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Verbesserte Formänderungstheorie verankerter Hängebrücken und Stabbogen
Von Prof. Dr. F. STÜSSI, E. T. H. und Dipl. Ing. ERNST AMSTUTZ, Zürich
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Abb. 1. Hängebrücke
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Abb. 2. Versteifter Stabbogen

I. Allgemeines
Der Sicherheitsgrad hat sowohl die Mängel des Materials

wie auch des statischen Nachweises zu decken. Wollen wir ihn
im Interesse der Wirtschaftlichkeit verkleinern, so müssen wir
nicht nur einen zuverlässigen Baustoff, sondern auch eine
zuverlässige statische Untersuchung verlangen. Dem Statiker fällt
also die Aufgabe zu, die Wirkungsweise der geplanten Tragwerke
möglichst wirklichkeitsgetreu vorauszusagen. Die Frage gewinnt
besonders beim Baustoff Stahl an Bedeutung, wo infolge der
homogenen Materialeigenschaften der zu wählende Sicherheitsgrad

massgebend von der Sorge um eine wirklichkeitsgetreue
Erfassung des Spannungs- und Verformungsbildes beeinflusst
werden muss.

Bei der Ueberprüfung einer statischen Theorie müssen wir
in erster Linie die grundlegenden Annahmen einer kritischen
Beleuchtung unterziehen. Diese müssen im allgemeinen, um die
mathematische Behandlung des Problems nicht zu sehr zu
erschweren, möglichst einfach beschaffen sein und entsprechen
daher oft nur angenähert der Wirklichkeit. Eine solche Annahme
ist die in der Elastizitätslehre übliche Vereinfachung, die Kräfte
am System des unverformten Tragwerkes angreifen zu lassen.
Von dieser Voraussetzung musste erstmals bei Untersuchung
von Knickproblemen abgegangen werden, da ja hier gerade die
Formänderung allein den gefährlichen Spannungs- bzw.
Verformungszustand erzeugt. Der Formänderungseinfluss wurde in
der Folge noch bei Hängebrücken (wo er zu Materialersparnissen

führt) berücksichtigt. Er ist natürlich sinngemäss auch
bei Bogenbrücken einzuführen, damit die effektive Sicherheit
die Forderungen nicht unterschreitet. Im letzten Falle kann der
Formänderungseinfluss auf einfache Weise aus der Knickbelastung

abgeschätzt werden1).
In zweiter Linie ist eine Theorie auf mathematische Fehler

und unzulässige Vernachlässigungen zu untersuchen. Es ist das
Ziel dieser Abhandlung, Fehler der bis anhin üblichen
Formänderungstheorie der Hängebrücken und Stabbogen aufzudecken
und zu korrigieren.

In der Elastizitätstheorie 1. Ordnung (ohne Formänderungseinfluss)

ergeben sich die Versteifungsträger-Momente bei der
Hängebrücke und beim Stabbogen zu

M M0 — H y (1)
M0 ist das Moment des einfachen Balkens AB. Ausgehend von
dieser Gleichgewichtsbedingung ist in den bisherigen Veröffentlichungen

der Formänderungseinfluss lediglich dadurch
berücksichtigt worden, dass zur Bogenordinate y noch die vertikale
Durchbiegung rj zugezählt wurde. Für die Hängebrücke ergab
sich daher (Abb. 1)

M M0 — H(y +7?) (2)
•und für den Stabbogen (Abb. 2)

M M0-H<y — Ti) (3)
Wollen wir die Untersuchung genauer durchführen, so ist

es notwendig, auf die primären Kraftwirkungen zwischen Bogen
oder Kabel und Versteifungsträger, das sind die Ständer- und
Hängestangenbelastungen, zurückzugreifen. Diese betragen nach
der bisherigen Theorie bei der Hängebrücke

v — H <y» + t]»\ (4)
beim Stabbogen

v — H (y" — r,") (5)
') F. Stüssi : Aktuelle baustatische Probleme der Konstruktionspraxis.

«SBZ», Bd. 106, S. 119* und 132» (September 1936).

Dass in Wlrklialkeit auch die horizontalen Verschiebungen der
Kabel oder Bogenpunkte einen Einfluss auf die Reaktion v haben
müssen, geht aus zwei Ueberlegungen hervor:

Erstens sind die Belastungen v Ablenkungskräfte des
Seilzuges bzw. des Bogendruckes, und als solche von der örtlichen
Aenderung der Kabel- oder Bogenkrümmung und damit auch
von den Horizontalverschiebungen £ abhängig.

Zweitens stellen sich die Hängestangen und Ständer infolge
der horizontalen Kabel- und Bogenverschiebungen schief und
üben damit auf Kabel und Bogen auch horizontale Belastungen
aus. Die hieraus resultierenden örtlichen Aenderungen des
Horizontalzuges bzw. Schubes müssen sich, auch wenn sie an sich
klein sind, auf die Versteifungsträgermomente wesentlich
bemerkbar machen, da diese als kleine Differenzen grosser
Momente erhalten werden.

Diese beiden Einflüsse wollen wir im Folgenden zahlen-
mässig am Knickproblem des Stabbogens und am
Formänderungsproblem verankerter Hängebrücken zu erfassen suchen.
Es ist verständlich, dass die erste Aufgabe einfacher zu lösen
sein wird als die zweite; denn das Knickproblem ist mathematisch

durch eine homogene, das Formänderungsproblem aber
durch eine inhomogene Differentialgleichung darzustellen. Zudem
fassen wir beim Knickproblem unendlich kleine Formänderungen
ins Auge, sodass wir unendlich kleine Glieder höherer Ordnung
korrekterweise vernachlässigen können, während beim
Formänderungseinfluss zwar kleine, aber doch endlich grosse
Verformungen zu berücksichtigen sind, sodass allfällige Vernachlässigungen

nur zahlenmässig gerechtfertigt werden können. Es ist
also zweckmässig, die beiden Probleme trotz ihrer nahen
Verwandtschaft getrennt zu untersuchen, umsomehr als wir dann
beim Stabbogen die Unstetigkeiten aus der meist weiten
Ständerteilung durch Rechnen mit Differenzen berücksichtigen können,

während sich bei den Hängebrücken mit der meist engen
Austeilung der Hängestangen die Differentialrechnung als
zweckmässiger erweist.
II. Ausknicken von Stabbögen

Wir untersuchen das Gleichgewicht am verformten Bogen-
ausschnitt der Abb. 3. Der Knoten m des Stabbogens werde durch
den aufsitzenden Ständer mit den Komponenten Vm -\- A Vm und
Wm belastet, worin A Vm und Wm aus den Formänderungen
entstehen.

Das Gleichgewicht in horizontaler Richtung fordert:
Hm + i-Hm_i Wm (6)

Vertikal ist das Gleichgewicht erfüllt für:
ym+ AVm= -Hm+itgî.m + i + Hm_itg9>m_i zi(Htg9)) (7)

sec <pm"

Ax M

ày Vm

Vm+âV,% IW'm 5m«-l

d</m-, m+i
Sm*i177-1

L*« \
Abb. 3. Gleichgewicht am
verformten Stabbogen
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Hierin ist:
(Vm — Vm (Vn

3'm m Sm 2* m

oder wenn wir mit {/lx — AI
(Ay -

-l — Vn l)
1 + Sm-l)
erweitern

r Ay-Ar, 1

lAx + At; J„

worin wir AS2

tg<p

gegenüber Ax

tgg>=l

drj) (Ax — At-)
Ax* - AS2
vernachlässigen dürfen:
mHXmÊ

Axm (8)Ax Ax
Führen wir diesen Wert in Gleichung (7) ein und setzen noch

H Ha + AH
worin A H den Formänderungseinfluss ausdrückt, so ergibt sich
schliesslich am verformten System:

dy A_n\
A x Ax

4y 4v\tlÊË
Vm + AVm=(H0 +

— (H0 + AH,

AH l)

m
m

mm
i

m+1
(9)

(10)

x A x
Im unverformten Zustand hiSregen gilt:

Somit können wir den Formänderungseinfluss separieren und
erhalten, wenn wir alle unendlich kleinen Glieder höherer
Ordnung weglassen:

dr\ | Ay A§
fàVm B°{~ Ax

+-H,

+ Ax
An

-)
Jx WM

Ay A§
A x

4Hm

Ax
4y

A x

\ Ax )„
m
— âB. + 1Ax )m—\ m~f- \Ax/m+ \

Wir können auch gleich die Querkraft im Versteifungsträger,
die dieser Belastung entspricht, angeben:

4n Ay AS
AaQ=H0 Ax A x lx Ax

I
eif

Ay

(tl)

Tabelle 1. Kritischer Horizontalschub des Stabb ogens nach Abt>.4

tga sec2 a | An AS 1 h w i
A 0 0

1 0,72 1,5184 0,6298 + 0,6298 -f- 0,4535 + 0,4535 1,78 0,0408

2

3

4

m

0,56
0,40
0,24
0,08

1,3136
1,1600
1,0576
1,0064

1

0,9802

0,5972

0

+ 0,3702

— 0,0198

— 0,3830

— 0,5972

+ 0,2073

— 0,0079

— 0,0919
— 0,0478

+ 0,6608

4- 0,6529

+ 0,5610

+ 0,5132

1,22

0,82

0,58

0,50

0,0867

0,1274

0,1548

0,1642

% Vo 1 i Ax
Ax

l) o 0; V H A (tga) 0,16 H

AH Hq A rj sec3 a — AHtg a Ax (Q — Qc)âx Mq^qc

A 0

1 — 0,4918 -f 0,9563 + 0,3541 + 1,3104 -f 1,3104

2 — 0,4510 -f 0,4863 + 0,2526 -f 0,7389 -f. 2,0493

3 — 0,3643 _ 0,0230 + 0,1457 + 0,1227 + 2,1720

+ 1,8238

-f 1,2294
4

m

— 0,2369 — 0,4051 + 0,0569 - 0,3482

— 0,0821 — 0,6010 + 0,0066 — 0,5944

A x
1,B V„H B |jj

Mqc Mq KM2) Qm § Vt

A 0 0 0 0

1 — 0,2459 +1,0645 5,816 + 14,103 14,103 0,6298

2

3

4

m

— 0,4918

— 0,7376

— 0,9835

—1,2294

+ 1,5575

-f 1,4344

+ 0,8403

0

8,729

8,135

4,796

+ 8,287

— 0,442

— 8,577

— 13,373

22,390

21,948

13,372

0

1

0,9802

0,5972

0

%B % E n0HAx
6 E J

%HAx
6E J

rj0H Ax*
6E J M

'>K*> ££f(M»

Hk
6 E J

22,390 Ax3
Vernachlässigung von g

.l-f 4Mm + Mm + i)

E J E JW J E J
— 26,80 gegenüber 40,79 bei

Qc ist eine
Integrationskonstante, die aus
den Randbedingungen
zu bestimmen ist

(M 0).
Es verbleibt uns

noch die Grösse von
g zu berechnen. Hier
können wir annehmen,
dass ein Bogenstab
durch den Knickvorgang

seine Länge s
nicht ändert, es ist
daher
nach der Verformung
s2= (Ay - Av)* +
(Ax + A?)»

vor der Verformung
woraus sich

A l
d£~T

Hür Hkrl-io-ix

F--1

Abb. 5. Knickschub für hohe Ständer
In Funktion des Pfeilverhältnisses

Al

-. Ay
4y
Ax

» + Ax*

Ar/ (12)

ergibt. Unsere Grundgleichung (11) lautet daher:

oder, wenn wir die Neigungswinkel a der Bogenstäbe vor derwenn wir
Verformung einführen:

An
Ax sec2a — AHtga -\- (13)

AH finden wir durch Summation der Horizontalbelastungen W,
wobei je nach Stützungs- und Verformungsbild zu überlegen
ist, wo A H 0 sein muss. W sind die Horizontalkomponenten
der Ständerdrücke, also beziffern sie sich zu

Wm
a

h„
V„ (14)

Hierin ist a die Verschiebung des Versteifungsträgers, hm die
Höhe des Ständers.

Treten wir nun an unsere eigentliche Aufgabe heran, den
kritischen Horizontalschub des Bogens zu bestimmen, so gehen
wir am zweckmässigsten in bekannter Weise so vor, dass wir
die Form der Ausbiegung r\ annehmen. Setzen wir die Ausbiegung,

die sich aus den zugehörigen Belastungen AV ergibt, an
einer Trägerstelle dem angenommenen Werte gleich, so haben
wir einen ersten Näherungswert des kritischen Horizontalschubes
gewonnen. Durch Wiederholung der Rechnung mit der neuen
Form der Biegelinie lässt sich schliesslich die Genauigkeit
beliebig steigern. Hierbei ist nicht ausser acht zu lassen, dass die
der Querkraft nach (13) zugehörigen Momente M0- Momente
sind, die im allgemeinen Fall eine Aenderung des Horizontalschubes

bewirken, der nach den üblichen Methoden der
Elastizitätstheorie berechnet wird. Lediglich bei symmetrischem Tragwerk

undantimetrischer Knickform tritt diese Aenderung nicht ein.
In Tabelle I ist die einfache Rechnung für das Beispiel der

Abb. 4 durchgeführt.
Wie Abb. 5 zeigt, ist der Abfall der Knicklast bei

Berücksichtigung der Horizontalverschiebungen schon ohne Stützen-
schrägstellung beträchtlich, besonders hei grossen Pfeüverhält-
nissen. Sind zudem die mittleren Ständer sehr kurz, so fällt die
Tragfähigkeit weiter ab (Abb. 6). Eine interessante Erscheinung
tritt beim Uebergang in den Grenzfall hm 0 ein, d. h. wenn
der Bogenscheitel mit dem Versteifungsträger gelenkig verbunden

ist. Dann liegt nämlich ein zweifach statisch unbestimmtes

/E3 konsf.

10-AX

EJ
Abb. 4. Berechnungsbeispiel : Knicklast Hkr 26,80
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Abb. 6. Einfluss der Ständerschrägstellung
in Funktion der Ständerhöhe für / : l '/b
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Wm
¦1-10-AX-

f
•\ Hkr

M
0 0,1 0,2 Of im

Abb. 7. Knicksehub bei direkter Verbindung
von Bogenscheitel und Versteifungsträger

,3

EJ ""•

l-n-ax

—r<t3t2-59ßä

0 3 15 6

Abb. 8. Einfluss der Felderzahl
(flache Bogen / : l 0)

System vor, für das die bisherige antimetrische Knickform nicht
mehr möglich ist. Die niederste Knicklast ergibt sich vielmehr
für die symmetrische Knickform mit drei Halbwellen, die natürlich

bedeutend grösser ist als für zwei Halbwellen. Den Uebergang

vom einen System zum andern bei sehr kleinem hm können
wir uns so vorstellen, dass der Bogen zuerst nach der
antimetrischen Form soweit ausknickt, bis der mittlere Ständer
waagrecht liegt, und so die weitere horizontale Verschiebung
verhindert (sofern der Anschluss zugfest ist). Dieses System
ist dann wieder stabil und knickt erst bei höherer Belastung
nach der symmetrischen Form aus. Derartige Formänderungen
sind natürlich für unsere Tragwerke nicht zulässig, und wir
müssen daher den mittleren Ständer genügend hoch wählen oder
dann den Bogen direkt mit dem Versteifungsträger verbinden.
Im letzten Falle können wir das System wieder einfach statisch
unbestimmt machen, wenn wir beide Lager des Versteifungs-
Trägers beweglich gestalten (Abb. 7).

Aus Abb. 8 sehen wir noch, wie die Knicklast bei weiter
Ständerausteilung ansteigt.
III. Formänderungstheorie verankerter Hängebrücken

Führen wir wie üblich den einfachen Balken AB (Abb. 1)
als Grundsystem und die Horizontalkomponente X des Seilzuges
an einer beliebigen Stelle (z. B. der Seilmitte) als Ueberzählige
ein, so besteht unsere Aufgabe zunächst darin, die Belastungen
v, die das Seil in deformierter Lage auf den Versteifungsträger
infolge X 1 ausübt, zu bestimmen. Wir wollen gleich allfällige
Schrägstellungen der Hängestangen berücksichtigen und dem-
gemäss neben der Vertikalkomponente v noch eine Horizontal-
Komponente w berücksichtigen. Im allgemeinen liegen die
Hängestangen so dicht, dass wir v und w als gleichmässig verteilte
Belastungen pro Längeneinheit dx auffassen können. An der
Abbildung 9 lesen wir folgende Gleichgewichtsbedingungen ab:
Horizontal: — H -f wdx -\- (H ¦+- dH) 0

dH
dx (15)

Vertikal: — H tgç> + vdx g (ff -f dH) tg (y
worin tg(<p + d<p) tg <p + dtgrp
eingesetzt werden kann. Somit ergibt sich:

dH _ dtgtf d

d<p) =0

V : --^tSV-H -^(Ht^ (16)dx "° T dx
Da wir das Gleichgewicht am verschobenen Seilelement betrachten,

so haben wir nun rp durch die Kabelordinate y und die
Kabelverschiebungen rj und £ auszudrücken:

dy -\- dntg cp —-—¦—ESBT dx + d?
Zar Vereinfachung des Nenners erweitern wir auch hier wieder
mit (da; — d£) und dürfen dann d|2 gegenüber da;2 vernachlässigen

:

x >j» tf* — —S

y<*y

7""7w-ax
4*

l-dt

S-H-sec cp

(p+dw
-1 y

S+dS '{H+dH}sK{<p*df)

vdx HB

Abb. 9. Gleichgewicht am verformten Kabelelement

tg<t (dy + drj) (dx-\-d$)
dx* (y + v') d ') (17)

sodass nun unsere Gleichung (16) lautet:
d

v — H (y + rj") + H-^- (y1 + rj') £' + w (y -f rj') (1 — £')

Wir haben an einer Stelle x x0 den Horizontalzug mit H 1
angenommen und können daher schreiben:

H 1 -f AH (18)
worin wir AH aus (15) gewinnen:

AH — / wdx^f £g| (y" + v") (19)
Xo Xq

Der Ausdruck für die Vertikalkomponente der Hängerbelastung
lautet jetzt:

v -(l+ ¦""> — äH (y" + ri") + -y— [l- (y
d

dx (AH) (y
dx L

n') d — f)
B("'9E

Im letzten Gliede dürfen wir f gegenüber 1 vernachlässigen und
können daher folgendermassen zusammenfassen:

+ v') (h' — àH) |i^BBBIH
Erinnern wir uns an Gleichung (4), so erkennen wir, dass das
zweite Glied eine Verbesserung Av gegenüber der bisherigen
Theorie darstellt. Die zugehörige Verbesserung AQ ergibt sich
durch Integration:

AQ (y' + y') (§' - AH) +QC (21)
Das entsprechende Moment, dessen Randwerte (M 0) durch
Wahl der Integrationskonstanten Qc befriedigt werden können,
bezeichnen wir sinngemäss mit AM, sodass wir nun im
Versteifungsträger das Gesamtmoment

M M„ — X(y _ AM + rj) (22)
wirkend haben. Vernachlässigen wir, wie zulässig und üblich,
die Verlängerung der Hängestangen, so erfordert der Zusammenhang

von Kabel und Versteifungsträger:
M

EJrj'
rj" EJ

X(y - AM + rj) (23)
Unsere Aufgabe könnte als gelöst gelten, wenn AM so wie y
eine gegebene feste Grösse wäre. Da nun aber AM wieder eine
Funktion von rj ist und eine direkte Auflösung von Gleichung (23)
nach Einsetzen von AM gemäss (21) aussichtslos erscheint, sind
wir auf ein Iterationsverfahren angewiesen. Wir dürfen nämlich

vermuten, dass AM gegenüber y einen kleinen Wert haben
wird und können es daher in einem ersten Rechnungsgang
unterdrücken, d. h. wir lösen Gleichung (23) nach den bereits
bekannten Methoden auf. Aus den so gewonnenen Werten von -n, §
lässt sich nun ein erster Näherungswert AM berechnen. Das
Verfahren ist dann einfach zu wiederholen, bis angenommene
und errechnete Biegelinien genügend genau übereinstimmen.

Rascher und bequemer kommen wir mit folgender Abschätzung

zum Ziel: Nehmen wir an, dass Biegelinien und Momentenflächen

aufeinanderfolgender Rechnungsgänge ähnlich verlaufen,
so ist mit

üf, M0 (1 — a)
in der zweiten Wiederholung:

M% M0 [1 — a (1 — «)] M0 (1 — a + a2)
und der wirkliche Wert:

M M0 (1 — a -f. a* — as + Ma
1 + «

M
M*

2«, M, (24)
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Es ist also nur noch ein Rechnungsgang mit dem Zusatzglied
AM erforderlich.

Ein praktisch gangbarer und den Methoden der Baustatik
angepasster Weg zur Auflösung der Grundgleichung (23) wurde
früher (ohne Zusatzglied J M) gegeben2). Das Verfahren sei im
Zusammenhang hier kurz wiedergegeben.

Wie bekannt, haben Systemverformungen die Folge, dass
Spannungs- und Verformungswerte nicht mehr proportional mit
der Belastung wachsen. Es gilt also unangenehmerweise auch
das Superpositionsgesetz nicht mehr, auf dem sich unsere
gewöhnliche Elastizitätslehre aufbaut. In unserem hier betrachteten
Falle rührt dies davon her, dass in Gleichung (23) das Glied Xr;,
also das Produkt zweier mit der Belastung veränderlicher
Grössen, auftritt. Denken wir uns aber, um einen kleinen Kunstgriff

anzuwenden, X durch einen von der Belastung unabhängigen

Festwert N ersetzt, so ist die Linearität und damit das
Superpositionsgesetz wieder hergestellt, und es muss dann für
strenge Gültigkeit lediglich gefordert werden, dass der
angenommene Wert N mit dem berechneten Gesamtwert X übereinstimmt.

Wir schreiben also Gleichung (23) in der Form:
— EJrj" + Wi/ M0 — X(y — AM) (25)

und können nun eine Trennung in die Teileinflüsse vornehmen:
n */o — xvx i

sodass für jeden Teileinfluss k die Differentialgleichung
— EJrjk--\-Nrjk Mk (26)

gilt, die wir durch Ansetzen des Gleichungsystemes
— (U — imN) Vm _ i + 2 (U 4- (im + im + i) N) Vm -- (U — im + 1N)r!m + 1 im(Mm-1 + 2Mm) +

-)- im + 1(2Mm + Mm + i) (27)

mit den Abkürzungen U ¦. und im —-—
A x* J„

für jede beliebige Belastung und für veränderliches Trägheitsmoment

numerisch integrieren können.
Mit den Momenten

~Mk Mk — Nrjk (28)
ergibt sich das Moment im Versteifungsträger durch Superposition

M Iï0 -\-X(Wx l + AÜÜ) (29)

Wir haben nun noch die Elastizitätsbedingung zur Bestimmung
der Ueberzähligen X anzuschreiben, die auszusagen hat, dass
sich die Verankerungspunkte der Kabel nicht gegeneinander
verschieben. Sie stellt sich genau wie in der Elastizitätstheorie
in der Form

Xan -f o„ 0 (30)
dar, worin die- Verschiebungsgrössen a jetzt aber die Werte

yMlH
1¦ EJ

yMx

dx

EJ

4- otttLt

¦ dx 4-
LM L 1 *v

dx
cos3

dx

(31)

annehmen. Die Längen L und Lt können natürlich genau genug
am unverformten System berechnet werden. Es sei noch darauf
hingewiesen, dass die Verbesserung A M gegenüber der bisherigen
Berechnungsweise sich lediglich im Belastungszustand X 1,
also in der Grösse an, auswirkt, die Verschiebungszustände M0
und 4- t? hingegen unberührt lässt.

Wir müssen noch berücksichtigen, dass das Eigengewicht,
oder zumindest ein Anteil g desselben, am Kabel direkt aufgehängt

ist und den Versteifungsträger daher nicht belastet. Es
ist deshalb im Werte a10, der im übrigen für die Totallast zu

L
bestimmen ist, der Anfangswert ff„ einzubeziehen, der

EkF°k
sich bei vollständiger Entlastung des Kabels einstellen würde.

Es ist noch nachzutragen, wie wir die Horizontalverschiebungen
S der Kabelpunkte aus den Einsenkungen n ermitteln,

¦) F. Stüssi : Zur Berechnung verankerter Hängebrücken. «Abhandlungen
der Internat. Vereinigung für Brücken- und Hochbau», 4. Band.

90n

g-S/it/m p~ifit/m Hg'l555,2t

EJ-l,0-l06m2t; EkFk-2/3t (Kette) L'L^tsifium ËË1

Abb. 10. Berechnungsbeispiel der Hängebrücke

da wir sie ja zur Bestimmung der Zusatzmomente A M bzw. der
zugehörigen Querkraft A Q benötigen.

Ein Seilelement hat die Länge
nach derVerformung: (ds 4- Ads)* (dx -\- d|)2 4- (dy -\- dt])*
vor der Verformung: ds* dx* 4- dy*
Durch Subtraktion und Vernachlässigung der Glieder d_2 und
dn* finden wir

y'V' (32)Ads
cos a dx

also für das Kabel (F S konst): !'
m

H„
E F cos3 a

für die Kette
V cosa /

H„

y'rj' (32 a)

yrj' (32b)
cos a f EFC cos2 a

Hierin kann genau genug Hp durch den Mittelwert ffp X — Hg
ersetzt werden.

Berechnungsbeispiel
Wir woüen zur Darlegung der Methode die Hängebrücke

nach Abb. 10 für Eigengewicht und halbseitige Nutzlast
berechnen.

Das Gleichungsystem (27) lautet für EJ konst

- (U - N)m _ 1 4- (2 U 4- iN)m -— (U — N)m + 1 Mm_1 +4:Mnl + Mm + 1 2M
fi TP T

worin U —-, 15000 t; N 1900 t (geschätzt) ; es ist inAx*
Tabelle H angeschrieben.

In der 1. Berechnungsstufe (Tabellen II und HI) vernachlässigen

wir die Verbesserung A M. Nachdem wir das Gleichungssystem

nach i, aufgelöst haben, können wir die Momente M
bilden und die Verschiebungsgrössen a durch Flächenberechnung
mittels der Simpsonregeln bestimmen.

Wir erhalten also gemäss (31)
1,0-10° \EJ a.

EJ a,

12,7640 • 10« 4- 1555,2 • 487,64

— 13,0418 • 10° m» t
1,0 • 10»

2,73 • 10°

6715,4 4- 487,64 6894,0 m»

Xz= 1891,76 t (N 1900 t genügend genau),

2,73 • 10«

Somit ergibt sich der Horizontalzug zu
m
IL.

und die Momente M können nun superpohiert werden. Im zweiten
Berechnungsgang stellt sich die Aufgabe, zu den Verformungen
des 1. Berechnungsganges die Verbesserungen d M für den
Belastungszustand X 1 zu bestimmen. Wir erhalten zunächst die
Neigungen der elastischen Linie rj' als Querkraft zur Belastung

— M
EJ und können nun nacheinander g' (nach 32b) und

durch Integration £, die Horizontalbelastung w des Seils und
die zugehörige Horizontalzugänderung JH (nach 19) und schliesslich

die Verbesserungen AQ (nach 21) und AM ermitteln. Die
vorkommenden Integrationen: rj' frj" dx; g f-j' das; J H

fw dx AM fjQdx müssen wir numerisch durch Flächen-
summation vornehmen, wobei wir die Teilflächen als trapezförmig

voraussetzen können. Es sei hier auf Wiedergabe der
Zahlenrechnung verzichtet, der Verlauf der einzelnen Grössen
geht anschaulicher aus Abb. 11 hervor. Ganz analog wie bei den
übrigen Einflüssen im ersten Berechnungsgang ergibt sich hier

Tabelle II. '/-Gleichungen für die erste Berechnungstufe

Vi % % Vi Vi Ve s M0>ym ¦SUV" -2Mx=i
1 4- 37 600 —13 100 84 480 6 720 44,444
2 — 13100 4- 37 600 — 13100 155 760 11040 81,944
3 — 13100 -|- 37 600 — 13100 211200 12 480 111,111
4 — 13 100 4- 37 600 — 13100 250 800 11040 131,944
5 — 13 100 + 37 600 — 13100 274 560 6 720 144,444
6 — 26 200 4- 37 600 282 480

mt mt
148,612

m
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impuni, i|iiiiiiii|iiiiiii|iiiih'-p*:
i 2 3 a s 6 7 e a To Ti 2*.

Formanderungen aus p

S6Z7-I0 -m 23065 IO

Kraftwirkunoen aus x=i

AQ-g,

dMAM/00626m

HiiiiiiiliiiiiiiliiiiiiiiliiiiiiiyinipiiiH'-y^

Abb. 11. Berechnungsgang für die Zusatzmomente AM aus X l
der Verlauf von AM und der Wert der zugehörigen VerscWe-
bungsgrösse:

EJ Aan 20,22 m3
13,0418-10« „„„„„„.1886,22 tsomit X

6894,04 4- 20,22
Die Superposition der Momente gemäss (29) hat mit diesem

Wert zu erfolgen.
Mit noch weiteren Rechnungsgängen ergaben sich

nacheinander folgende Maximalmomente:
im Punkt 3: M0 + 562,7 mt im Punkt 9 : M0 -- 532,3 mt

AT, 4- 467,5 mt «MB- 448,3 mt
AT, -f 483,1 mt M, -- 461,3 mt
M3 4- 480,2 mt *, -- 458,9 mt

max M ç^ Mt (- 480,7 mt min M ç^ M4 -- 459,3 mt
Die Abschätzung nach (24) ergibt

562,72
2 • 562,7 -- 467,5 '"

_ 532,32
mm M— - /iKoorvit

2 • 532,3 -- 448,3

Man sieht also, dass die Abschätzung von vorzüglicher
Genauigkeit ist und uns daher der Mühe mehrerer Rechnungsgänge

enthebt.
Der Fehler der bisherigen Theorie in den massgebenden

Momenten beträgt bei unserem Beispiel rd. 14 °/0. Bei den selben
Brückenabmessungen, jedoch mit einem 5,25 mal steiferen Balken
(E J 5,25 • 10« m21) wurde diese Abweichung noch zu rd. 7°/0
erhalten, sodass wir also bei mittlerer Steifigkeit und üblichem
Pfeilverhältnis nach der alten Theorie mit einem Fehler von
mindestens 10% rechnen müssen. Derartige Fehler übersteigen
natürlich das für solche Bauwerke zulässige Mass. Wenn man

imo-2 3 4 5 6 7 9 10

<om

wm ¦

200omt-

/ Elastiritätstheorie

/ alte Formênderungstheorie
y verbesserte Fopmanderungstheorie

Abb. 12. Momente und Durchbiegungen des Versteifungsbalkens

noch bedenkt, dass die eben dargelegte verbesserte Berechnungsmethode

zu Materialersparnissen führen muss, so dürften wohl
ihrer praktischen Anwendung keine Hindernisse im Wege liegen.

Zusammenfassung
Durch Vernachlässigung der horizontalen Verschiebungen

der Kabel- und Bogenpunkte ergab sich bei der bisher gebräuchlichen

Formänderungstheorie verankerter Hängebrücken und
Stabbogen ein zu kleiner Formänderungseinfluss, sodass sich
Momente und Verformungen bei den Hängebrücken zu gross, bei
den Stabbogen zu klein, und die Knicklast zu gross errechneten.
Die Berücksichtigung der Horizontalverschiebungen wird durch
ein numerisches Verfahren ermöglicht und äussert sich einerseits
— mit dem Pfeilverhältnis zunehmend — in der Krümmung des

verformten Kabels oder Bogens, anderseits ¦— mit zunehmender

Länge der Hänger und Ständer abnehmend — in
Horizontalbelastungen von Kabel und Bogen durch Schiefstellen der
Hänger und Ständer.

Schweiz. Verein von Dampfkessel-Besitzern
Im Jahresbericht 1939 dieses Verbandes wird darauf

hingewiesen, dass in der gegenwärtigen Zeit trotz Personalmangel
infolge der Mobilisation von den Mitgliedern und den Inspektoren
eine besonders strenge Pflichterfüllung verlangt werden muss,
spielen doch die Wirtschaftlichkeit der Anlagen bei den hohen
Brennstoffkosten und die Verhütung von Betriebsausfällen eine
noch wichtigere Rolle als in Friedenszeiten. Wenn das Heizpersonal

militärdienstpflichtig ist, hat das Unternehmen vorsorglich
und rechtzeitig geübtes Hilfspersonal heranzubilden, unter

Beachtung von Art. 44 der bundesrätlichen Verordnung, wonach
es für die Haltung von sachkundigem und zuverlässigem
Personal verantwortlich ist. Falsch ist es, dem Heizer nebenbei
noch alle möglichen Verrichtungen aufzuerlegen, denn die meisten

Schäden und ihre kostspieligen und zeitraubenden Reparaturen

werden durch Unachtsamkeit des Personals verursacht.
Es soll dieses darum seine ganze Aufmerksamkeit der eigentlichen

Aufgabe am Kessel widmen können und die nur so
ermöglichte, wirtschaftliche Betriebführung allein wird die
Lohnausgaben kompensieren.

Der beträchtliche Zuwachs an überwachten Objekten ist
hauptsächlich der neuen Bestimmung über die Kontrolle von

Tabelle IM. Momente und Durchbiegungen für die erste Berechnungstufe

Aym M0'nt — Mx=i y r, Bym'to « ant
Vo — VX=1 M0'ym M onl -ATX=1 y ay?m — V Afx-l

A 0 0 0 0 0 0 0 0 0 0 0

1 14 520 1200 7,6389 6,5558 0,4371 3,4489 2064,0 369,5 1,0860 15 767 8,296

2 26 400 1920 13,8889 12,3678 0,7416 6,5066 2901,2 511,0 1,5264 40 294 21,200

3 35 640 2160 18,7500 17,0526 0,8487 8,9712 3240,1 547,5 1,7047 60 752 31,963

4 42 240 1920 22,2222 20,4544 0,7416 10,7609 3376,6 511,0 1,7765 75 035 39,478

5 46 200 1200 24,3056 22,5108 0,4371 11,8428 3429,5 369,5 1,8043 83 356 43,855

6 47 520 0 25,0000 23,1985 0 12,2046 3442,9 0 1,8113 86 073 45,283

mt mt m m m 10-» m/t mt mt m m21 m2
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