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INHALT: Die Berechnung von Flanschverbindungen. — Das Biirger-
haus im Kanton Genf. — Mitteilungen: Der Wipper (Dumper), ein Motor-
fahrzeug fiir Aushubtransporte. Ein Hallenbau aus Eisenbeton-Fertig-

teilen. Ausfiihrung beweglicher Wehrverschliisse aus Eisenbeton? Ziircher

Heimatschutztagung im Sihlwald. Ein Ziegeldach aus Eisenbeton ohne
Lattenwerk. Eidg. Technische Hochschule. — Nekrologe: Erich Sutter. —
Wettbewerbe: Gestaltung des nordlichen Briickenkopfes der Lorraine-
briicke in Bern. — Sitzungs- und Vortrags-Kalender.
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Nr. 12

Die Berechnung von Flanschverbindungen
Von Prof. M. TEN BOSCH, E. T. H., Ziirich

Das Naherungsverfahren fiir die Berechnung, das der Alt-
meister C. von Bach im Jahre 1891 vorschlug!), hat durch sein
klassisches Buch iiber Maschinenelemente die weiteste Verbrei-
tung gefunden. Es wird auch heute noch z. B. bei den nationalen
und internationalen Rohrnormen als Grundlage verwendet (z. B.
VSM 18300, Blatt 10/15). Dieses Verfahren geht von der (er-
freulichen) Tatsache aus, dass praktisch bewéihrte Ausfiihrungs-
formen der Flanschen schon bekannt sind, macht irgend eine
Annahme iiber die Grosse der Kraftwirkung (die in keiner Weise
mit den wirklich auftretenden Kréften ilibereinstimmt), schligt
eine vereinfachte Spannungsberechnung vor (ebenfalls in Ab-
weichung von der Wirklichkeit) und berechnet damit (aus den
bekannten und bewidhrten Abmessungen) schliesslich die soge-
nannten «zuldssigen» Spannungen, die fiir den gleichen Werk-
stoff aber keinesfalls konstant sind, und als Grundlage fiir die
Flanschberechnung dienen sollen. Es ist fast unbegreiflich, dass
ein so wertloses Rechenverfahren ein halbes Jahrhundert leben
kann. Als Schulmeister und als Ingenieur bin ich verpflichtet,
energisch dagegen zu protestieren, denn man gibt damit dem
Nachwuchs Steine statt Brot und fordert die gedankenlose
Nachahmung, statt zu selbstindigem Denken anzuregen.*)

Das Nidherungsverfahren geht nédmlich von der Vorausset-
zung aus, dass auf die Flanschverbindung nur der Fliissigkeits-
druck im Rohr wirkt und zwar auf eine durch die Dichtung
etwas vergrosserte Flédche, also

P:.Z_D,,tpkg e L.

wenn p der Fliissigkeitsdruck in at und D, etwa gleich dem
Aussendurchmesser des Rohres in cm ist. Die wirklich auftre-
tenden Krifte sind aber ganz andere. Zunidchst werden die
Flanschschrauben angezogen (bevor Druck im Rohr ist), und
zwar recht kriaftig angezogen, da das Rohr dicht halten muss.
Man kann etwa damit rechnen, dass die Schrauben beim An-
ziehen (ohne Fliissigkeitsdruck) mit einer Vorspannung belastet
sind, die 60 bis 75°/, der Streckgrenze des Schraubenwerkstoffes
betrigt, oder auch 2 bis 3 mal so gross wie der Betriebsdruck
ist. Zu dieser Vorspannung kommt der Betriebsdruck, der nicht
einfach addiert werden darf, sondern aus den Forménderungen
der Schrauben und der Flansche berechnet werden muss?). Fiir
die Festigkeitsrechnung der Flansche ist es zweckméssig damit
zu rechnen, dass die Verbindung mit einer Gesamtkraft belastet
wird, die der Streckgrenze der Schrauben entspricht und die 3
bis 4 mal so gross wie die Betriebskraft nach GI. (1) ist. Des-
halb ist auch die Schraubenberechnung (VSM 18330/1) zu bean-
standen, die nur mit dem Betriebsdruck allein rechnet. Als Werk-
stoff der Schrauben wird St. 38.13 oder fiir bessere Qualitdt
St. C. 35.61 verwendet. Diese Werkstoffbezeichnung ist aber fiir
den Konstrukteur irrefithrend, denn sie kennzeichnet nur das
Ausgangsmaterial; die fertigen Schrauben haben aber im An-
lieferungszustand (und dieser ist fiir den Konstrukteur wichtig)
bedeutend bessere Festigkeitseigenschaften. Nach den Versuchen
der EMPA betrdgt z. B. die Bruchfestigkeit K. von Schrauben
aus St. 38.13 nicht 38 sondern 58 kg/mm?! Es wére deshalb eine
niitzliche Aufgabe der Normenkommissionen, eine Mindeststreck-
grenze der normalen Schrauben festzulegen.

1) C. Bach: Versuche iiber die Widerstandsfihigkeit ebener Platten.
Berlin 1891.

*) Das VSM-Normalienbureau teilt mir wihrend der Drucklegung
mit, dass es diese Berechnungsblitter bei der Neuauflage weglassen wird.
Damit wire der Zweck dieser Abhandlung erreicht. Bei der bereits er-
folgten weiten Verbreitung der Normblitter scheint mir aber die Ver-
offentlichung der Berechnungsgrundlagen dennoch gerechtfertigt.

2) Vgl. z. B. ten Bosch: Vorlesungen iiber Maschinenelemente, 2. Auf-
jage, Springer, Berlin 1940, S. 158/59.
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Abb.2 Abb.3

Das Néherungsverfahren von Bach war eigentlich von An-
fang an iberfliissig, da die Theorie der Kreisplatten seit der
Mitte des 19. Jahrhunderts vollstdndig bekannt war. Vereinzelte
Veroffentlichungen in technischen Zeitschriften dariiber von
Stephan (1897), Ensslin (1904) fanden nur wenig Beachtung,
wurden auch nicht in die Lehrbiicher iibernommen und blieben
deshalb den Ingenieuren unbekannt. Die Theorie der Kreisplatten
wird hier als bekannt vorausgesetzt; ich verweise z. B. auf meine
«Vorlesungen iiber Maschinenelementes, 2. Aufl., Springer, Berlin,
1940, Abschnitt 14.5.
1. Der lose Flansch

Ausgehend von dieser Theorie hat R. Wiederkehr3) die beim
losen Flansch auftretenden Krifte am genauesten beriicksich-
tigt. Das Ergebnis seiner Rechnung ist, dass die grésste Span-
nung omax die tangentiale Spannung am Rande der inneren
Bohrung (fiir 7 = 7,) ist (Abb.1):

3P T T — 132 R2
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Diese Gleichung bildet eine zuverldssige Grundlage fiir die
Berechnung der Flanschringe. Aber gerade fiir die bei Flan-
schen vorliegenden Verhiltnisse 1dsst sich die Theorie der Kreis-
Platten noch bedeutend vereinfachen und zwar ohne Einbusse
der Genauigkeit. Die erste Vereinfachung?) geht von der Be-
obachtungstatsache aus, dass die Meridiankurve der verbogenen
Mittelfldche fiir die bei Flanschringen vorliegenden Verhiltnisse
praktisch ein Konus ist, also durch eine gerade Mantellinie be-
grenzt wird. Wenn mit w die Durchbiegung der Mittelfldche an
irgend einer Stelle bezeichnet wird, so ist also dw/dr — konstant
und d’w/dr? — 0. Das bedeutet eine erhebliche Vereinfachung
fiir die Berechnung, da die allgemeinen Spannungsgleichungen
flir die ringsum symmetrisch belastete Kreisplatte (vgl. Vor-
lesung Maschinen-Elemente, S. 98):
Em2z arw 1 dw

( rm dr )

Omax —

(2,6 n

=" "1 \ar
- Em2z 1 dw 1 dw
=T o1 (T—dr *W—dr—e)
dr— m? E 4z — h? . 3w d*w 1 dw
we T =g =1 T ars art 7 d'r)
it der Plattensteifigkeit ¥ — — 2™ _ i1 {ibergehen in:
mil er atten. 12 = m rgehen in:
12Nz dw 12Nz dw
T Tl et e
3N dw 422 —h?
und 7 — TR = (5)

Diese Vereinfachung ist z. B. auch fiir die Berechnung von
Tellerfedern zuldssig, die bei schwacher Neigung nach der Theorie
der ebenen Kreisplatten berechnet werden konnen. Fiir grosse
Neigungen gilt dafiir die genaue Theorie von Meissner-Dubois?),
die aber so zeitraubend ist, dass ihre Verwendung in der Praxis
nur in seltenen Féllen moglich ist. Sie ist aber sehr wertvoll,
um die Zuldssigkeit der vorgeschlagenen Vereinfachung zu prii-
fen, die Almen und Laszlo¢) auf Tellerfedern mit grosser Nei-
gung angewandt haben. Der Vergleich mit der genauen Theorie
zeigt fiir die grosste Spannung und fiir die grosste Forménde-
rung praktisch genau gleiche Werte7).

3) R. Wiederkehr: Die Berechnung der losen Flansche in «Technik und
Betrieb», (Ziirich), Bd. 1, 1924, S. 121/27.

Y) Zuerst vorgeschlagen von W. 4. Brecht und A. M. Wahl. The radially
tappered Disk Spring. «Trans. A.S.M.E.»52 I, 1930, S. 45/55. Paper APM 52.4,

5) Dubois: Ueberdie Festigkeit der Kegelschale. Diss. E.T. H. Ziirich 1917.

6) J. 0. Almen and A. Laszlo: The uniform-section Disk Spring. «Trans.
A.S.M.E.» 58, 1936, S. 305/14.

7) 8. Gross und E. Lehr: Die Federn. VDI-Verlag, Berlin 1938. S. 69.
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Die zweite Vereinfachung hat Wa-
terss) vorgeschlagen. Die grosste Um-
stdndlichkeit bei der Berechnung des
Flanschringes nach Abb. 1, also bei der
Ableitung der Gleichung 2 liegt darin,
dass der Ring aus drei Zonen besteht
(dussere, mittlere und innere Zone). Fiir
jede dieser Zonen ist die Berechnung
von 4, also zusammen von 12 Integra-
tionskonstanten aus den vorliegenden
Randbedingungen erforderlich. Waters
ersetzt die Belastung nach Abb.1 nun
durch die rechnerisch viel einfachere nach Abb. 2, unter der
Voraussetzung, dass

Plry—r) =P (R —%) - « - « - = {6)
ist, d. h. dass die verbiegenden Momente gleich gross bleiben.
Da die Losungen in beiden Fillen bekannt sind, kann man die
Zulissigkeit dieses Ersatzes leicht nachpriifen. Nimmt man den
extremen Fall: Rjr, = 1,2, 7;/r, = 0,8 und 7,/rq = 0,6 , der schon
ausserhalb der Abmessungen der genormten Flanschringe liegt,
so ist fiir Abb. 1 nach Gl. (2):

Omax = 0,481 P/h?
und fiir Abb. 2 (vgl. Vorlesungen Masch. El, S.102):
Omax = 1,48 P'/h?
worin nach Gl. (6): P’ — P;3 ist, also
omax = 0,493 P/h?
wird. Der Fehler betrdgt in diesem extremen Fall nur 2,59,

Neben diesen beiden Vereinfachungen braucht man zur
Losung der gestellten Aufgabe nur noch die Gleichgewichts-
bedingung, dass in einem Querschnitt in der Entfernung r (Ab-
bildung 3) die Summe der Schubspannungen gleich der Belastung
P' sein muss, also mit 7 aus GIl. (5):

|

—+ h/> +]lf".'
3xN dw 7, -
27 ff/dz=P =t | I(’h-—4z-)dz
— hl» a
ist. Daraus folgt:
dwjdr = e r—ite o,

welche Neigung nach der ersten Voraussetzung konstant sein
muss, also

P! Ta + Ti
2n N 2 52
Die grosste Spannung ist die tangentiale Spannung fir » =

r; und 2 = $ h/2, also nach GIl. (3):

3 (L Tl PF

omax — (0) r=ri = '2‘_7[“ - TR e e (8)

tg g —dwldr =

Nachdem wir diese Gleichung zur Festigkeitsrechnung der
Flanschringe gefunden haben, die an Einfachheit nichts mehr
zu wiinschen iibrig ldsst, muss noch die Frage beantwortet wer-
den, ob die Brauchbarkeit der Flanschverbindung in der Praxis
iiberhaupt durch Vermeidung der Bruchgefahr beschrénkt wird.
Ich bin der Meinung, dass die aus zdhem Werkstoff (St. 37 bzw.
St. 45) hergestellten Flansche schon lange vor dem Bruch durch
zu grosse Formdnderung unbrauchbar werden, denn dann wird
die Verbindung undicht und die Schrauben werden krumm und
{iberbelastet. Wann verwirklicht die ausfithrende Praxis (und
die Normenbureaux) die daraus folgende (auch schon seit
50 Jahren bekannte) Schlussfolgerung, dass der Schraubenschaft
auf Kerndurchmesser abgedreht werden sollte (also nicht so aus-
sehen darf wie nach VSM 18362), um die unvermeidlichen Biege-
spannungen klein zu halten ? Setzt man den Wert von N in
Gl (7) ein, so wird die Neigung des Ringes:

tg g = %ID FPa 7))« v o o o (9
Sie sollte kleiner sein als eine durch die Erfahrung festge-
legte Grenze, fiir die ich etwa tg ¢ — 0,001 vorschlage. Diese
Gleichung empfehle ich als Grundlage fiir die Berechnung der
Flanschringe.

Wenn die zulidssige Forménderung wirklich ein brauchbares
Kriterium ist, so muss das auch aus den bewdhrten (in den
Rohrnormen zusammengestellten) Abmessungen nachweishar
sein. Nach den vorstehenden Ueberlegungen ist die grosste Kraft
P durch die Streckgrenze des Schraubenwerkstoffes festgelegt:

P —m/4d?oyi
d — Kerndurchmesser der Schrauben, i — Anzahl der Schrauben.
Die Kraft P’ in Gl (9) ist nach Gl (6) aus den Flanschabmes.
sungen zu berechnen. Aendern wir bei einem Rohr nur den
Betriebsdruck, so bleiben die Flanschabmessungen (mit Aus-
nahme der Dicke h) praktisch unverdndert. Nach Gl (9) miisste
demnach d?i/h? fiir alle Driicke konstant sein. Bedenkt man,

8) E} 0. Vi;aters and J. H. Taylor: The strength of Pipe Flanges. «Mech.
Engg.» 49, 1927, S. 531/42 und die Diskussion dariiber S.1340/47.

i
i
|
|
|
\

dass die Schraubenzahl i ein vielfaches von 4 ist (i — 4, 8, 12,
16, usw.) also sich jeweilen sprungweise dndert, so kann diese
Bedingung natiirlich nicht streng eingehalten werden. Der in
Zahlentafel 1 durchgefiihrte Vergleich zeigt (mit Ausnahme
NW 200 und ND10/16) ein recht befriedigendes Ergebnis. Es
folgt daraus, dass fiir NW 200 und ND 10,16 entweder die Schrau-
benzahl i zu gross oder die Flanschdicke h zu klein wére!

Zahlentafel 1: Nenndriicke ND

Nw| NDs6 ND10 ND16 | ND25 | ND 40
w00 | BN 12 > ¥/, 127, | 2= 1" | i-d
18 20 26 30
s00 | 160" |16 I [ 1817|165 10,716 < 1| ia

28 32 34 42 50 n
vsM| 18526 18527 18528
200! 035 0,6 0,28 0,29 |idyh
400 0,29 0,24 | 0,27 0,21 0,24 |id¥n?

Nicht beriicksichtigt sind bei dieser Berechnung die Wérme-
dehnungen und Spannungen, die eine gesonderte Betrachtung
erfordern.

2. Der feste Flansch (Abb. 4 und 5)

Auch hier wird die Brauchbarkeit der Flanschverbindung
nicht durch die Bruchgefahr, sondern durch die Formédnderung
eingeschrinkt. Die erste wissenschaftlich begriindete Losung fiir
die Ausfithrungsform nach Abb. 4 gab Waters®); in der daran
anschliessenden Diskussions) schlug Prof. Timoschenko eine noch
etwas einfachere Losung vor. Da die Berechnung der Form-
dnderung des Flansches dabei stark vereinfacht wurde, geben
beide Losungen zu grosse Spannungen. Es ist aber leicht mog-
lich, diese Forminderung nach der Theorie der Kreisplatten
etwas genauer zu beriicksichtigen. Wesentlich schwieriger ist
die Losung?) fiir den Flansch mit einem konischen Uebergang
(Abb. 5).

Die Berechnung der festen Flansche ist ein statisch unbe-
stimmtes Problem, das durch folgende Ueberlegung geldst wird.
Die zwischen Flansch und Rohr wirkenden Krifte sind ein Mo-

ment M, und die Querkraft @ (Abb. 6), je fiir ein cm Breite des

«inneren» Rohrumfanges. Da die Flanschdicke & immer wesent-
lich grosser ist als die Rohrwandstérke s tritt der Bruch im
Rohr und nicht im Flansch auf (Abb. 7). Die statisch unbe-
stimmte Grosse M, ist aus der Bedingung zu berechnen, dass
beim Uebergang zwischen Flansch und Rohr die Winkeldnde-
rungen fiir Flansch und Rohr gleich gross sind. Die Winkeldnde-
rung des Flansches kann aus der Theorie der Kreisplatten be-
rechnet werden. Setzt man zur Vereinfachung der Berechnung
wieder (vgl. Abb. 4 und 6):

P — P (T =) i st sie (10)
so wird die Forminderung des Flansches verursacht durch das
Kriftepaar P'(r, — ;) und durch ein Moment M;, das am in-
neren Rand wirkt; in unserem Fall ist

M; =M, — Qh/2 . iy (11)
Die Winkeldnderung ¢, , die durch das Kréftepaar allein ver-
ursacht wird, ist schon aus Gl. (9) bekannt. Wirkt das Moment
M; allein, fallen also die Belastungen P und p aus der allge-
meinen Gleichung fiir die Meridianfliche weg (vgl. z. B. Vorl
Masch. El., S. 99, Gl. 14.49), dann ist

w = d cTﬂ dinr e
=aw Pt +e)
1 r d 1 c d
dr — o o 2B T = e [ e ——
dw/dr = N (c 3 - T)unddwld1 2N(2 1‘9>

9) Die mathematische Lisung ist enthalten in der Abhandlung
«Development of general formulas for bolted Flanges» von den Taylor
Forge and Pipe Works, Chicago (I11.), und auszugsweise veroffentlicht in
E. O. Waters, D. B. Wesstrom, D. B. Rossheim and F. 8. G. Williams ;
Formulas of stresses in bolted flanged connections. «Trans. A.S. M. E.».
59, 1937, S.161/69.
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Abb. 7. Lage des Dauerbruchs beim Rohrflansch

Mit diesen Werten wird die radiale Spannung:

o — Em2z [ d*w 1 dw)
T omr—1 ( dr? mr dr )4
6z (m 41 ¢ m-—1 d
h? ( m 2 m ) Gz

Aus der ersten Randbedingung, dass am freien Aussenrand (fir
r —=r,) die radiale Spannung fiir alle Werte von z gleich Null
wird, folgt:

+1 c m—1

d
= oderd_m+1 ¢

m 2 m 742 m— 1 7277“ (13)
und aus Gl (12) mit r,/r; = a:
3z¢ m 41
Or=— h3_—m_ =AY . & & w s (14)

Aus der zweiten Randbedingung, dass am Innenrand (fiir r —
r;) das Moment der radialen Spannungen entgegengesetzt gleich
M; ist, folgt:
hls hla
c,2dz — EC(;%nh—-i—l) (a2 — 1) fzﬂdz = — M;
— h/s — hl2
oder
4m M; 1
c:—m—-|—T‘a’2:17 .. . . . . (19)
und damit die Neigung ¢, — dw/dr flir » — r; (nur durch das
Moment M; allein verursacht) :
dw M;r; m m a?
‘7’2:|W ey N@—1) (m+1 + m—l) t163
Die gesamte Winkeldnderung des Flansches erhédlt man durch
Superposition von ¢, und ¢,, also

12(m2—1)r; [ P
PFlansch = —Emrh [ﬂ (@ + 1) —
m m a? M, —Qh/,
_('m+1 ) m_T)ﬁ ] a7

Die Berechnung der Winkeldnderung des Rohres ist fiir den
Maschineningenieur etwas ungewohnt, weil es sich um ein &hn-
liches Problem handelt, wie die Forménderung eines belasteten
Balkens auf elastischer Unterlage (wie z. B. Eisenbahnschwelle).
Zur Losung dieser Aufgabe geht man von der bekannten Glei-

a2
chung der elastischen Linie eines gebogenen Stabes d;{, = —
M,J E aus. Durch zweimalige Differentiation (J — konst) folgt
daraus:

dly

dux
da bekanntlich die Querkraft @ — dM/dx ist. Man nimmt nun
an, dass an jeder Stelle der Druck p zwischen Balken und Unter-
lage proportional der jeweiligen Einsenkung v ist, also

p=ky

und nennt k die Bettungsziffer. Fiir ein Element dx des bela-
steten Balkens (Abb. 9) gibt die Gleichgewichtsbedingung in
vertikaler Richtung:

JE 'c—dﬁ'M/d:Jcﬂ»,:—dQ/dx s w we (18Y

dQdx —p—=ky
sodass die Differentialgleichung (18) nun lautet:

JEd\yldx* = — ky i 3 os s & @ (19)
Die allgemeine Losung dieser Gleichung lautet mit der Ab-
kiirzung
4
—
G [ O T -
s V iJE (402
Bx —fx .

y—e (Acosfx | Bsinfgz) e (CcosfBx | Dsinp3x) (21)

wovon man sich durch Einsetzen leicht iiberzeugt. Die vier In-
tegrationskonstanten A bis D miissen von Fall zu Fall aus den
Randbedingungen berechnet werden. Zundchst ist noch der Fak-
tor £ zu berechnen. Fiir ein ringsum symmetrisch belastetes Rohr

Abb. 8

folgt die radiale Verschiebung 47 — y aus der bekannten Be-
ziehung 19):

J—Jr_%—7 (2
Die tangentialen Krifte ¢, sl-1 auf das Volumenelement mit der
Rohrldnge 1 haben in radialer Richtung die Komponente

E
p=ky= 01‘8 :fras*y
sodass
E
k:r_zs.........(ZS)

ist. Diese (eindimensionale) Bestimmung von k ist nur ange-
nidhert richtig; die genaue Losung?®) gibt einen etwas grossern
Wert, ndmlich:

m? Es
A o
Fiir den Rohrstreifen von 1 cm Breite ist J — s%12 und
[P 1
8= ety LEse (24)
S‘E m2r?s? ]/‘rs

In dieser Gleichung ist » der mittlere Radius und s die Wand-
stdrke des Rohres. Die erste Randbedingung lautet in unserem

x
Fall (Abb. 9): Fiir x — o ist y = 0und dy/dx — 0. Da eﬁ mit
zunehmendem z immer grésser wird, kann diese Bedingung nur
erfiillt werden, wenn 4 — B — 0 ist. Die allgemeine Losung (21)
vereinfacht sich also in unserem Fall zu:

— Bx
y=e€ (Ccospx 4 Dsinfx) . . . . (25)
Die zweite Randbedingung (fiir # — 0) lautet:
dy asy am
(dx'—') — _ MJE und (dxa) = =—Q=PJE

x= %=

Aus der Differentiation von GIl. (25):
ay

ar — P

*ﬂx(C’ + D) (sin gz -} cos Bx)
folgt:

= — 213?26- x(C + D) cos 3

Fir » — 0 ist
282(C+D)=MJE . . . . . . (26)
Aus
a3y
dxy
folgt fiir x = 0:
233(C 4+ D)= —QJE=P|JE . . . . (27)
und in Verbindung mit (26):
Q=—pM, . . . (28)
Die Integrationskonstanten C und D sind durch dle GI (26)
und (27) bestimmt. Setzt man sie in Gl (25) ein, so wird
- 8=z
e
10) Vorlesungen ten Bosch: Masch. El., S.89, GI. 14.5.

E— 2‘33e_ X(C -+ D) (sin gz — cos gx)

Y= [Pcosﬂx——ﬂMo(cosﬂx—sinp"x)-J (29)

P-5200 kg

Bruchquersohnift

SBZ 0% 56 Go°
Abb. 10. Spannungsverteilung im Rohrflansch bei
verschiedener Wandstirke

Meridianspannung, = e e =— = = Umfangspannung
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Die Differentiation dieser Gleichung gibt fiir z — 0 die ge-

suchte Neigung des Rohres:
dy M, 6 M,
- | R i/ 9 30
PRohr (dm) 23JE 3E s (30

x=

Diese Gleichung gilt nicht nur fiir ein unendlich langes Rohr,
sondern auch fiir alle Rohrlingen x solange fx grosser als 2
ist. Aus unserer Voraussetzung, dass PRohr (nach GIl. 30) =

Pplansen (Rach Gl (17) ist, folgt:

L
3™ =" (a4 1) PY=n
M, = = [ —
0_12m‘-‘—1 m ma? \ 1+ Bh/2 6 (h\®
m? (m+ 1" m _1)7‘-*—1 TF’T(S)
oder mit m — 10/3 und 4 — 2™ =1 (" _ &)
m? (a2 —1) m + 1 m—1
Pl
M,— . 08T(a +7£)6 _— (312)
aa+an + ()
P
mit den A-Werten aus Zahlentafel 2.
Zahlentafel 2
@ |- A1 |

13 | 14| 15 | 18| 17| 18
A | 702 | 503 | 406 | 344 | 310 383 | 263

Da das Biegemoment M, fiir einen Rohrstreifen von der
Breiteneinheit nun bekannt ist, folgt die grosste Biegespannung
im Rohr aus der Biegegleichung:

op =MW =6M,s> . . . . . . (32)

Diese berechnete Spannung kann nun mit der kiirzlich von
Prof. A. Thum 1) veroffentlichten Berechnung der gréssten Span-
nung aus den gemessenen Dehnungen verglichen werden (vgl
Abb. 10). Eine vollstdndige Uebereinstimmung ist nicht zu er-
warten, weil bei allen plotzlichen Querschnittsdnderungen'2),
also auch beim Uebergang zwischen Flansch und Rohr, Span-
nungserhohungen zu erwarten sind, die durch «Formziffer» be-

1y A. Thum: Feindehnungsmessungen und Dauerpriifungen an Flan-
schen als Grundlage fiir eine Flanschberechnung, in: «Maschinenelemente-
Tagung Dilsseldorf 1938». VDI-Verlag, Berlin 1940, S.1/6.. — Dieser Ver-

tffentlichung sind die Abbildungen 7 und 10 entnommen.
12) ten Bosch: Vorlesungen Masch. El., Abschnitt 16.

riicksichtigt werden miissen. Fiir das linke Bild in Abb. 10 ist
1, —80, r; =47, h —=18, s — 6 und * — 70 - 47 — 23 mm. Da-
mit folgt aus Gl (10): P’ = 5200 . 23/33 = 3624 kg. Weiter ist
a = 80/47 == 1,70 (also A = 283), B = 1,285 /]/fI7f6 — 0,0765,
fh/2 = 0,689, 3r; = 1,798. Mit diesen Zahlenwerten wird das
Biegemoment M, nach Gl (31a):
. 0,87 . 2,7 . 3624
°7 28,3 .1,69 + 3,34 . 27
auf einen cm Breite, und damit die Biegespannung:
g, — 62 . 6/6° —= 10,3 kg mm?=.
Hierzu kommt noch die Zugspannung im Rohr:
6. = 5200/ - 94 . 6 — 2,9 kg/mm?,
sodass die totale Spannung nach unserer Berechnung 10,3 -
2,9 = 13,2 kg/mm? betrédgt, was gegeniiber dem gemessenen Wert
von 15,9 kg/mm? einer Formziffer von 15,9/13,2 — 1,2 entspricht;
die gleiche Formziffer gibt auch die Nachrechnung fiir das Bild
rechts in Abb. 10.
Fiir die Berechnung der Forméinderung am &#dusseren Rand
lautet die Gleichung:

— 8500 137 = 62 kg - cm

12 (m2 —1) 7r; P
Paussen — T Eme R [ﬁ(a +1) —
m ma? a
(m-|—1 g 'm_l> 1 (Mo—Qh/Z)] (33)

Mit diesen Untersuchungen ist die wichtige Dichtungsfrage
der Verbindung noch nicht gelést; sie scheint fiir den festen
Flansch schwieriger zu sein als fiir den losen.

Das Biirgerhaus im Kanton Genf

Seit lingerer Zeit schon war der im Jahre 1912 erschienene
Genfer Band vergriffen, weshalb er nun in zweiter Auflage her-
ausgegeben worden ist!'). Kollege E. Fatio, der schon die erste
Auflage besorgt hatte, ist auch der zweiten zu Gevatter gestan-
den, unterstiitzt von Kantonsarchidologe L. Blondel. Zahlreiche

1) Das Biirgerhaus in der Schweiz, 2. Band, Kanton Genf, 2. Auflage.
Herausgegeben vom Schweizer. Ingenieur- und Architektenverein. 50 Seiten
Text, 134 Tafeln. Ziirich 1940, Orell Fiissli Verlag. Preis geb. 43 Fr., geh.

35 Fr., fir S.I.A.-Mitglieder das erste Exemplar geb. 25 Fr., jedes weitere
Exemplar 31 Fr., geh. 17 bzw. 23 Fr.
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