Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 113/114 (1939)

Heft: 19

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

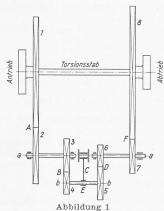
INHALT: Ein mechanischer Drehmomentenmesser. - Die vollautomatische ASE-Neigungswaage. — Der Einfluss der Lebensbedingungen auf den Energieverbrauch im Haushalt. - Wettbewerb für einen Erweiterungsbau der Schweizer Mustermesse Basel. — Zum Abschluss der Schweiz. Landesausstellung 1939. - Mitteilungen: Was wird aus dem Ausstellungsgelände? Gewickelte Eisenkerne für Transformatoren. Kriegsflugzeuge. Die Rekorde des Motorschiffes «Oranje». Abendkurs über Ausdrucks- und Verhandlungstechnik. Nationalratswahlen. Der Bommersteintunnel an der Walenseestrasse. Hochwasser im Zürcher Oberland. Neue reformierte Kirche in Wettingen. — Nekrolog: Robert Zollinger. — Wettbewerbe: Schulhaus in Sutz-Lattrigen (Bielersee). — Literatur. — Mitteilungen der Vereine. - Sitzungs- und Vortrags-Kalender.

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Band 114

Nr. 19

Ein mechanischer Drehmomentenmesser

Von Dipl. Ing. GERHART KRONACHER, G. E. P., in La Paz, Bolivien


Bei dem in Abb. 1 dargestellten Drehmomentenmesser wird das Drehmoment von Antrieb auf Abtrieb über einen Torsionsstab übertragen, dessen Torsionswinkel α vermittelst eines Differentialplanetengetriebes abgegriffen wird. Die Zahnräder 1 bis 8 sind so gewählt, dass der Ausschlag β des Armes C ausschliesslich eine Funktion des Winkels α und zwar diesem proportional

ist. Es ist hierzu die folgende Bedingung für die Radien der Zahnräder nötig:

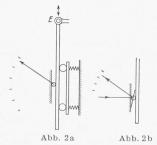
$$\frac{r_1 \, r_3 \, r_5 \, r_7}{r_2 \, r_4 \, r_6 \, r_8} = 1 \qquad (1)$$

Da das vom Torsionsstab Da das vom Torsionsstab übertragene Drehmoment M_T proportional zu α ist, $M_T =$ $k \alpha$, ist auch β proportional zu Mr.

Damit nun der Ausschlag β ein hinreichend genaues Mass für das gesamte von Rad 1 auf Rad 8 übertragene Drehmoment wird, müssen die Reaktionen in den Berührungsstellen A und F genügend klein bleiben. An diesen beiden Stellen können Kräfte auftreten, 1. zufolge

der auf Arm C wirkenden Schwerkraft und 2. zufolge der d'Alembert'schen Massenkräfte bei nichtstationärem Zustand.

Der Einfluss der Schwerkraft kann praktisch vermieden werden, indem man Arm C in der Ausgangslage vertikal stellt $(\beta$ beträgt höchstens etwa $2 \div 3^{\circ}$). Vollkommen lässt sich der Einfluss der Schwerkraft umgehen, wenn man Arm C in Bezug auf die Axe a ausbalanciert.


Um das Verhalten des Getriebes in nichtstationärem Zustand zu überblicken, denke man sich Rad 8 ruhend, führe die d'Alembert'schen Massenkräfte ein und bestimme die Kräfte bzw. Kräftepaare mit dem Prinzip der virtuellen Arbeit. Man sieht dann, dass die Massen der Räder 1, 2, 3 bzw. 6, 7, 8 lediglich wie eine Vergrösserung der Trägheitsmomente der umlaufenden Teile der beiden gekuppelten Maschinen wirken. Bei etwas grösseren Maschinen ist dieser Einfluss jedoch ganz unwesentlich und sei daher in der Rechnung vernachlässigt. Durch die Trägheitskräfte des Armes C mit den Rädern 4 und 5 werden auf Rad 1 bzw. Rad 8 zwei dem Absolutwert nach gleiche Drehmomente ausgeübt; ihr gemeinsamer Betrag ist das durch das Getriebe übertragene Moment M_g . Misst man den Verdrehungswinkel lpha des Rades 1 und das darauf ausgeübte Drehmoment M_g im selben Sinne, so gilt:

$$M_g = -\left\{ \left(\frac{\beta}{\alpha}\right)^2 \Theta_a + \left(\frac{\gamma}{\alpha}\right)^2 \Theta_b \right\} \frac{d^2 \alpha}{dt^2} (2)$$

Dabei bedeuten: y den Verdrehungswinkel des Rades 4 bzw. 5. Θ_a das Trägheitsmoment des Verbandes C, 4, 5 bezüglich Axe a, θ_b das Trägheitsmoment der Räder 4 und 5 bezüglich Axe b. Das gesamte von Torsionsstab und Getriebe gemeinsam übertragene Drehmoment Mtot ist:

$$M_{
m tot} = -k \alpha - \left\{ \left(\frac{\beta}{\alpha} \right)^2 \Theta_{\alpha} + \left(\frac{\gamma}{\alpha} \right)^2 \Theta_{b} \right\} \frac{d^2 \alpha}{dt^2} .$$
 (3)

Da lediglich der Term $k\alpha$ gemessen wird, muss man, um auch bei schnell schwankendem Drehmoment eine hinreichende Genauigkeit und geringe Beanspruchung der Zahnräder zu erhalten, den zweiten Ausdruck in Gl. 3 klein machen. Dies gelingt, indem man eine massenarme Konstruktion verwendet, für Punkt E nur eine kleine Verschiebung von $2 \div 3$ mm zulässt und diese möglichst

trägheitsfrei mechanisch (Abb. 2a) oder optisch (Abb. 2b) vergrössert.

Ein weiterer Fehler entsteht noch durch Teilungsungenauigkeiten der Zahnräder. Es superponieren sich die Fehler, herrührend von den Berührungsstellen in A, B, D, F. Da diese Fehler voneinander unabhängig sind, ist hier der Begriff des «wahrscheinlichen Fehlers» massgebend.

Numerisches Beispiel. An folgendem praktischem Beispiel sei das Verhalten des Drehmomentenmessers genauer untersucht.

Δ	nn	nh	m	on	٠
7	1010	un	110	c_{IU}	

Rad n	Zähnezahl z,	Zahnräder	
	The state of the s	Radius r_n	Modul m _n
1	105	131,25	2,5
2	70	87,5	2,5
3	48	36	1,5
4	24	18	1,5
5	48	36	1,5
6	24	18	1,5
7	25	31,25	2,5
8	150	187,5	2,5

Torsionsstab: Länge l=25 cm, Durchmesser d=3.5 cm. Material: ungehärteter Federstahl, $G = 850\,000 \text{ kg/cm}^2$, $\sigma_p = 6000$ kg/cm².

Bei einer mittleren maximalen Schubspannung τ von 1500 kg/cm² überträgt der Torsionsstab ein Drehmoment von

$$M_T = 12900 \text{ [cm kg]}$$

Diesem Drehmoment entspricht ein mittlerer Torsionswinkel von: $\alpha_{\text{mit}} = 0.0254$ (Bogenmass)

und der entsprechende Ausschlag von Arm C:

$$\beta_{\text{mit}} = 0.0508$$

 $eta_{
m mit}=0{,}0508$ Verschiebung von Punkt $E\colon \delta_E=2{,}74$ mm

Fehler infolge Teilungs-Ungenauigkeiten der Zahnräder: Zwei ineinandergreifende Zahnräder mögen eine Teilungsungenauigkeit von $\delta = 0,003$ mm aufweisen.

Herrührend von Fehler in	Entsprechender Fehler in E
A	$\delta \frac{r_3 r_5}{r_2 (r_5 - r_4)} = 0.82 \delta$
В	$\delta \frac{r_5}{r_5 - r_4} = 2,00 \ \delta$
D	$\delta \frac{r_4}{r_5 - r_4} = 1,00 \ \delta$
F	$\delta \frac{r_6 r_4}{r_7 (r_5 - r_4)} = 0,57 \delta$
	total 4,39 δ

Mit $\delta = 0{,}003$ mm ergibt sich ein maximaler Fehler von $f_{
m max}=$ 0,0135 mm, bzw. $f_{
m max}=$ 0,49 $^{
m o}/_{
m 0}$ und ein «wahrscheinlicher Fehler» von $f_w = 0,00735$ mm, bzw.

$$f_w = 0.27^{\,0}/_{0}$$

Der Fehler infolge der Trägheitskräfte:

Rad 8 sei ruhend gedacht und α als periodische Funktion angenommen. $\alpha = \hat{\alpha} \sin \omega t$

Der Torsionsstab überträgt das Moment $M_T = -k \alpha$

$$k = 510000 \text{ [cm kg]}$$

$$M_T = -510\,000\,\hat{\alpha}\sin\omega t$$

Bei der Berechnung von θ_a sei ein Gewicht von 0,5 kg und ein Trägheitsradius von 5,4 cm angenommen.

$$\theta_a = 0.0149 \; [ext{kg cm sec}^2]$$

Bei der Berechnung von Θ_b sei ein Gewicht von 0,3 kg und ein Trägheitsradius von 3 cm angenommen.

$$\Theta_b = 0.0028 \text{ [kg cm sec}^2]$$

Ferner ist:
$$\left(\frac{\beta}{\alpha}\right)^2 = 4$$
; $\left(\frac{\gamma}{\alpha}\right)^2 = 9$

Damit wird: $M_g = \omega^2 0.0845 \hat{\alpha} \sin \omega t$

Lässt man hier einen Fehler von 10%, zu, was zulässig ist, da es sich bei hohen Frequenzen doch nur um sehr kleine Schwan-