Zeitschrift:	Schweizerische Bauzeitung
Herausgeber:	Verlags-AG der akademischen technischen Vereine
Band:	111/112 (1938)
Heft:	22
Artikel:	Zur Analyse der Druckeinspritzung in Diesel-Motoren
Autor:	Grossmann, K.H.
DOI:	https://doi.org/10.5169/seals-49954

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 08.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

un

(Schluss von Seite 251)

Zur Analyse der Druckeinspritzung in Diesel-Motoren

Von Dipl. Ing. K. H. GROSSMANN, Zürich

6. Startpunkt und Treffpunkt. Zwei einander mit Schallgeschwindigkeit längs des Rohrs entgegenlaufende Beobachter, der eine am Pumpenende zur Zeit t_P , der andere am Düsenende zur Zeit t_D startend, treffen sich zur Zeit t an der Stelle x:

$$t = \frac{1}{2} (T + t_D + t_P)$$
, $\frac{x}{a} = \xi = \frac{1}{2} (T + t_D - t_P)$ (16)

In einer t_P , t_D -Ebene bezeichnet das Wertepaar t_P , t_D den Startpunkt S; in einer ξ , t-Ebene legt das Wertepaar ξ , t den Treffpunkt R fest. Das Gleichungspaar (16) bildet die beiden Ebenen aufeinander ähnlich ab. Den einem bestimmten Treffpunkt (z_1, t_0) entsprechenden Startpunkt liefert in der S-Ebene der Schnitt der beiden Geraden $t = t_0$ und $\xi = \xi_0$, Abb. 8. Jede in einem gewissen Bereich der R-Ebene definierte Funktion von t und ξ kann man vermöge (16) auch als eine über dem entsprechenden Bereich der S-Ebene definierte Funktion von t_P und t_D auffassen.

Bei der Abbildung (16) entspricht dem Rechteck R, Abb. 8, in der R-Ebene das ähnliche Rechteck R* in der S-Ebene, dem Trapez \mathfrak{T} das Trapez \mathfrak{T}^* . Die Startzeiten t_P und t_D sollen kurz zueinander passend bezüglich R heissen, wenn der Startpunkt $S = (t_P, t_D)$ in \mathfrak{N}^* liegt, passend bezüglich \mathfrak{T} , wenn er \mathfrak{T}^* angehört. Die zu einem gegebenen t_P bezüglich \Re , oder \mathfrak{T} passenden t_D -Werte bilden das bezüglich \Re , bezw. \mathfrak{T} passende Intervall \Im (t_P) : ω $(t_P) \leq t_D \leq \Omega$ (t_P) . Das in Abb.8 zu dem Wert t_P^* angegebene Intervall \Im (t_P^*) passt sowohl bezüglich \Re als auch bezüglich T.

7. Die Zustandskurven D und P. Wie gesagt, stellen wir den Zustandsablauf im generellen Querschnitt E in einem t, p, v-Raum durch eine Folge von Zustandspunkten E_t dar; ihre Gesamtheit, die Zustandskurve, bezeichnen wir gleichfalls mit E. Das in der Zeiteinheit aus der Düse in den Verbrennungszylinder tretende Oelvolumen Q hängt von dem am Düsenende D der Leitung herrschenden Druck und von dem Nadelhuby ab; haben wir die Nadelbewegung y(t) und die Zustandskurve D ermittelt, so ist auch unser Ziel, die Kenntnis des Einspritzgesetzes $Q[y(t), p(L, t)] = \overline{Q}(t)$, erreicht. Um D zu konstruieren, haben wir, wie sogleich zu zeigen, auch die Zustandskurve P für das Pumpenende herzustellen.

Zur Zeit t = 0 nehmen wir auf der intakten Säule [0, L]überall v = 0 und p = 0 an (Nr. 1). Da mithin für jeden Querschnitt E der Zustandspunkt E_0 in den Ursprung des den t, p, v-Raum aufspannenden Koordinatenkreuzes fällt, folgt aus Nr. 1 sofort, dass für $0 \leq t \leq T$ die Projektionen der Zustandspunkte P_t auf die p, v-Ebene auf der durch den Ursprung gehenden Geraden vom Neigungstangens $1/\varrho a$, der Zustandspunkte D_t auf der Geraden durch den Ursprung vom Neigungstangens — $1/\varrho a$ liegen, dass also, solange $0 \leq t \leq T$, die Zustandskurve D der Ebene $v = -\frac{1}{\varrho a}p$, die Kurve *P* der Ebene $v = \frac{1}{\varrho a}p$ ange-hört. Fernerliegen nach Nr.1 für $t \ge T$ die Projektionen der Zustandspunkte D_t u. P_{t-T} auf die p, \overline{v} -Ebene auf einer Geraden vom Neigungstangens $-\frac{1}{\varrho}a$, der Zustandspunkte P_t und D_{t-T} auf einer Geraden vom Neigungstangens $1/\rho a$. Somit liegen die Zustandskurve D vom Punkt D_T an, und die in Richtung der positiven Zeitaxe um T verschobene Zustandskurve P auf einer Zylinderfläche, deren Erzeugende der Geraden t=0, v=_ 1 $\frac{1}{\varrho a} p$ parallel sind, während die Kurve P von P_T an, und die um T verschobene Kurve D einem Zylinder angehören, dessen Erzeugende parallel sind der Geraden $t=0, v=rac{1}{\varrho \, a} p$. Auf den beiden Ebenen, bezw. Zylindern sind P und D durch die Randbedingungen fixiert. P und D bringen sich also kreuzweise hervor: das Stück $[P_0, P_{I}]$ — das Stück $[D_{I}, D_{2T}]$, dieses seinerseits das Stück $[P_{2T}, P_{3T}] \dots$; das Stück $[D_0, D_T]$ — das Stück $[P_T, P_{2T}]$, dieses das Stück $[D_{2T}, D_{3T}]$... Daher die Notwendigkeit, mit D auch P zu konstruieren.

Das in der Ebene $v=-rac{1}{arphi\,a}p$ liegende Stück [$D_0,\,D_T$] von D ist sofort bestimmt: Das anfänglich geschlossene Düsenventil öffnet sich erst unter einem beträchtlichen Druck; einen positiven Druck p vermag die geschlossene Düse aber auf das $\frac{1}{\varrho a} p$ zurückmit der dann negativen Geschwindigkeit v=weichende Oel nicht auszuüben. Mithin ist für $0 \le t \le T$ am Düsenende p = 0 und v = 0; $[D_{J}, D_{T}]$ fällt in die t-Axe. Infolgedessen liegt von P nicht bloss das Stück $[P_0, P_T]$, sondern 1

 $\overline{\varrho a} p$. auch die Fortsetzung $[P_{\Gamma}, P_{2T}]$ in der Ebene v = -

8. Zahlenbeispiel. Eine die Randbedingungen genau berücksichtigende, theoretische und experimentelle Diskussion der verschiedenen Einflüsse auf den Einspritzvorgang enthält die Dissertation von A. Pischinger 9). Dort ist auch das hier vorausgesetzte Einspritzsystem behandelt, mit den folgenden Daten 10): Einheiten: Länge cm, Kraft kg, Zeit 10^{-4} sec.

Pumpe: Von der Pumpperiode 666,7 entfallen z = 24,1 Zeiteinheiten auf die Förderzeit, während welcher die Pumpenräume V_1 und V_2 , Abb. 1, miteinander in Verbindung stehen und die Kolbengeschwindigkeit w von dem Anfangswert h = 0.01 aus linear ansteigt, $w = r = 1,24 \cdot 10^{-4}$, Abb. 9. Bis zum Zeitpunkt $t = 0^{11}$, verstreicht, wie in Nr. 1 auseinandergesetzt, eine gewisse Zeit χ , der Förderverzug, von welchem *i*, die Kolbengeschwindigkeit zur Zeit t = 0, und τ_f , der Zeitpunkt des Förderschlusses, abhängen. Wenn wir mit Pischinger $\chi=9,25$ annehmen, so wird $\tau_{f} = z - \chi = 14.8$, $i = h + r\chi = 111.5 \cdot 10^{-4}$

$$w = i + rt = 0,01115 + 0,000124 t$$

Elastizitätsmodul des Oels $E=2\cdot 10^4$; Kolbenfläche F=0.5; Pumpenraum $V_1 = 0,1$; Vorkammer $V_2 = 2$; $V_3 = V_1 + V_2 = 2,1$.

Leitung : Schallgeschwindigkeit a = 15; Oeldichte $\rho = 85,6$; $1/\varrho a = 7.8 \cdot 10^{-4}$; Querschnitt q = 0.0185; Länge L = 83; Durchlaufzeit T = 83/15 = 5,53¹²).

Düse: Ausflussgesetz Q(y, p) gegeben durch die Parabelscharen der Abb. 10; Druckquerschnitte f = 0.284 (geöffnet), $f_1 = 0,215$ (geschlossen); Nadel- plus halbe Federmasse m = 3780; Federkonstante k = 125; Vorspannung der Feder $P_0 = 27$; trok-kene Reibung R = 3; Düsenvorraum V = 0.35; Hubbegrenzung $y_0 = 0,04$; Oeffnungsdruck $p_{\ddot{o}} = (P_0 + R)/f_1 = 139,5$; Schliessdruck $= (ky_0 + P_0 - R)/f = 102,1;$ Zylinderdruck $p_z = 41$. $p_s =$

Nun zur Konstruktion der Zustandskurven P und D, d. h. ihrer drei Projektionen v(t), p(t) und v(p)!

Ermittlung von P für $0 \leq t \leq \tau_{f}$ und von D für $0 \leq t \leq 3T$. 9. Pumpenende, $0 \leq t \leq 2T < \tau_{f}$. In der Zeiteinheit verringert sich $V_{3} = V_{1} + V_{2}$ gemäss der Hubgeschwindigkeit w des Kolbens der Fläche F um Fw, die in V3 enthaltene Oelmasse also um $\rho Fw = V_3 \rho_t$, welcher Betrag gleich der in die Leitung eingedrungenen Masse ϱqv ist:

$$qv = Fw - V_3 \frac{\varrho_t}{\varrho} = Fw - \frac{V_3}{E} p_t, x = 0, 0 \le t \le \tau_f$$
 (17)

400 p - p 500

⁹) «Beitrag zur Mechanik der Druckeinspritzung». ATZ, Beihefte, 1. Sammelband (1935), S. 7. Siehe auch *E. Blaum*: «Vorgänge in Einspritz-Systemen schnellaufender Dieselmotoren». Forschung, Bd.7 (1936), Nr. 2, S. 93.

¹⁰) L. c., S. 19.
¹¹) Von Pischinger «Förderbeginn» genannt.

Pischinger bezeichnet die doppelte Durchlaufzeit mit T. 12)

264

11a. Zustandskurve D, Einspritzgesetz, Nadelhub u. Zustandsfunktion $\psi~(L\,,t)$ für $T\,\leq t\,\leq 3\,T$

Diese Randbedingung ist vom Typus (8 a). Sie gilt bis zum Förderschluss, d. h. bis durch Verbindung des Pumpenraums V_1 mit dem Oelreservoir der Druck in V_1 plötzlich auf 1 at abfällt und das Rückschlagventil A (Abb. 1) zuschnappt. Im Intervall $[0, \tau_j]$ können wir V_3 als konstant behandeln.

Wie sub 7 festgestellt, gilt für x = 0 im Intervall [0, 2T] $v = p/\varrho a$, also $p_t = \varrho a v_t$. Dies in (17) eingesetzt, ergibt:

$$v_t + \frac{Eq}{V_s \varrho a} v = \frac{EF}{V_s \varrho a} w = \frac{EF}{V_s \varrho a} (i + rt)$$

$$\therefore v (0, t) = \frac{F}{q} \left[\left(i - \frac{rV_s \varrho}{qE} a \right) \left(1 - e^{-\frac{qE}{V_s \varrho a} t} \right) + rt \right] \ge 0$$

Im Intervall [0, T] fällt \overline{D} nach Nr. 7 in die t-Axe:

 $v(L, t) = p(L, t) \equiv 0, 0 \leq t \leq T$. . . (19) Die in dem kleinen Düsenvorraum V (Abb. 2) eingeschlossene Oelmasse erscheint, bei Vernachlässigung ihrer Zusammendrückbarkeit, als konstant, woraus die Randbedingung

Abb. 11b. Integration der Nadelgeschwindigkeit nach Meissner

2

$$\varphi(L, t) = -\frac{f}{q} \dot{y}(t) = -\frac{1}{q} Q [y(t), p(L, t)]$$
 . (20)

folgt; sie ist vom Typus (7). Ausserdem besteht für jeden Zeitpunkt t zwischen p(L, t) und v(L, t) nach Nr. 1 die Beziehung

$$v(L, t) = v(0, t - T) = \frac{1}{\varrho a} [p(0, t - T) - p(L, t)]$$

woraus, dank unserer Kenntnis des Kurvenstückes $[P_0, P_{2T}]$ (Gl. (18)), die in Abb. 11 a angegebene Konstruktion (mit Hilfe der Parabelschar Abb. 10) unmittelbar folgt. Sie setzt allerdings die Kenntnis von y(t) und $\dot{y}(t)$ voraus: Solange $p(L, t) < p_{\ddot{o}}$, ist $y = \dot{y} = Q(0, p) = 0$. Nach Erreichung des Oeffnungsdrucks (zur Zeit $T + t_1$) folgt y(t) aus der Bewegungsgleichung für die Nadel:

$$\ddot{y} + \frac{k}{m}y = -\frac{f}{m}p(L,t) - -\frac{P_0 + R}{m}$$
 . . . (21a)

Deren Integration setzt ihrerseits die Kenntnis von p(L, t) voraus. D und y(t) sind also gleichzeitig zu konstruieren. Die Konstruktion von y(t) ist in Abb. 11b nach der graphischen Methode von E. Meissner¹³) durch Aufzeichnung des Linienbildes ausgeführt.

An den Anschlag prallend, steht die Nadel (zur Zeit $T + t_2$) augenblicklich still:

$$y = y_0, \ \dot{y} = 0$$
 (21b)
Randbedingung (20) vereinfacht und der Zu-

wodurch sich die Randbedingung (20) vereinfacht und der Zustandspunkt von D'_{T+t_2} nach D_{T+t_2} überspringt. 11. Pumpenende, $2T < t \le \tau_f$.

Bis zum Förderschluss τ_{f} (Punkt $P'\tau_{f}$, Abb. 12) gilt nach wie vor die Randbedingung (17), vergl. Abb. 12.

12. Druckkontrolle für $0 \leq t \leq T$. Zur Sicherung des für $[0, \tau_i]$ entworfenen Ablaufs genügt nach Nr. 4 der Nachweis, dass in diesem Intervall nicht bloss in den Endquerschnitten, sondern auch in jedem Zwischenquerschnitt $p(x, t) = \varrho a [\varphi(x, t) - \psi(x, t)] \ge 0$ ist. Für das Intervall [0, T] ist dies klar, da bei dem vorausgesetzten Anfangszustand $\psi(x, 0) = \varphi(x, 0) \equiv 0$ für $0 \leq x \leq L$, nach Nr. 7 $\psi(L, t) \equiv 0$ und $\varphi(0, t) = \psi(0, t)$ für $0 \leq t \leq T$, somit, nach (11 a), (11 b) und (18), $\Psi(x) \equiv 0$ für $0 \leq x \leq 2L$ und $\varphi(x, t) = \Phi(x - at) \geq 0$ in dem Rechteck $0 \leq x \leq L$, $0 \leq t \leq T$.

Druckkontrolle für $T < t \leq \tau_f$.

13. Den Zeitabschnitt $[T, t_{f}]$ angehend, stützen wir uns auf Nr. 6. In der dort gebrauchten Ausdrucksweise haben wir zu kontrollieren, ob für jedes bezüglich des Rechtecks $\Re: T \leq t \leq$ $\tau_{f}, 0 \leq \xi \leq T$ passende Wertepaar t_{p}, t_{D} , also überall auf dem entsprechenden Rechteck \Re^{*} der *S*-Ebene, Abb. 8, der ermittelte Druck $p(x, t) = \pi(t_{p}, t_{D}) \geq 0$ ist. Nach Gl. (6) und Nr. 1 ist $\pi(t_{P}, t_{D}) = \frac{\varrho a}{2} \varDelta(t_{P}, t_{D})$, worin $\varDelta(t_{P}, t_{D}) = 2\{\varphi(0, t_{P}) - \psi(L, t_{D})\}$ In der p, v-Ebene ergibt sich $\varDelta(t_{P}, t_{D})$ aus $P_{t_{P}}$ und $D_{t_{P}}$ sofort gemäss Abb. 13.

Bei festem t_P nehme die Funktion $\varDelta (t_P, t^D)$ auf dem passenden Intervall $\Im (t_P)$ ihren Mindestwert $\mu (t_P)$ in $t_D = v (t_P)$ an. Wir haben zu zeigen, dass für $0 \le t_P \le \tau_f$

$$\mu (t_P) = \mathcal{\Delta} [t_P, v (t_P)] = 2 \left\{ \varphi (0, t_P) - \psi [L, v (t_P)] \right\} \ge 0.$$
(22)

¹³) «Graphische Analysis vermittelst des Linienbildes einer Funktion». Verlag der «SBZ», 1932. SCHWEIZERISCHE BAUZEITUNG

٤

111:23

im Fall A

111:55

Abb. 15. Lösungsbereich

X3 X2 X1 a a a

Für jede Startzeit t_P erhellt μ (t_P) aus der Projektion von P_{t_P} und des dem passenden Intervall \Im (t_P) entsprechenden Stückes $[D_{\omega}(_{t_P}), D_{\Omega}(_{t_P})]$ von D, siehe Abb. 14, wo ω (t_P) = $t_P - T$, $\Omega(t_P) =$ $t_P + T$ angenommen sind, vergl. Abb. 8. Die Bedingung μ (t_P) ≥ 0 bedeutet nach (22), dass die Projektion $[D_{\omega}(_{t_P}), D_{\Omega}(_{t_P})]$ (ausser in der Halbebene $p \geq 0$) ganz in der Halbebene $\psi \leq \varphi$ (0, t_P), also in dem Gebiet \mathfrak{G} , Abb. 14, liegt. Der Sonderfall, dass sie innerhalb des in Abb. 14 hervorgehobenen Teilgebietes \mathfrak{H} von \mathfrak{G} verläuft, sei kurz als \mathfrak{H} -Fall bezeichnet.

14. Lassen wir im vorliegenden Beispiel t_P das Intervall $[0, \tau_f]$ durchlaufen, so ergibt eine Betrachtung der Abb. 11 a und 12 Folgendes: Solange $t_P < \varepsilon_1 (< T)$, liegt mit $v(t_P) = \omega(t_P)$ ersichtlich der \mathfrak{H} -Fall vor, ebenso für $\varepsilon_1 < t_P \leq \tau_f - T$, wo $v(t_P) = \Omega(t_P) = t_P + T$ ist. Für $\tau_f - T < t_P \leq \tau_f$ ist $\varphi(0, t_P) \geq \varphi(0, 2T + t_1) > \psi(L, \tau_f) > \psi[L, v(t_P)]$. Damit ist der Ablauf über dem Rechteck \mathfrak{F} der ξ , t-Ebene ($\xi = x/a$), Abb. 15, gesichert.

15. Druck im Pumpenvorraum. Der im Vorraum V_2 , Abbildung 1, herrschende Druck $p^*(t)$ kann nach Daniel Bernoulli annähernd

$$p^*(t) = p(0, t) + \frac{\varphi}{2}v(0, t)^2 \quad . \quad . \quad . \quad (23)$$

gesetzt werden. Speziell entspricht dem Punkt P'_{τ_f} , Abb. 12, der Wert p^* (τ) = 414,3. Vom Augenblick τ_f an, wo die Oelzufuhr durch das Ventil *A* abgeschnitten wird, gabelt sich, je nach dessen Ausbildung, die weitere Untersuchung.

A. Rückschlagventil mit Entlastungskolben.

16. Pischinger setzt ein Rückschlagventil voraus, wie es von der Firma Robert Bosch in Stuttgart gebaut wird, Abb. 16. Nach Abschneiden der Oelzufuhr bewegt es sich, ehe die konische Sitzfläche aufliegt, noch etwas weiter, wobei ein, vorher von dem zylindrischen Entlastungskolben K eingenommenes, Volumen $\varDelta V$ frei wird. Bezeichnen wir die beiden Enden des Vorraums V_2 mit A und P. Am Ende A entsteht also bei Förderschluss au_f ein Hohlraum; der Druck sinkt dort von $p^*(\tau_f)$ plötzlich auf 0. Zur Zeit τ_f kann der Zustand der Oelsäule [A, P] somit vereinfacht wie in Abb. 17 angenommen werden: $v\equiv 0$, $p\equiv p^*$, ausser bei A, wo p=0, das heisst: $2\,arphi \equiv p^*/arphi \, a^*, 2\,\psi \equiv -\,p^*/arphi \, a^*,$ ausser bei A, wo $\varphi = \psi = 0$ ($a^* =$ Schallgeschwindigkeit in der Säule [A, P]). Als Randbedingungen während der [A, P]entsprechenden Durchlaufzeit T^* setzen wir bei P vereinfachend: $v \equiv 0$, bei $A: p \equiv 0$. Die zweite Randbedingung setzt voraus, dass die geschaffene Volumenvergrösserung $\varDelta V$ zur völligen Entlastung des Vorraumes V_2 ausreicht:

$$\mathcal{D}V \ge \mathcal{D}V_{\min} = -\frac{p^*(\tau_f)}{E} V_2 = 0,0207 (24)$$

Bei Erfüllung dieser Bedingung ist nach Nr. 1 und 2 und Abb. 17 klar, dass schon nach T* Zeiteinheiten, d. h. fast augenblicklich, der Druck auch bei P auf null gesunken ist: $p(0, t) \equiv 0$, für $t > \tau_f$

17. Düsenende,
$$3T \leq t \leq \tau_f + T$$
.

17. Dusenende, $3T \leq t \leq \tau_f + T$. Um im Sinne von Nr.5 den Ablauf in einem & umfassenden Bereich & der x, t-Ebene zu ermitteln, setzen wir zunächst Dwie sub 10 bis zum Zeitpunkt $\tau_f + T$ fort. Dass die in Abb. 11a und 18 ausgeführte Konstruktion des Stücks $[D_{\tau f}, D_{\tau f} + T]$ trotz

Abb. 17. Zustände im Pumpenvorraum im Fall A

Abb. 16. Bosch-Rückschlagventil

dem zur Zeit τ_j einsetzenden Zerfall der Oelsäule berechtigt ist, bleibt noch zu zeigen.

Zerfall der Oelsäule im Fall A.

18. Gemäss Gl. (4) ist in Abb. 12 über dem Intervall $[\tau_f - T, \tau_I]$ die Zustandsfunktion $\varphi(0, t)$, in Abb. 11 a und 18 die Zustandsfunktion $\psi(L, t)$ über dem Abschnitt $[\tau_i - T, \tau_i + T]$ konstruiert. Daraus folgt nach (12) der Stand der Wellen Φ und \mathcal{F} über unserm Rohr zur Zeit τ_I , Abb. 19. Das Pumpenende ist weichende Zer-

fallsgrenze. Indem die beiden Wellen einander weiter entgegenlaufen, rückt die Zerfallsgrenze, zunächst gemäss Abb. 7a, nach links, wie in Abb. 19 angedeutet: Zur Zeit $\tau_f + \zeta_1$ ist sie beim Querschnitt x_1 angelangt. Der hier auftretende Grenzfall der Abb. 7c wird sofort wieder von dem Grenzfall der Abb. 7a abgelöst. Zur Zeit $\tau_f + \zeta_2$ wird die bis zum Querschnitt x_2 zurückgewichene Zerfallsgrenze fest. Sie bleibt es, bis zur Zeit $\tau_f + \zeta_3$ im Querschnitt x_3 eine zweite, weichende Zerfallsgrenze auftritt (Grenzfall Abb. 7a). Zur Zeit $\tau_f + T = \tau_m$ erreicht die Zerfallsgrenze das Düsenende (Grenzfall 7c): Die Förderung in den Zylinder bricht, bei noch offener Düse, ab.

19. Der soeben ermittelten zeitlichen Verschiebung der Zerfallsgrenze entspricht in Abb. 15 die Kurve $\xi = \frac{1}{a} g(t)$. Der späteste Zeitpunkt, bis zu dem die Beziehung $\varphi(L, t) = \varphi(0, t - T)$ einen direkten Schluss von P_{t-T} auf D_t erlaubt, ist (vergl. Abb. 4) $\tau_m = \tau_f + T$. Damit ist der sub 17 geäusserte Zweifel behoben.

20. Ergänzung der Druckkontrolle im Fall A. Dass in dem zwischen den Geraden $t = \tau_1$ und $t = \tau_m$ gelegenen Teil von \mathfrak{B} ,

Abb. 18. Zustandskurve D, Einspritzgesetz, Nadelhub und Zustandsfunktion $\psi\left(L\,,t\right)$ für $3\,T\,\leq t\,\leq\,\tau t+T$

26. November 1938

Abb. 15, überall $p \ge 0$, wird klar, wenn man sich nach Abb. 19 (unter Beachtung von Nr. 5) den Gegenlauf der beiden Wellen Φ und Ψ während des Zeitabschnittes $[\tau_j, \tau_m]$ vorstellt. Ueber der jeweiligen Strecke [g(t), L]ist in der Tat $\Phi(x - at) \ge \Psi(x + at)$.

21. Einspritz- und Fördervolumen im Fall A. Die in Abb. 11a und 18 über t aufgetragene Kurve

W/L.Ts+T

 $\Psi(L, \tau_F + T)$

 $\begin{array}{c} \frac{Q}{q} \left\{ y\left(t\right), \, p\left(L, \, t\right) \right\} \\ \text{schildert die während} \\ \tau_m - \left(T + t_1\right) = 13,38 \\ \text{Zeiteinheiten erzielte} \\ \text{Oelförderung in den} \\ \text{Zylinder}^{14} \text{). Das (mit dem Planimeter gemessene)} \\ \text{Einspritz-volumen beträgt} \end{array}$

Abb. 19. Wellenbild bei Förderschluss im Fall A

 $Ve = \int_{T+t_1} Q \, dt = 0.055$ (Zeichen- und Plani-

metriergenauigkeit schätzungsweise $\pm 0,001$). In das Rohr eingedrungen ist das Fördervolumen $V_f = q \int_0^{2T} v(0,t) dt + q \int_{2T}^{\tau_f} v(0,t) dt$.

Das erste Integral lässt sich aus Gl. (18) zu 0,031, das zweite durch Planimetrieren zu 0,016 bestimmen: $V_f = 0,047$. In der Leitung bleibt (bei Vernachlässigung des nach Förderschluss τ_f nachströmenden Oels) ein unausgefüllter Raum $V_e - V_f = 0,008$, das sind $0,4^{\circ}/_0$ des Volumens Lq + V = 1,886. Berücksichtigt haben wir lediglich den im Vorraum $V_2 = 2$ durch den Entlastungs-Kolben geschaffenen, den Förderverzug χ bestimmenden Hohl-

raum $\varDelta V = F \int_{w}^{0} dt = F \frac{h+i}{2} \chi = 0,049$ (Abb. 9), der die Bedingung (24) erfüllt.

inigung (24) eriunt.

B. Rückschlagventil ohne Entlastungskolben.

An unserer Pumpe mögen folgende beiden Aenderungen vorgenommen werden: 1) Den erledigten Idealfall der augenblicklichen Druckannullierung vergleichen wir mit dem entgegengesetzten Extrem, dem die Oelzufuhr messerartig, ohne irgendwelchen Drucksturz, abschneidenden Rückschlagventil: Entlastungskolben und Förderverzug entfallen. 2) Die Verbindung von V_1 (Abb. 1) mit der Leitung wird erst zur Zeit 0 [w (0) = i] hergestellt. Die Förderzeit beträgt nur noch $\varkappa = \tau_f$. Von diesen Aenderungen bleibt der ermittelte Verlauf bis zum Förderschluss unberührt.

22. Pumpenende, $\tau_f \leq t \leq \tau_k$.

Aus der Bedingung $v(0, t) - v(L, t - T) = \frac{1}{\varrho a} \left\{ p(0, t) - p(L, t - T) \right\}$ im Verein mit der Rand-

bedingung (23), oder

tätsbedingung

 $v(0, t) = \sqrt{\frac{2}{\varrho}} \sqrt{p^*(t) - p(0, t)}$. (25) vom Typus (7), lässt sich die Zustandskurve *P* Schritt für Schritt bis zum kritischen Zeitpunkt $\tau_k [p(0, \tau_k) = 0]$ konstruieren, indem zugleich der Druckverlauf $p^*(t)$ in der Vorkammer durch schrittweise Integration der Kontinui-

$$p^*_t = E \frac{\varrho_t}{\varrho} = - \frac{Eq}{V_2} v (0, t) \ldots (26)$$

 $\tau_F + T + 20$

gewonnen wird, vergl. Abb. 20.

23. Düsenende, $\tau_f + T \leq t \leq \tau_m$.

Die Verschiebung des Kritischen Zeitpunktes τ_k über den Förderschluss hinaus zieht eine Fortsetzung der Zustandskurve D über den Zeitpunkt $\tau_f + T$ hinaus nach sich. Solange — bis zu dem noch zu bestimmenden Zeitpunkt τ_m — die Gleichung $\varphi(L, t) = \varphi(0, t - T)$ zu Recht besteht, ergibt sich diese Fortsetzung wie sub 17. Die in Abb. 21 ausgeführte Konstruktion von $[D_{\tau_f} + T, D'\tau_m]$ setzt $y = \dot{y}_0, y = 0$ voraus, was zwar, mit dem Absinken des Düsendrucks unter den Schliessdruck p_s kurz vor τ_m , zuletzt nicht mehr genau zutrifft.

cm/10-45ec

0,1

 $\Phi(x - a\tau_F)$

-T++ E,

W(X+ate

X3 X2X1

-7,

Abb. 20. Zustandskurve P, Druck p^* und Zustandsfunktion φ (0 , t) für $\tau f \leq t \leq \tau_k$

24. Zerfall der Oelsäule im Fall B. Das wie sub 18 (aus Abbildungen 20, 11a, 18 und 21) konstruierte Wellenbild im kritischen Zeitpunkt τ_k , mit einer weichenden Zerfallsgrenze in P, zeigt Abb. 22, den Fahrplan $\xi = \frac{1}{a} g(t)$ der Zerfallsgrenze Abb. 23 a. Da nur in dem sehr kurzen Zeitabschnitt $[\tau_k, \tau_k + \zeta_1]$ $\frac{dg}{dt} > a$ ist (Gl. (15)), erreicht τ_m beinahe $\tau_k + T$. Zur Zeit

¹⁴) Die abweichende Form des von Pischinger, l. c. S. 20, Bild 19 gefundenen Einspritzgesetzes dürfte in der Hauptsache von der Nichtbeachtung des Zusammenbruchs der Oelsäule herrühren.

X2

Ste Tr Es

 $\tau_{\kappa} \approx \tau_{\kappa} + \xi_{2}$ $\tau_{\kappa} + \xi_{2}$

 $\tau_{\kappa} + \xi_3$

 $\tau_{\kappa} + \xi_4$

T= +10

TF+15

TF+20

Z-T

TF+25

 $\tau_m \approx \tau_r + 7$

TF +5

X3

 $\begin{array}{l} \tau_m - T' = \tau_k + \zeta_i \ \text{fällt im Querschnitt} \ J \ \text{der} \ \text{Abszisse} \ x_i \ \text{die} \\ \text{Zustandsfunktion} \ \varphi \ \text{von dem Wert} \end{array}$ $\varphi'(x_4, \tau_m - T') = \varphi(0, \tau_m - T) =$ $\begin{array}{l} \varphi'(L, \tau_m) \text{ auf den Wert } \varphi(x_4, \tau_m - T') \\ = \psi(x_4, \tau_m - T') = \psi(L, \tau_m - 2T') \\ = \varphi(L, \tau_m). \quad \text{Daher die Lage der} \end{array}$ Zustandspunkte $J'_{\tau m} - T$, $J_{\tau m} - T'$, $D'_{\tau m}$ und $D_{\tau m}$ in Abb. 21.

25. Schliessvorgang im Fall B.

Düsenende, $\tau_m \leq t \leq Z$. Die weitere Konstruktion von D geschieht analog wie sub 10. An

Stelle der Säule [P, D] der Durchlaufzeit T tritt die Säule [J, D] der Durchlaufzeit T'; die Rolle der Zustandskurve P übernimmt die, vom Punkt $J_{\tau_m - T'}$ an in die Ebene p = 0 fallende Zustandskurve J; die Randbedingung (20) besteht weiter; für die Nadel gilt, wegen $\dot{y} < 0$, statt (21a) die Bewegungsgleichung

$$\ddot{y} + \frac{k}{m}y = \frac{f}{m}p(L,t) - \frac{P_0 - R}{m} \dots \dots (21c)$$

im Fall B

Mit Hilfe ihrer graphischen Integration ergibt sich der in Abb. 21 angegebene Verlauf von D bis zu dem Zeitpunkt Z, wo, bei der Rückkehr der Nadel in die Schliesstellung, v(L, Z) gleichzeitig mit \dot{y} vernichtet wird.

26. Ergänzung der Druckkontrolle im Fall B. Für den hiermit angegebenen Verlauf bleibt die Kontrolle $p \ge 0$ in dem nach Wegnahme des Rechtecks \mathfrak{F} ($0 \le t \le \tau_f$, $0 \le \xi \le T$) übrigbleiben-den Bereich von \mathfrak{B} , nennen wir ihn $\mathfrak{B} - \mathfrak{F}$, Abb. 23 a, nachzuholen:

1) Zur Kontrolle des Verlaufs über dem zwischen den Geraden $t = \tau_t$ und $t = \tau_k$ gelegenen Teil von $\mathfrak{B} - \mathfrak{F}$, dem in der t_P , t_D -Ebene ein ähnliches Rechteck entspricht, vergl. Nr. 6, lassen wir t_P das Intervall $[\tau_f - T, \tau_k]$ durchlaufen und stellen anhand der Abb. 11 a, 18, 20 und 21 fest, dass in diesem Intervall $\psi'(L, T + t_2) \ge \psi[L, \nu(t_P)]$. Für $\tau_f - T \le t_P < \tau_k - \epsilon_2$ ist aber $\varphi(0, t_P) > \psi'(L, T + t_2)$; erst $\varphi(0, \tau_k - \epsilon_2) = \psi'(L, T + t_2)$, siehe Abb. 20. Die Kontrolle beschränkt sich daher auf das von den Geraden $t_P = au_k - au_2$, $\xi = 0$ und $t = au_k$ eingeschlossene Dreieck \mathfrak{D} der ξ , t-Ebene (Abb. 23b). Die Gestalt der über \mathfrak{D} errichteten Zylinderflächen φ ($a \xi$, t) und ψ ($a \xi$, t) (Gl. (4) und (12)) geht aus den in Abb. 23 b umgeklappten Schnitten φ (0, t) für $\tau_k - \epsilon_2$ $\leq t \leq \tau_k$ (aus Abb. 20) und ψ (*L*, *t*) für $\tau_k - T - \varepsilon_2 \leq t \leq \tau_k - T + \varepsilon_2$ (aus Abb. 11a) hervor. Es ist zu zeigen, dass dem Dreieck \mathfrak{D} bei der Abbildung $\varphi = \varphi(a\xi, t), \ \psi = \psi(a\xi, t)$ in einer φ , ψ -Ebene ein ganz in der Halbebene $\varphi \geq \psi$ gelegenes Gebiet entspricht. Für einen beliebigen Punkt von \mathfrak{D} , etwa den Kreuzungspunkt (ξ , t) der beiden Geraden $t_P = \tau_k - \eta_1$ und $t_D =$ $\begin{aligned} \tau_k - T + \eta_2 \text{ gilt: } \psi \left(a \, \xi, t \right) &= \psi \left(L, \tau_k - T + \eta_2 \right) \leq \psi \left(L, \tau_k - T + \eta_1 \right) \\ &\leq \varphi \left(0, \tau_k - \eta_1 \right) = \varphi \left(a \, \xi, t \right), \text{ w. z. b. w.} \end{aligned}$

2) Für den von den Geraden $t = \tau_k$ und $t = \tau_m$ eingeschlossenen Teil von $\mathfrak{B} - \mathfrak{F}$, Abb. 23a, erhellt $p \geq 0$ wieder aus der Verfolgung der gegenseitigen Verschiebung der beiden Wellenbilder Φ und Ψ aus ihrer Lage zur Zeit τ_k in die Lage zur Zeit τ_m , Abb. 22.

3) Bezüglich des restlichen Stücks von $\mathfrak{B} - \mathfrak{F}$, des Trapezes G, Abb. 23a, lehrt eine Betrachtung der Abb. 21 gemäss Nr. 13, wenn t_J das Intervall $[\tau_m - T', Z - T']$ durchläuft, dass mit $v(t_J) = \omega(t_J), \omega(t_J) > t_J - T'$ für $\tau_m - T' \leq t_J < \tau_m, \omega(t_J) =$ $= t_J - T'$ für $\tau_m \leq t_J \leq Z - T'$, durchweg der \mathfrak{H} -Fall, Abb. 14, vorliegt.

27. Einspritz- und Fördervolumen im Fall B. Das im Zeitabschnitt [$T + t_1$, $au_f + T$] eingespritzte Oelvolumen 0,055 wird jetzt um das Volumen $\int Q dt = 0,067$ vermehrt: $V_e = 0,122$, während $Z = (T + t_1) = 33,50$ Zeiteinheiten (Zeichen- und Planimetriergenauigkeit etwa \pm 0,002). Das im Intervall [0, au_f] in die

Leitung gepresste Oelvolumen von 0,047 erhöht sich um $q \int v(0,t) dt$

Abb. 23b. Druckkontrolle im Bereich D (in der Figur irrtümlich mit δ bezeichnet)

nahmen über den Anfangszustand trotzdem als Annäherungen berechtigt sind; welche Verzerrung der Wirklichkeit diese Vereinfachung, nebst den übrigen, zur Folge hat - dies wäre durch Versuche zu entscheiden.

Zusammenfassung. Zum Studium des Einspritzvorgangs in der Oelleitung empfiehlt es sich, den raum-zeitlichen Zustand des Oels durch die beiden Zustandsfunktionen φ und ψ , lineare Kombinationen des Drucks und der Geschwindigkeit, zu schildern. Jeder Kolbenhub der Pumpe weckt in der Leitung, zusammen mit den Randbedingungen, die bei direkter Einspritzung durch das Nadelventil am einen, die Pumpe und ihr Rückschlagventil am andern Ende gegeben sind, zwei Schallwellen: eine φ -Welle in der einen, eine ψ -Welle in der andern Richtung. Die hieraus folgende (analog auf elektrische Wanderwellen anwendbare) graphische Konstruktion des Einspritzgesetzes wurde an einem numerischen Beispiel, für zwei verschiedene Ausbildungen des Rückschlagventils, erläutert. Insbesondere wurde, unter Annahme einer anfänglich zusammenhängenden Oelsäule, die Wirkung des in beiden Fällen einsetzenden Zerfalls der Oelsäule auf das Einspritzgesetz klargelegt und gezeigt, dass in beiden Fällen mit der Bildung von Hohlräumen zu rechnen ist, welche die Beherrschung des Einspritzvorganges bei der gewählten Anordnung in Frage stellen.

Raumaufhellung durch natürliches Tageslicht

Von Dipl. Arch. E.T.H. ERNST WUHRMANN, Prag-Zürich

Im Anschluss an den Aufsatz «Fensterlage, Fensterform und Raumausleuchtung» von Baumeister E. W. Hummel, Jena, in Bd. 111, Nr. 21 (Seite 271) der «SBZ» seien nachstehende Bemerkungen nebst Hinweis auf eine neue, u. a. auch in der Schweiz (unter Nr. 194867) patentierte Einrichtung zum Erhellen schlecht beleuchteter Arbeitsstellen in Räumen durch «Zenitlicht» gestattet.

In dem genannten Aufsatz wird der Einfluss von Fensterlage und Fensterform auf die Raumbeleuchtung, sowie der Fensterkonstruktion auf die Grösse der einfallenden Lichtmenge behandelt. Dabei wird mit einer bestimmten Aussenbeleuchtung von 8300 Lux gerechnet, sowie mit der Verwendung des üblichen Fensterglases. Ausserdem wird der Einfluss der Lichtrückstrahlung durch gegenüberliegende Hauswände in Betracht gezogen. Die durch diese Untersuchung gefundenen Ergebnisse sind von praktischem Wert überall da, wo die vorausgesetzte Aussenbeleuchtung: «an einem hellen Dezembertag» wirklich vorhanden ist und wo, wenn nicht schon mit freiem Himmel bis zum Horizont herunter, so doch mit einer gewissen Lichtrückstrahlung durch die gegenüberliegenden Hauswände gerechnet werden kann.

Diese günstigen Verhältnisse sind aber in vielen Fällen, gerade bei städtischen Bauten, um die es sich ja bei diesen Unter-

 $= 0,037 \text{ auf } V_f = 0,084$

(wiederum bei Ver-

später als τ_k nachströ-

Unausgefüllt bleibt in

der Leitung das Vo $lumen V_e = V_f = 0,038,$

d. h. 2 %/0 des Leitungs-

Pumpenhub verstärk-

te Hohlraum in der Leitung mit dem in-

folgedessen steigen-

Wert zustrebt; ob die-

ser Wert so klein

bleibt, dass unsere

ihn ignorierenden An-

Förderverzug

stationären

volumens 1,886. Ob der nach jedem

des

Volumens).

nachlässigung

menden

den einem

10-4 Sec 111.5 111:33-5 Abb. 23a. Lösungsbereich