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Die Berechnung schmaler, dreiseitig gelagerter Platten

Von Dr.Ing. HANS BLEICH, Birmingham

Wéihrend der Ingenieur zur Berechnung vierseitig gelagerter
Platten in jedem Handbuch Zahlentafeln vorfindet, die ihn der
Miihe entheben erst langwierige Rechnungen durchzufiihren,
sind entsprechende Tafeln fiir die Berechnung dreiseitig gela-
gerter Platten nicht veroffentlicht worden, obwohl solche Platten
hiufig genug vorkommen.

Es ist nun durchaus moglich, die dreiseitig gelagerte Platte
fiir eine ganze Reihe von Lagerungs- und Belastungsarten zu
behandeln. Die Ergebnisse sind jedoch unendliche Reihen, die
besonders unhandlich werden, wenn die angreifenden Lasten
nicht gleichméssig verteilt, sondern auf einem Teil der Platte
konzentriert sind. Um auch diesen zweiten Fall mit verniinf-
tigem Rechenaufwand behandeln zu konnen, schridnken wir die
Aufgabe dahin ein, dass nur schmale Platten untersucht werden
sollen, das heisst, nach Abb. 1 soll @ grosser sein als b. Fiir
diesen Fall wird im I'olgenden ein N&herungsverfahren ange-
geben, das fiir die momentenfrei gelagerte Platte nach Abb. 1

sehr gute Ergebnisse liefert.
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Bezeichnet man die Durchbiegung der Platte mit w, die
dussere Belastung mit p, so lautet die Differentialgleichung?!)
fiir die Durchbiegung w in dem rechtwinkligen Koordinatensy-
stem z, y

ot w ot w ot w »
2 =
0 xt o dx?dy? Jdyt N @

E ds3
12(1 — 7).
wobei d die Plattenstédrke, » die Poisson’sche Konstante ist. Wir
haben vorwiegend Anwendungen auf Aufgaben des Eisenbeton-
baues im Auge; fiir solche Aufgaben kann ohne wesentlichen
Fehler » — 0 gesetzt werden, was zur Vereinfachung der fol-
genden Rechnungen geschieht. Die Plattensteifigkeit ist also
E ds

12N

Die Wahl des Koordinatensystems ist aus Abb. 2 ersichtlich.
Die Platte ist ldngs der drei Seiten x =0, x = @ und y —0
fest, aber momentenfrei gelagert, die vierte Seite y — b ist ein
freier Rand.

An den gelagerten Seiten miissen Durchbiegung und Moment
verschwinden.

fir x =0, a: w=0,m,=0,
filr y —0 ¢ w =0, my,—0.

In dieser Gleichung ist N die Plattensteifigkeit, N —

N —

Driickt man m, und m, in bekannter Weise?) durch w aus und
beachtet, dass » — 0 ist, so lauten diese Randbedingungen
*w
= 10
W= 0 x? l
e PR (2)
20 |
Jdy?

fir x — 0, a:

filr y—20 w=20,
Auf die Randbedingungen lédngs des freien Randes gehen wir
vorldufig noch nicht ein.

Wenn wir die Biegefldche einer Platte nach Abb. 2 unter
einer beliebigen Belastung betrachten, so ist es anschaulich und
naheliegend, dass Schnitte durch die Platte parallel zur y-Axe
nur eine Verdrehung und fast keine Verbiegung zeigen werden,
solange nur die Breite b klein gegen die Linge a ist. Dies legt
den Gedanken nahe, die Differentialgleichung (1) durch Ansétze
der Form w — y F(x) zu l6sen.

1) Nadai : «<Elastische Platten», Verlag Julius Springer, Berlin 1925, S. 21.

?) Nadai, 1. c. S. 26.

Damit nun dieser Ansatz die Randbedingungen Gl. (2) er-

fiillt, wéhlen wir F(2) = sin = , wobei k eine ganze Zahl

sein soll. Man iiberpriift leicht, dass dieser Ansatz
knx

(3)

w = y sin

allen Randbedingungen (2) geniigt.

Wir untersuchen nun, fiir welche Belastung p (, y) der An-
satz (3) die strenge LoOsung der Differentialgleichung (1) dar-
stellen wiirde. Zu diesem Zweck ist Gl. (3) in die linke Seite
von GIL. (1) einzusetzen.

» otw otw dtw  kimt i knx
N ~ Oduxt it dx2dy? dyt —  at y T
oder N okt %
477 3 T
p(x,y) — Ty sin = 6. & o ‘o AED

Die Belastung ist in der y-Richtung linear, d.h. dreieckférmig
verteilt, wihrend die Verteilung in der z-Richtung sinusformig ist.

SBZ|

Abb. 4

Diese Belastungsangabe ist aber noch nicht vollstdndig; die
Randbedingungen am vierten Rand y — b wurden bisher génz-
lich ausser Acht gelassen und wir miissen noch untersuchen,
ob an diesem Rande, der ja nicht gelagert ist, nicht dussere
Kréfte oder Momente angreifen.

Das Moment m, in einem Randpunkt ist

Wy e e %5&: — N | vsm _’f;iJ — 0, (5a)
es greift also dort kein dusseres Moment an. Fiir die Querkraft
g, am Rande gilts), wenn » — 0 gesetzt wird,
#Bw 3w 2NKk2n? . knx

q”:_N[TJu+2aTayj|:*‘“ae smT (5b)
Am Rande wirkt also eine Querkraft, die wir uns durch eine
am Rande angreifende Linienlast erzeugt denken konnen. Diese
Linienlast ist sinusformig verteilt.

Damit also die Platte sich gemé&ss GI. (3) durchbiegt, muss
die dussere Belastung in der xz-Richtung sinusformig verteilt sein,
wéhrend sie in der y-Richtung aus einer dreieckformig verteilten
Last und einer Linienlast am Rande besteht, wie in Abb. 3 dar-
gestellt.

Ein derartiger Lastfall wird natiirlich praktisch kaum vor-
kommen. Die Belastungen bestehen in der Regel aus einer auf
rechteckigem Grundriss gleichméissig verteilten Last, oder aus
mehreren solchen Lasten. Nun kann man die Lastfunktion p (2, v)
die zu solchen Lastrechtecken gehort nach der x-Richtung in
eine Fourier’sche Reihe entwickeln, sodass die Lastverteilung
nach dieser Richtung fiir jedes Glied der Entwicklung sinusfor-
mig wird. Die Verteilung der Last nach der y-Richtung wird
jedoch stets ein anderes Bild ergeben, als die Verteilung nach
Abb. 3, die zu unserem Ansatz gehort; z. B. nach Abb. 4.

Hier setzt nun die Néherungsiiberlegung ein. Wir wissen,
dass bei schmalen Platten die Querschnitte durch die Platte
parallel zur kurzen Seite sich nur wenig verkriimmen konnen
und nahezu gerade bleiben. Es kann daher nur einen geringen
Unterschied auf die Gesamtwirkungen ausmachen, wenn wir die
tatséchliche Lastverteilung in der Richtung der kurzen Seite
(nach Abb. 4) durch jene Lastverteilung ersetzen, die zu
unserm Ansatz (1) gehort (nach Abb. 3). Die absolute Grosse
der Ersatzlast ist dabei so zu wéihlen, dass die urspriingliche
Lastverteilung und die Ersatzlast das gleiche Moment um die
gelagerte Kante y — 0 erzeugen. Diese Angabe erscheint im
ersten Augenblick willkiirlich ; sie wird aber verstédndlich, wenn

8) Nadai, 1. c. S. 36.
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man bedenkt, dass bei langgestreckten Platten (a gross gegen-
iiber b) die wesentliche Lastwirkung eben dieses Moment ist.

Die zum Ansatz (3) gehorenden #usseren Lasten p (x, v)
nach Gl (4) und g, nach GL (5b) erzeugen ein Moment ‘m um
die x-Axe

b
o NEkint b3 ., knzx
m = f p(x,y)ydy — gq,b — o sin —
0
2 N k2n? . knx Nk2n2b k2n? b2 S kEnx
b sin = - (2 -+ *) sin ———.
a? a a? a? 3 a

Denken wir uns dieses Moment durch eine am Rande y — b

angreifende Ersatzlast q erzeugt, so ist m = gb, und
= N k2n? k22 b2 sl onr
q = (6+ = )sm = iy oy al(16)

3at
Aus Gl. (3) und (6) folgt dann, dass eine am freien Rande an-
greifende Ersatzlast

(7a)
die Biegefldche
kEnax
Y= Niear : - e
6 |- - >
erzeugt. Zur Vereinfachung fithren wir die Bezeichnung%b —
ein, dann ist
B 1 3b? C o knax (1)
=N & b5fa’ a

Die Gleichungen (7) gelten fiir jeden beliebigen ganzzahligen
Wert von k. Durch Superposition der Losungen fiir verschiedene
Werte von k, folgt daher, dass eine am Rande angreifende Er-
satzlast

knax

E:ZC;: sin =

die Biegefldche

(=1t g20 30N (8a)

i N C S e
w = TSb yZ Py G sin
erzeugt. Nun lidsst sich eine in der z-Richtung beliebig verteilte
Ersatzlast if durch eine Fourier’sche Reihe ausdriicken, also in
der Form (8a) darstellen. Wir haben daher in Gl (8b) die
Biegefliche fiir jede beliebig verteilte Ersatzlast gefunden.
Wir gehen nun weiter und ermitteln aus der Biegefldche w
noch die Momente und zwar interessieren uns nur die Momente m,,

(k=1 ,.2353".. %) (8b)

das sind die Momente in der Plattenldngsrichtung. Fiir » = 0 gilt
2w
=—N ——
mx a xz ’
also knx

cr .
m,:3y2‘6—+'6—(2~sm (oo ke LN B (0)

Dieses Ergebnis zeigt bereits ohne alle Rechnung, dass die Mo-
mente in einem Querschnitt parallel zur y-Axe dreieckférmig
verteilt sind, und dass am freien Rand y — b die grossten Mo-
mente auftreten.

Wenn man die Formel (9) zur Berechnung der Momente
zahlenmissig auswertet, so zeigt sich, dass die unendliche Reihe
verhiltnismissig schlecht konvergiert, sodass man viele Glieder
beriicksichtigen muss. Mann kann aber durch eine Umformung
eine sehr rasch konvergierende Reihe erhalten. Wir schlagen
hierzu folgenden Weg ein:

= knx
Die Belastung g — 2 O}, sin —Zf fassen wir als Belastung

eines Balkens der Spannweite @ auf. In diesem Balken treten
dann Momente auf, die sich natiirlich leicht zahlenméssig be-
rechnen lassen, wir bezeichnen sie mit m,. Nun besteht zwischen
der Belastung ¢ und den Momenten m, eines Balkens die ein-
fache Beziehung

dzm, —

dx?

oder nach Einsetzen der Reihenentwicklung fiir ¢

dazm, . knzx
Wz_z‘ok gl B (T =102 3E)
Durch zweimalige Integration folgt schliesslich
a? & (o) knx
Unye=ery 7 T LA SRR )

wobei die Integrationskonstanten Null zu setzen sind, da m, in

2 — 0 und z — @ verschwinden muss, welche Bedingungen in der

angeschriebenen Form der Gl. (10) erfiillt sind. Der Ausdruck
a? (047 krx

et k2 i

verschwindet daher fiir alle Werte von «; wir multiplizieren die-

3y
2

m, —

sen Ausdruck mit und fiigen ihn zu GI. (9) hinzu, also

3y a*Cr . knx

o pn e 80 S s B
Cy knx

(foi =18 ;82503 FIY)

- 3Y 00 S 7] g

R 2 6 | a2 @

Die beiden Summenausdriicke lassen sich nun zusammenziehen

und man erh#lt schliesslich unter Beachtung der Bezeichnung
knb

a ’

3y Cr . hknax
mxffbf?am{,—lsyz =06 @) sin ——
il 5 By o) (11)

Die in GI. (11) auftretende unendliche Reihe konvergiert wesent-
lich rascher als Gl (9), sodass man in der Regel nur wenige
Glieder zu beriicksichtigen braucht. Das Balkenmoment m, er-
rechnet man natiirlich nicht aus Gl. (10), sondern nach den

iiblichen einfachen Re-

[ Freier Rand Ersstzlest§  geln der Statik.
A Der praktische Vor-
V/ » i gang bei der Berechnung
H / % ® ist folgender: Man er-
T ' ! 1 setzt die tatséchliche
o ! i R Belastung der Platte,
T s 65”55"2/55’47 ! Abb. 5, durch eine Er-
— | -
T : 1 satzbelastung ¢, die als
| | P :
< a > Abb 5 Linienlast am freien
Rande angreift. Diese

Belastung soll in der z-Richtung, also in der Léngsrichtung
der Platte, die gleiche Verteilung haben wie die tatsichliche
Belastung. Die Grosse dieser Ersatzlast ist so anzunehmen,
dass die tatsiichliche Last und die Ersatzlast das gleiche Mo-
ment um die z-Axe, d.i. um die gelagerte Léngsseite der
Platte ergeben.

Nun ist diese Ersatzlast nach Gl. (8a) durch eine Fourier-
sche Reihe darzustellen. Zur Bestimmung der Entwicklungsbei-
werte O, dient die bekannte Gleichung

a
2 — krnx
Cj = — Pt d
% = qum = x
0

Sobald die Werte C). zahlenméissig bekannt sind, kann die Biege-
fliche w (x, y) aus Gl. (8b), das Moment m, an irgend einer
Stelle aus GIl. (11) errechnet werden.

(12)

Fiir die beiden am hdufigsten vorkommenden Fille, dass die
Ersatzlast iiber die ganze Linge a gleichméssig verteilt ist, bzw.
dass die Ersatzlast eine Einzellast in der Mitte der Seite a ist,

kann man die Reihe (11) fiir verschiedene Seitenverhéltnisse %-
auswerten und in einer kleinen Tafel den Betrag von m, in

Seitenmitte z — % festlegen.
Fiir die gleichméssig verteilte Ersatzlast q ist nach Gl (12)

a
2 — . knx
Ort— qumnva =
0 0.

28k
e

% (k=1,3,5...)

(o —2 %4 6T

qa

Das Moment m, in Feldmitte ist m, — , sodass aus GI. (11)

mit ¥y = b nach geringer Umformung

k—1
b2q 1)2
3 a%q (e (—
o g s =) AT R R — 1, 8568
My = ——¢ 72 = 2 (6 L &) [F ,3,5...] (13)
folgt.

Ist die Ersatzlast eine Einzellast in der Mitte der freien
Lingsseite, so ergibt Gl (12)

E—1
2 O N
cp—) (=1 . —-@Q, [k=1,3,5...]
0. [ikc— 12 %4 6k ion
: i aQ gl
Das Moment in Feldmitte ist Tf==0 sodass schliesslich
fiir y = b:
3a 360 il
p— = S o=
MDY a2 e e e

Mit diesen Formeln wurde die folgende kleine Tafel er-
rechnet:
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Tafel der Momente m, in x —

| @

Verteilung Seitenverhéltnis %

der Ersatzlast ‘

3\4500

0,414 ¢ b]0,475 qb0,492q /0,498 ¢ (0,500 q b
e e > ‘

a i
+_$_‘ 0,6030 |0,6110 | 0,6120 | 0,6139 Lf,@'
i s aatas;
y | 2 B

2 % ’ = e £
Die Grenzwerte fiir das Seitenverhéltnis Tfcolassen sich

durch Grenziibergang aus Gl. (9) ermitteln.

Es ist nun am Platze die Genauigkeit dieser Zahlen, die ja
nur Ndherungswerte darstellen, zu untersuchen. Zu diesem Zwecke
wurde die genaue Rechnung fiir die dreiseitig gelagerte Platte

nua
mit 5
Diese Rechnung ergab das Grosstmoment an der ungelagerten

Seite m, — 0,213b2. Aus der Tafel ist m, — 0,414 ¢ b; nun ist bei

- — 2 unter gleichmissig verteilter Last p durchgefiihrt.

gleichférmig verteilter Last p die Ersatzlast ¢ — p zb

b
0,414 pT b — 0,207 pb2. Der Unterschied ist nur 3°9/,. Bei wach-

, also m, =

senden Werten % miissen die Zahlenwerte, wie aus der Ablei-

tung der Ndherungsrechnung folgt, noch besser iibereinstimmen.

Im Falle der Einzellast jedoch liegt eine grundsétzliche
Schwierigkeit vor. Berechnet man nédmlich eine mit einer punkt-
formig konzentrierten Last belastete Platte nach der Kirchhoff-
schen Plattenlehre, so ergeben sich im Lastorte unendlich grosse
Biegemomente. Diese unendlich grossen Werte sind jedoch nicht
richtig; sie rlihren von der Vernachldssigung der Plattendicke
in der Kirchhoff’schen Plattenlehre her. Genauere Rechnungen,
die aber bisher nur fiir kreisformige Platten durchgefiihrt
werden konnten?), zeigen, dass die Spannungen auch dort end-
lich bleiben.

Um mit Hilfe der Kirchhoff’schen Plattenlehre auch im Falle
von punktférmig konzentrierten Einzellasten praktisch verwend-
bare Ergebnisse zu erhalten, bestimmt man nicht den Wert des
Momentes an der Laststelle, sondern den Mittelwert des Mo-
mentes iliber einen Bereich in der Umgebung der Last oder, was
auf das gleiche hinauslduft, man bestimmt die Momentenflédche.

Es zeigt sich némlich,
PN Gabigerte Salfer dass zwar, siehe Abb.6a, b,
der Wert des Momentes
a) an der Laststelle sich un-
endlich gross ergibt, dass
aber trotzdem die Momen-
tenfldche, die auch die
‘/ Laststelle umfasst, endlich
bleibt. Fiir die praktische
Bemessung von HEisenbe-
ton Querschnitten kommt
es nun eigentlich nur auf
diese Momentenfldchen an.
Berechnet man diese Mo-
mentenfldchen, so liefert
die iibliche Plattentheorie
auch beim Auftreten von
punktférmigen Einzella-
sten brauchbare Ergeb-
nisse, auch wenn diese moglicherweise in der Néhe dieser
Einzellasten nicht mehr streng richtig sind.

Die in der Tafel berechneten Werte der Momente infolge
der Ersatzeinzellast @ sind nun endlich, obwohl die Ableitung
auf der Kirchhoff’schen Plattenlehre aufbaut. Dieser scheinbare
Widerspruch riihrt daher, dass die Ersatzlast @ nur ein fingierter
Rechnungswert ist; physikalisch entspricht dieser Last eine ver-
teilte Last, wie man aus dem Rechnungsgang (GIl. (4) und (5b))
erkennen kann. Um nach dem oben gesagten die Zahlenwerte
der Tafel fiir Einzellasten zu iiberpriifen, sind die Momenten-
flichen zu betrachten. Zu diesem Zwecke erinnern wir, dass die
Momentenverteilung in der Ndherungstheorie dreieckfdrmig ist,

4) Nadai, 1. c. 8. 315.

Freie Seite

a :
nach Abb. 6c. Die genaue Rechnung liefert z. B. fiir T 2 die
Momentenfliche F,, — 0,247b @, wihrend aus der Tafel F, —=
7; 0,603 Q = 0,301 bQ folgt. Die Werte fiir Einzellasten stimmen
viel weniger gut als jene fiir Gleichlasten. Die Ursache ist, dass
in der unmittelbaren Umgebung der Einzellast, die grundlegende
Annahme der vorliegenden Ndherungstheorie, dass Schnitte pa-
rallel zur y-Axe gerade bleiben, nicht erfiillt sein kann.

Beispiel. Der Randstreifen einer Eisenbetonfahrbahnplatte

sei b — 1,50 m breit, die Entfernung der Quertridgerkonsolen
a

betrage @ — 4,50 m. Eine Radlast P — 5t stehe in x — o in

1 m Abstand vom gelagerten Plattenrand. Die am Rande wir-

— - 1,0 ]

kend gedachte Ersatzlast ist dann @ — 515’ — 3,33 t. Da =
1 ),

— T’g — 3, findet man aus der nebenstehenden Tafel: m, —

0,611 Q — 0,611 - 3,33 — 2,035 tm, bezogen auf einen Plattenstrei-
fen von 1 m Breite. m, nimmt gegen den gelagerten Rand
geradlinig auf Null ab.

Der Unfug der sog. «Benzinsparmittel»

Die «Schweiz. Gesellschaft fiir das Studium der Motorbrenn-
stoffe» hat sich die verdienstvolle Aufgabe gestellt, endgiiltig
den Nachweis zu erbringen, dass sdmtliche sog. «Benzinspar-
mittely (fliissige und tablettenférmige Benzinzusédtze) keine
Benzinersparnis ergeben und auch die iibrigen Vorteile, die ihnen
zugesprochen werden, gar nicht oder nur in geringstem Masse
erfiillen. Dieser Nachweis ist vollstdndig gelungen. Dr. M. Brunner,
Abteilungsvorsteher der E.M.P.A. war mit der Durchfiihrung
fer eingehenden Laboratoriums- und Fahrversuche betraut wor-
den und er hat kiirzlich in der Generalversammlung der genann-
ten Gesellschaft dariiber referiert. Ein ausfiihrlicher Bericht liber
seine Versuche wird demnéchst im Buchhandel erscheinen.

Trotzdem #hnliche Versuche schon vor Jahren in Deutsch-
land die absolute Wertlosigkeit der «Benzinsparmittel» nachge-
wiesen haben und sogar eine staatliche Verfiigung erlassen wurde,
dass alle solchen Produkte nur angeboten werden diirfen, nach-
dem ihr Nutzen durch einwandfreie offizielle Versuche wirklich
nachgewiesen wurde, finden sie in der Schweiz immer wieder
Absatz. Gewissenhafte Fachleute warnen vor ihrer Wirkungs-
losigkeit — andere verkaufen sie!

Zur Aufklirung der Automobilisten seien die Versuchs-
ergebnisse und Erfahrungstatsachen kurz angefiihrt: — Die
Prospekte iiber «Benzinsparmittel» preisen nicht nur Benzin-
ersparnis an, sondern immer noch weitere Vorteile, wie Leistungs-
steigerung, besseres Starten, besseres Beschleunigungsvermdogen,
bessere Verbrennung mit vermindertem Kohlenoxydgehalt im
Auspuff. Schon die Untersuchungen der Sparmittel im Labora-
torium haben die Unmdglichkeit dieser Behauptungen erwiesen.
Eine Leistungszunahme kann bei sonst unverénderten Verhilt-
nissen ein Brennstoffzusatz nur erzeugen, wenn sein Heizwert
grosser ist als der unserer Benzine; die Laboratoriumsversuche
haben allgemein das Gegenteil erwiesen. Das leichte Anspringen
des Motors und seine Beschleunigungsfihigkeit kann, was das
Benzin anbetrifft, nur durch die sog. Siedekurve beeinflusst
werden. Je mehr Anteile des Brennstoffes bei niedriger Tempe-
ratur schon verdampfen, desto leichter springt der Motor in
kaltem Zustand an. Bei den Benzinen auf dem Schweizermarkt
sind bei 55°C durchschnittlich 10 Volumprozent bereits ver-
dunstet. Wird dieser Betrag erhoht, so besteht im Sommer die
Gefahr der Dampfblasenbildung in den Benzinleitungen und der
Benzinpumpe und dadurch der gefiirchtete Benzinmangel. Der
Volumenanteil des verdampften Benzins bei 100° C ist mass-
gebend fiir die gute Gemischverteilung im Saugrohr, und diese
wieder fiir das Beschleunigungsvermdgen des Benzins. Die Prii-
fung der Sparmittel auf Verdnderung der Siedekurve ergab,
dass ein Einfluss praktisch nicht moglich ist.

Nachdem das Fehlen zusitzlicher Vorteile nachgewiesen
ist, soll dem «Hauptvorteil», der Benzinersparnis, nachgegangen
werden. Es wurde festgestellt, dass die meisten Anpreisungen
von Benzinsparmitteln den Passus aufwiesen, dass bei ihrer Ver-
wendung auch noch der Vergaser sparsamer eingestellt werden
konne. Die Fabrikanten dieser Mittel stiitzen sich auf die be-
kannte Tatsache, dass sehr viele Motoren sowohl beziiglich Ver-
gaser, als auch der Ziindung falsch eingestellt, nachtréaglich ver-
stellt oder iiberhaupt in schlechtem Zustand sind, und sie lassen
beim Verkauf der Sparmittel Ziindung und Vergaser richtig in-
stand stellen. Es ist ferner bekannt, dass jeder Vergaser in einem
gewissen Bereich kleinere oder grossere Diisen vertrégt, ohne
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