaM. The radially
tappered Disk Spring. «Trans. A.S.M.E.»521. 1930, 8.46(66. Paper APM 52.4.

5) Dubois: Ueber die Festigkeit derKegelschale. Diss. E.T. H. Zürich 1917.
°) J. O. Almen'and A. Lassilo: The uniform-section Disk Spring. «Trans.

A.S.M.E.» 68, 1936, S. 806/14.
') S. Gross und E. Lehr: Die Federn. VDI-Verlag. Berlin 1938. S. 69.
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I

(6)

Die zweite Vereinfachung hat
Waters8) vorgeschlagen. Die grösste
Umständlichkeit bei der Berechnung des

Flanschringes nach Abb. 1, also bei der
Ableitung der Gleichung 2 liegt darin,
dass der Ring aus drei Zonen besteht
(äussere, mittlere und innere Zone). Für
jede dieser Zonen ist die Berechnung
von 4, also zusammen von 12

Integrationskonstanten aus den vorliegenden
Randbedingungen erforderlich. Waters
ersetzt die Belastung nach Abb. 1 nun
durch die rechnerisch viel einfachere nach Abb. 2, unter der
Voraussetzung, dass

P(ra -rj =P'(R — r0)
ist, d. h. dass die verbiegenden Momente gleich gross bleiben.
Da die Lösungen in beiden Fällen bekannt sind, kann man die
Zulässigkeit dieses Ersatzes leicht nachprüfen. Nimmt man den
extremen Fall: Rjra 1,2, ri\ra 0,8 und r0/ra B 0,6 der schon
ausserhalb der Abmessungen der genormten Flanschringe liegt,
so ist für Abb. 1 nach Gl. (2) :

<Jmax 0,481 P/fc»
und für Abb. 2 (vgl. Vorlesungen Masch. El., S. 102) :

amax 1,48 P'/h3
worin nach Gl. (6) : P P3 ist, also

<?max 0,493 P/W
wird. Der Fehler beträgt in diesem extremen Fall nur 2,5 °/0.

Neben diesen beiden Vereinfachungen braucht man zur
Lösung der gestellten Aufgabe nur noch die Gleichgewichtsbedingung,

dass in einem Querschnitt in der Entfernung r
(Abbildung 3) die Summe der Schubspannungen gleich der Belastung
P' sein muss, also mit z aus Gl. (5) :

3*Näw_ f
+*

rÄ3 dr J
— hl, — A|a

ist. Daraus folgt:

h
Ml.

Abb. 4 Abb. 5

rn

Abb. 6

\nr f xdz P' 4s2) dz

dw/dr tgy,2nN
welche Neigung nach der ersten Voraussetzung konstant sein
muss, also

BHHHBG9 BBS
Die grösste Spannung ist die tangentiale Spannung für r

ri und z ip h/2, also nach Gl. (3) :

«max (ot)r rt g— jjy ¦ • • ¦ \°)
Nachdem wir diese Gleichung zur Festigkeitsreclmvmg der

Flanschringe gefunden haben, die an Einfachheit nichts mehr
zu wünschen übrig lässt, muss noch die Frage beantwortet werden,

ob die Brauchbarkeit der Flanschverbindung in der Praxis
überhaupt durch Vermeidung der Bruchgefahr beschränkt wird.
Ich bin der Meinung, dass die aus zähem Werkstoff (St. 37 bzw.
St. 45) hergestellten Flansche schon lange vor dem Bruch durch
zu grosse Formänderung unbrauchbar werden, denn dann wird
die Verbindung undicht und die Schrauben werden krumm und
überbelastet. Wann verwirklicht die ausführende Praxis (und
die Normenbureaux) die daraus folgende (auch schon seit
50 Jahren bekannte) Schlussfolgerung, dass der Schraubenschaft
auf Kerndurchmesser abgedreht werden sollte (also nicht so
aussehen darf wie nach VSM 18362), um die unvermeidlichen
Biegespannungen klein zu halten Setzt man den Wert von N in
Gl. (7) ein, so wird die Neigung des Ringes:IR'^tH <s)

Sie sollte kleiner sein als eine durch die Erfahrung festgelegte

Grenze, für die ich etwa tg cp 0,001 vorschlage. Diese
Gleichung empfehle ich als Grundlage für die Berechnung der
Flanschringe.

Wenn die zulässige Formänderung wirklich ein brauchbares
Kriterium ist, so muss das auch aus den bewährten (in den
Rohrnormen zusammengestellten) Abmessungen nachweisbar
sein. Nach den vorstehenden Ueberlegungen ist die grösste Kraft
P durch die Streckgrenze des Schraubenwerkstoffes festgelegt:

P nji d3 a, i
d Kerndurchmesser der Schrauben, i Anzahl der Schrauben.
Die Kraft P' in GL (9) 1st nach Gl. (6) aus den Flanschabmessungen

zu berechnen. Aendern wir bei einem Rohr nur den

Betriebsdruck, so bleiben die Flanschabmessungen (mit
Ausnahme der Dicke h) praktisch unverändert. Nach Gl. (9) musste
demnach d3i/hs für alle Drücke konstant sein. Bedenkt man,

«) E. 0. Waters and J. B. Taylor: The strength of Pipe Flanges. «Mech.

Engg.» 49, 1927, S. 531/42 und die Diskussion darüber S. 1840/47.

dass die Schraubenzahl i ein vielfaches von 4 ist (i — 4, 8, 12,

16, usw.) also sich jeweüen sprungweise ändert, so kann diese
Bedingung natürlich nicht streng eingehalten werden. Der in
Zahlentafel 1 durchgeführte Vergleich zeigt (mit Ausnahme
NW 200 und ND10/16) ein recht befriedigendes Ergebnis. Es
folgt daraus, dass für NW 200 und ND 10/16 entweder die
Schraubenzahl i zu gross oder die Flanschdicke h zu klein wäre

Zahlentafel 1 : Nenndrücke ND

NW ND 6 ND 10 ND 16 ND 25 ND 40

200
8 X %"

18

12 X 3/4"

20

12 X 7/s"

26

12 x 1"
30

i-d
h

400
16 x 7*"

28

16 X V."
32

16 x 1"
34

16 x 1'/«"
42

16 x l3/s"
50

i-d
h

VSM 18526 18527 18528

200 0,35 0,6 0,28 0,29 id3/h3

400 0,29 0,24 0,27 0,21 0,24 id3/h*

Nicht berücksichtigt sind bei dieser Berechnung die
Wärmedehnungen und Spannungen, die eine gesonderte Betrachtung
erfordern.

2. Der feste Flansch (Abb. 4 und 5)
Auch hier wird die Brauchbarkeit der Flanschverbindung

nicht durch die Bruchgefahr, sondern durch die Formänderung
eingeschränkt. Die erste wissenschaftlich begründete Lösung für
die Ausführungsform nach Abb. 4 gab Waters8) ; in der daran
anschliessenden Diskussion8) schlug Prof. Timoschenko eine noch
etwas einfachere Lösung vor. Da die Berechnung der
Formänderung des Flansches dabei stark vereinfacht wurde, geben
beide Lösungen zu grosse Spannungen. Es ist aber leicht möglich,

diese Formänderung nach der Theorie der Kreisplatten
etwas genauer zu berücksichtigen. Wesentlich schwieriger ist
die Lösung9) für den Flansch mit einem konischen Uebergang
(Abb. 5).

Die Berechnung der festen Flansche ist ein statisch
unbestimmtes Problem, das durch folgende Ueberlegung gelöst wird.
Die zwischen Flansch und Rohr wirkenden Kräfte sind ein
Moment M0 und die Querkraft Q (Abb. 6), je für ein cm Breite des
«inneren» Rohrumfanges. Da die Flanschdicke h immer wesentlich

grösser ist als die Rohrwandstärke s tritt der Bruch im
Rohr und nicht im Flansch auf (Abb. 7). Die statisch
unbestimmte Grösse M0 ist aus der Bedingung zu berechnen, dass
beim Uebergang zwischen Flansch und Rohr die Winkeländerungen

für Flansch und Rohr gleich gross sind. Die Winkeländerung

des Flansches kann aus der Theorie der Kreisplatten
berechnet werden. Setzt man zur Vereinfachung der Berechnung
wieder (vgl. Abb. 4 und 6) :

Px P-(ra—ri) (10)
so wird die Formänderung des Flansches verursacht durch das

Kräftepaar P'(ra — r,-) und durch ein Moment Mi, das am
inneren Rand wirkt; in unserem Fall ist

Mi =M„ — Qh/2 (11)
Die Winkeländerung ç>,, die durch das Kräftepaar allein
verursacht wird, ist schon aus Gl. (9) bekannt. Wirkt das Moment
Mi allein, fallen also die Belastungen P und p aus der
allgemeinen Gleichung für die Meridianfläche weg (vgl. z. B. Vorl.
Masch. El., S. 99, Gl. 14.49), dann ist

1fr'W==w(C-4

dwldr ^w(cm + -T)

-{- d In r + e ]

und dsto/dr* 2N

') Die mathematische Losung ist enthalten in der Abhandlung
«Development of general formulas for bolted Flanges» von den Taylor
Forge and Pipe Works, Chicago (111.), und auszugsweise veröffentlicht in
E. O. Waters, D. B. Wesstrom, D. B. Rosslieim and F. 8. O. Williams;
Formulas of stresses in bolted flanged connections. «Trans. A. S. M. E.».
69, 1987, S. 161/69.
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Abb. Wm Lage des Dauerbruchs beim Rohrflansch

Mit diesen Werten wird die radiale Spannung:
Em3z l d3w 1 dw \

°r= I m2 — 1 \ dr3 "•" mr dr ~

m -f- 1 c m6z l 1 d
r) (12)

m 2 m
Aus der ersten Randbedingung, dass am freien Aussenrand (für
r r„) die radiale Spannung für alle Werte von z gleich Null
wird, folgt:

m -\- 1 c m — 1 d * m 4- 1 c
~~2mi m ra*

und aus Gl. (12) mit rajri =a:
Zzc m

oder d
1 2

(13)

(a2 1) (14)
h3 m

Aus der zweiten Randbedingung, dass am Innenrand (für r
ri das Moment der radialen Spannungen entgegengesetzt gleich
Mi ist, folgt:

oder

\aTzdz
üü

3c(m -f. 1)
mh3

(a3 — 1) fs2ds
— */»

iW;

4 m üfj
m + la2 — 1

(15)

und damit die Neigung <p2 dw/dr für r — rj (nur durch das
Moment Mi allein verursacht) :

<Pï
dw
dr

Miri »:(- m +
ma3r) (16)

T{ N (a3 — 1) \m-fl m
Die gesamte Winkeländerung des Flansches erhält man durch
Superposition von <pr und <p2, also

12 (m8 — 1) rt-
'Flansch Em3h3 L 4re

(a + 1)

-f m M„ Qh/2-—-I ~" „ "V"- (17)
m + 1 m — 1/ a2 — 1

Die Berechnung der Winkeländerung des Rohres ist für den
Maschineningenieur etwas ungewohnt, weil es sich um ein
ähnliches Problem handelt, wie die Formänderung eines belasteten
Balkens auf elastischer Unterlage (wie z. B. Eisenbahnschwelle).
Zur Lösung dieser Aufgabe geht man von der bekannten Glei-

d3y
chung der elastischen Linie eines gebogenen Stabes -^—- —dx3

konst) folgtM JE aus. Durch zweimalige Differentiation (J.
daraus :

d*yJE dx* d3M/dx3 — dQ/dx (18)

da bekanntlich die Querkraft Q dMjdx ist. Man nimmt nun
an, dass an jeder Stelle der Druck p zwischen Balken und Unterlage

proportional der jeweiligen Einsenkung y ist, also
p ky

und nennt k die Bettungsziffer. Für ein Element dx des
belasteten Balkens (Abb. 9) gibt die Gleichgewichtsbedingung in
vertikaler Richtung:

d Q/dx p ky
sodass die Differentialgleichung (18) nun lautet:

JEdiyjdxi — ky (19)
Die allgemeine Lösung dieser Gleichung lautet mit der

Abkürzung
4

ß u
ß*.

E
ß*.

(20)

y e (Acoaßx-{-Baiaßx)-{-e (C eoa ßx-\-D Bin ß x) (21)

wovon man sich durch Einsetzen leicht überzeugt. Die vier
Integrationskonstanten A bis D müssen von Fall zu Fall aus den
Randbedingungen berechnet werden. Zunächst ist noch der Faktor

ß zu berechnen. Für ein ringsum symmetrisch belastetes Rohr

Abb. 8

U*m^-X
m

Abb. 9

folgt die radiale Verschiebung Ar y aus der bekannten
Beziehung 10) :

Ot
y dr E (22)

Die tangentialen Kräfte ot s l ¦ 1 auf das Volumenelement mit der
Rohrlänge 1 haben in radialer Richtung die Komponente

o, s Esp=ky ——3/r r2
sodass

k Es
(23)

ist. Diese (eindimensionale) Bestimmung von k ist nur
angenähert richtig; die genaue Lösung8) gibt einen etwas grössern
Wert, nämlich:

m2 Es SB
k —5 — (23a)

m2 — 1 r2

Für den Rohrstreifen von 1 cm Breite ist J s3/12 und

ß 1/J*L -= l/3(m2-l) | ^285^
H \ s3E y m3r3s3 1/^

In dieser Gleichung ist r der mittlere Radius und s die Wandstärke

des Rohres. Die erste Randbedingung lautet in unserem
ß*

Fall (Abb. 9) : Fur x oo ist y 0 und d y/dx 0 .Da e mit
zunehmendem x immer grösser wird, kann diese BeSngurig nur
erfüllt werden, wenn A B 0 ist. Die allgemeine Lösung (21)
vereinfacht sich also in unserem Fall zu:

-ßx
y e (C cos ß x -\- D sm ßx)

Die zweite Randbedingung (für x 0) lau|i||i|
dM

(25)

(S)=-V-»»MÄ) dx _ Q P/JE
-0 x 0

Aus der Differentiation von Gl. (25) :

dy —ß

dx r
folgt:

d3y

(O -f- D) (sin ßx -f cos ßx)

dx3 -2/ (C -f. D) cos ßx
Für as 0 ist

Aus
d3y

2ß3 (C + D) M0jJE (26)

2ß3e (C -f D) (sin ßx — cos ßx)

-Q\JEt=P/JE (27)

dx3
folgt für x 0 :

2ß*(C + D)
und in Verbindung mit (26) :

Q — ßM0 (28)
Die Integrationskonstanten C und D sind durch die Gl. (26)

und (27) bestimmt. Setzt man sie in Gl. (25) ein, so wird
- ß>

y 2ß3JE
P cos ßx — ßM0 cos ßx — sin ßx) (29)

">) Vorlesungen ten Bosch: Masch. El., S. 89, Gl. 14.5.

P-5200kgP~S200kg

5 mm mm,'•
% -loeÊSË100

Bruchquerschnitt,

,r'70 r-72

W/.kgi 30"75.9 tr„..-T7. mm

"-160**~160

80° 90° ' »" SO"

Abb. 10. Spannungsverteilung im Rohrflansch bei
verschiedener Wandstärke
———— Meridianspannung, — — — —=. Umfangspannung
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Genève, Rue du Perron, prise du puits St. Pierre, vers 1830

Die Differentiation dieser Gleichung gibt für x 0 die ge
suchte Neigung des Rohres:

— dy\ M° 6Mo
"PRohr \dx) ' 2ßJE ßEs3

i=0
Diese Gleichung gilt nicht nur für ein unendlich langes Rohr,

sondern auch für alle Rohrlängen x solange ßx grösser als 2

(30)

ist. Aus unserer Voraussetzung, dass <pRohr (nach Gl. 30)

«Pf:lansch (nach Gl. (17) ist, folgt:

(o + 1) P'/Tt
Mn

12-
tri3 — 1 m ma3 \l+ßh/2

w m

oder mit m 10/3 und A

M,

m
12 (m

r)
n3 — 1) I
a2 —1) V

+ ßn\s)
(31)

m
m3 (a2 — 1) V m -+- 1

0,87 (a + 1) P'

+

A(l + ßh/2)+-±-(^f

— 1

(31a)

mit den A-Werten aus Zahlentafel 2.

Zahlentafel 2

1,2 1,3 1,4 1,5 1,6 1,7

70,2 50,3 40,6 34,4 31,0 38,3 26,3

Da das Biegemoment Mn für einen Rohrstreifen von der
Breiteneinheit nun bekannt ist, folgt die grösste Biegespannung
im Rohr aus der Biegegleichung:

ob M/W 6M0/s3 (32)
Diese berechnete Spannung kann nun mit der kürzlich von

Prof. A. Thum11) veröffentlichten Berechnung der grössten Spannung

aus den gemessenen Dehnungen verglichen werden (vgl.
Abb. 10). Eine vollständige Uebereinstimmung 1st nicht zu
erwarten, weil bei allen plötzlichen Querschnittsänderungen12),
also auch beim Uebergang zwischen Flansch und Rohr,
Spannungserhöhungen zu erwarten sind, die durch «Formziffer» be-

n) A. Thum: Feindehnungsmessungen und Dauerprüfungen an
Flanschen als Grundlage für eine Flanschberechnung, in : «Maschinenelemente-
Tagung Düsseldorf 1938». VDI-Verlag. Berlin 1940, S. 1/6.. — Dieser
Veröffentlichung sind die Abbildungen 7 und 10 entnommen.

») ten Bosch: Vorlesungen Masch. El., Abschnitt 16.

rücksichtigt werden müssen.
ra 80, ri 47, h 18, s -

mit folgt aus Gl. (10) : P'
a 80/47 1,70 (also A

Für das linke BUd in Abb. 10 ist
6 und x 70 - 47 23 mm. Da-

5200 23/33 3624 kg. Weiter ist
28,3), £ 1,285 ft±7 6 0,0765,

ßh/2 0,689, ßn 1,798. Mit diesen Zahlenwerten wird das
Biegemoment M0 nach Gl. (31a):

0,87 • 2,7 • 3624*' 28,3 ¦ 1,69 + 3,34 ¦ 27
85°° 137 62 ^ " Cm

auf einen cm Breite, und damit die Biegespannung:
ob 62 6/6» 10,3 kg mm2.

Hierzu kommt noch die Zugspannung im Rohr:
oz 5200/ • 94 6 2,9 kg/mm3,

sodass die totale Spannung nach unserer Berechnung 10,3 -\-
2,9 13,2 kg/mm* beträgt, was gegenüber dem gemessenen Wert
von 15,9 kg/mm2 einer Formziffer von 15,9/13,2 1,2 entspricht;
die gleiche Formziffer gibt auch die Nachrechnung für das Bild
rechts in Abb. 10.

Für die Berechnung der Formänderung am äusseren Rand
lautet die Gleichung:

12 (m2 — l)r£ TP'. -,
Em3h3

m + 1 j a3 (M, fÄ/2) (33)

Mit diesen Untersuchungen ist die wichtige Dichtungsfrage
der Verbindung noch nicht gelöst; sie scheint für den festen
Flansch schwieriger zu sein als für den losen.

Das Bürgerhaus im Kanton Genf
Seit längerer Zelt schon war der im Jahre 1912 erschienene

Genfer Band vergriffen, weshalb er nun in zweiter Auflage
herausgegeben worden ist1). Kollege E. Fatlo, der schon die erste
Auflage besorgt hatte, ist auch der zweiten zu Gevatter gestanden,

unterstützt von Kantonsarchäologe L. Blondel. Zahlreiche

') Das Bürgerhaus in der Schweiz, % Band, Kanton Genf, 2. Auflage.
Herausgegeben vom Schweizer. Ingenieur- und Architektenverein. 60 Seiten
Text, 134 Tafeln. Zürich 1940, Orell Füssli Verlag. Preis geb. 43 Fr., geh.
35 Fr., für S. I.A.-Mitglieder das erste Exemplar geb. 25 Fr., jedes weitere
Exemplar 31 Fr., geh. 17 bzw. 23 Fr.
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