Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 111/112 (1938)

Heft: 14

Artikel: Gütebewertung und zulässige Spannungen von Schweissungen im

Stahlbau

Autor: Roš, M. / Eichinger, A.

DOI: https://doi.org/10.5169/seals-49923

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wenn man nun die linken und die rechten Seiten dieser beiden Gleichungen miteinander multipliziert, folgt:

$$rac{Q\,n}{c^2} = rac{60\,K_{u_1}K\,D_1^{\ 2}}{\pi\,D_1} \ rac{Q\,n}{c^2\,D_2} = rac{60\,K_{u_1}}{\pi}\,K = K_1$$

oder

wo nun K_1 eine dimensionslose Grösse ist und zweckmässigerweise als «Typenkonstante» zu bezeichnen wäre.

Nach der heute gebräuchlichen Schreibweise hätte man:

$$K_1 = rac{60 \ K_{u_1} Q_{11}}{\pi \sqrt{2 g}} = 4{,}315 K_{u_1} Q_{11}$$

Diese Typenkonstante kann man nun als Funktion der neu vorgeschlagenen Kennziffer darstellen und auf diese Weise für eine bekannte Kennziffer den Laufraddurchmesser leicht bestimmen. Man hätte also:

$$\frac{Q n}{c^2 D_1} = f\left(\frac{Q n^2}{c^3}\right)$$
$$K_1 = f(K_s)$$

d. h.

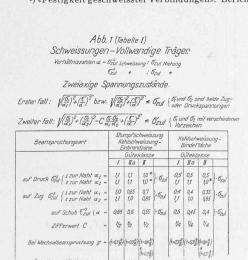
Da das Rechnen mit dimensionslosen Grössen in verschiedener Richtung Vorteile bietet, sollte es bei der Lösung technischer Aufgaben mehr als bisher herangezogen werden.

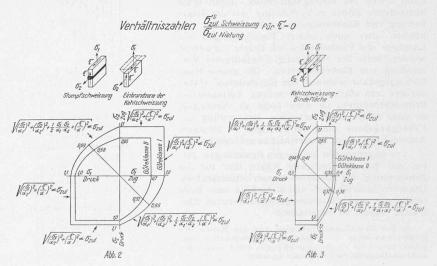
Gütebewertung und zulässige Spannungen von Schweissungen im Stahlbau

Von Prof. Dr. Ing. h. c. M. ROŠ und Dipl. Ing. A. EICHINGER, E. M. P. A., Zürich

Die statischen und dynamischen Versuche der E. M. P. A. mit geschweissten Verbindungen und Konstruktionen aus Flusstahl, die der E. M. P. A. zu ihrer eigenen Bewertung von Schweissungen und als Grundlage für die in der Eidg. Verordnung für Bauten aus Stahl vom 14. Mai 1935 niedergelegten Vorschriften dienten, gehen auf die Jahre 1927 bis 1934 zurück 1). Inzwischen hat die Schweissung von vollwandigen Tragwerken, Druckleitungen, Gefässen und Kesseln auch in der Schweiz eine ganz bedeutende Entwicklung durchgemacht und sehr beachtenswerte Fortschritte zu verzeichnen, sodass es auf Grundlage der vorliegenden Erfahrungen, die weiterer, systematischer Ergänzungen bedürfen, gerechtfertigt erscheint, die in den Art. 62 und 64 der Eidg. Stahlbau-Verordnung vom Jahre 1935 festgesetzten zulässigen Spannungen, vorläufig für geschweisste, vollwandige Stahlbauten, im Sinne des Art. 140 der Verordnung - den erforderlichen Festigkeits- und Güteausweis der Schweissungen vorausgesetzt zu erhöhen. Die $E.\,M.\,P.\,A.\,\,stellt,\,\,$ den grossen Fortschritten der Elektrodenfabrikation, der Schweissmaschinen, der Ausführung der Schweissungen in der Werkstätte und am Bauplatz, der Schulung der Schweisser und Prüfung der Schweissnähte, der Durchbildung konstruktiver Einzelheiten und des Zusammenbaues auf der Baustelle sowie ganz besonders den gewonnenen metallurgischen Erkenntnissen Rechnung tragend, ihre Vorschläge hiemit zur Diskussion. Dadurch ist auch den gegenwärtigen Forderungen unserer Stahlbauindustrie Rechnung getragen, sind ferner die Bestrebungen der Technischen Kommission des Verbandes Schweiz. Brückenbauanstalten (T. K.V. S. B.), der S. I. A.-Fachgruppe der Ingenieure für Brückenbau und Hochbau sowie einzelner tüchtiger Konstrukteure gewürdigt und unbegründete Angriffe gegen die E. M. P. A.-Bestimmungen abgewiesen. Es ist nun an den am Fortschritt in der Schweissung Interessierten, die bereits vorliegenden, sehr wertvollen und zahlreichen Versuchs- und Erfahrungstatsachen durch Ergebnisse wohldurchdachter, systematischer Versuche zu ergänzen und den Ausweis betreff. die wirklich mögliche Hebung der Ausführungsgüte von Schweissungen zu erbringen, damit die Erhöhung der zulässigen Spannungen zu begründen und die Schweisstechnik zu fördern.

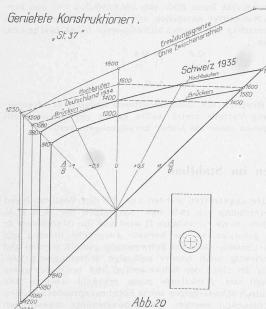
Die bisherigen Vorschriften für die Schweissungen entsprechend den Art. 62 und 64 der Eidg. Verordnung sollen bestehen bleiben und für die mit «Güteklasse II» bezeichneten Schweissungen gelten. Es sind dies Schweissungen, wie sie bei sachgemässer Ausführung heute in jeder richtig geleiteten Konstruk-


tionswerkstätte angetroffen werden und die den Bestimmungen der Eidg. Verordnung von 1935 bzw. denjenigen der E.M.P.A. genügen. Neben dieser Güteklasse II wird nun die «Güteklasse I» in Vorschlag gebracht, an die höchste Ansprüche inbezug auf die materialtechnische Güte der Schweissung gestellt werden und für die folgerichtig auch höhere zulässige Spannungen gelten. Der Nachweis der Güte der Schweisstäbe und besonders guter Schweissbarkeit der Werkstoffe muss erbracht werden. schweisstechnisch schwierigsten sowie hochbeanspruchten Stellen müssen durchleuchtet werden. Die Schweissnähte müssen den Anforderungen einer Ueberprüfung durch Anfräsen, bzw. Entnahme von Versuchsscheiben an geeigneten Stellen genügen. Schroffe Querschnittsübergänge und Kerben in der Einbrandzone müssen vermieden, bzw. die Uebergänge und Schweissnähte bearbeitet werden und der Mittelwert der Zug-Ursprungsfestigkeit der Stumpfnaht und der Einbrandzone von Kehlnähten winkelrecht zur Naht muss $\sigma_u = 18\,\mathrm{kg/mm^2}$ erreichen, mit einer zulässig en Abweichung von höchstens $-10^{\,0}/_{\!_0}$, also einem Mindestwert von $\sigma_u = 16 \text{ kg/mm}^2$.


Ursprungsfestigkeit und Biegezahl der Stumpfnähte sind jeweils an Versuchstäben gemäss Art. 53, Ziffer 1, festzustellen. Für die Biegezahl k sind, je nachdem die Nahtwurzel in der Druckoder in der Zugzone liegt, folgende Mittelwerte auszuweisen:

Mittelwerte k für Wurzel in der			ruckzone	Zugzone
bei Blechen bis 12 mm Stärke	1		40	30
bei Blechen von 12 bis 20 mm Stärke		. 10	30	25
bei Blechen über 20 mm Stärke			25	20
zulässige Toleranz — 20%.				

Unter Beibehaltung der von der E.M.P.A. sinngemäss auf die Schweissnähte übertragenen und von ihr ausgewiesenen Theorie der konstanten Gestaltänderungsenergie²) sind die Verhältniszahlen $\sigma_{s\,{\rm zul}\,\,\rm Schweissung}$: $\sigma_{\rm zul}\,\,\rm Nietung\,\,und\,\,\,\tau_{s\,{\rm zul}\,\,\rm Schweissung}$: $\sigma_{\rm zul}\,\,\rm Nietung\,\,gr$ für ein- und zweiaxige Spannungszustände und die Güteklassen I und II in der Tabelle I (Abb. 1) angegeben und in den Abb. 2 und 3 zeichnerisch dargestellt.


Bei der Güteklasse I ist für Zugbeanspruchungen parallel sowie Druckbeanspruchungen sowohl winkelrecht als auch parallel zur Stumpfnaht und zur Einbrandzone von Kehlschweissungen und sodann auch für auf Zug und Druck parallel zur Naht beanspruchte Kehlschweissungen von Art. 67, Ziffer 5, Gebrauch gemacht worden, indem die zulässigen Spannungen um $\sim 10^{\,0}/_{\odot}$

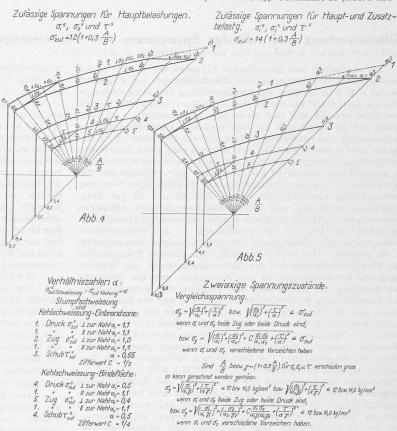
^{1) «}Festigkeit geschweisster Verbindungen». Bericht Nr. 86 der E.M.P.A.

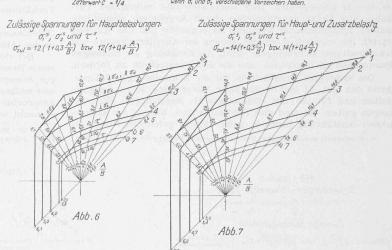
²⁾ M. Ros: «Statische Bruchgefahr bei normaler und hoher Temperatur»; Forschungsergebnisse der E. M. P. A., 1926 bis 1936.

erhöht wurden, wie auch für vollwandige, genietete Träger die zulässigen Spannungen im Konstruktionsmaterial um $10\,^{\circ}/_{o}$ erhöht werden dürfen. Die Höchstwerte wurden aber mit 15,6 bezw. 18,2 kg/mm² begrenzt. Sodann ist für winkelrecht auf Zug beanspruchte, geschweisste Stumpfnähte die zulässige Spannung auf $\sigma_{u\, zul}$ Schweissung = $\sigma_{u\, zul}$ Nietung = 12,0 bezw. 14,0 kg/cm² gemäss Art. 64 festgesetzt worden (Abb. 4 und 5).

In den Abb. 4, 5, 6 und 7 ist der Verlauf der zulässigen Spannung für Stumpf- und Kehlschweissungen, sowie die Kehlnahteinbrandzone in Abhängigkeit vom Verhältnis der Grenzwerte der Beanspruchungen für die Güteklasse I und II zeichnerisch dargestellt.

Die Abb. 8, 9, 10 und 11 veranschaulichen die Grenzwerte der zulässigen Spannungen der Güteklassen I und II für Ursprungsbelastung im Falle gleichzeitiger Wirkung von σ_1 und τ bzw. σ_2 und τ . Versuche zeigen, dass bei Kehlnähten im Falle des Zusammenwirkens von σ_2 und τ keinesfalls nur die Schubspannung τ allein, insbesondere bei starkem Spannungswechsel, zu berücksichtigen ist, da die Zugspannung σ_2 von entscheidendem Einfluss werden kann. Geschweisste, wiederholt beanspruchte Vollwandträger ermüdeten sehr oft im mittlern, querkraftfreien Teil³).


Die Laschen- und Plattenenden sind so auszuführen, dass die vorgeschriebene Ursprungsfestigkeit der Uebergangszone verbürgt wird. Dies kann durch die Schrägnaht bezw. durch spitz auslaufende Enden in Verbindung mit der Bearbeitung der Einbrandzone erreicht werden. Es können aber auch andere Formgebungen der Laschen- und Plattenenden mit Erfolg verwendet werden, unter der Bedingung sorgfältigster Vermeidung von Einbrandkerben. Die grosse Rissbildungsgefahr während des Schweissens, insbesondere von starken, nicht schräg verlaufenden Stirn-Kehlnähten, ist aber nicht zu verkennen, so dass selbst nach erfolgter Bearbeitung der Uebergangszone diese sorgfältigst -- Röntgen, Aetzen, Lupe — auf Rissfreiheit zu untersuchen ist.


Die angegebenen zulässigen Spannungen gelten nur für durchgehende Nähte und für die Schweissung des normalen Konstruktionsstahles. Unterbrochene Stumpf- und Kehlnähte sind, ihres festigkeits- und verformungsvermindernden Einflusses wegen, zu unterlassen.

Die Kurven der Ermüdungsfestigkeiten und der zulässigen Spannungen für die winkelrecht auf Zug beanspruchte Stumpfnaht und Kehlnaht-Einbrandzone sind der Abb. 12 zu entnehmen, während Abb. 13 die Kurven für die winkelrechte Zugbeanspruchung der Kehlnaht-Bindefläche entsprechenden Güteklassen (gegenwärtig gültig) und I (Vorschlag E.M.P.A. 1938) zeigt; der Fortschritt ist unverkennbar. Es wäre sehr zu wünschen, wenn in allernächster Zukunft die Güteklasse II durch die in

Einaxige Spannungszustände von Schweissungen

Güteklasse I (Abb. 4 und 5), Güteklasse II (Abb. 6 und 7)

Verhällmiszahleri cc:

of all schweissung i Gud Nietung = CC
Stumpfischweissung
Kehlschweissung Einbrand zone:

Druck of all zur Nahl a, -1,0
3. Zug of all zur Nahl a, -1,0
3. Zug of all zur Nahl a, -0,8
4. Schub Cful zur Nahl a, -0,8
5. Schub Cful zur Nahl a, -0,8
5. Oruck of all zur Nahl a, -0,8
6. Oruck of all zur Nahl a, -0,8
7. Zug of all zur Nahl a, -0,5
7. Zug of all zur Nahl a, -0,5
7. Zug of all zur Nahl a, -0,3
7. Zug of

Zweiaxige Spannungszustände. Vergleichsspannung: $\sigma_g = \sqrt{(\frac{\alpha}{\alpha})^2 + (\frac{x}{\alpha})^2} \quad bzv. \quad \sqrt{(\frac{\alpha}{\alpha})^2 + (\frac{x}{\alpha})^2} \quad \& \quad \sigma_{zul}$ wenn of, und of, beide Zug ober beide Druck sind, $bzw. \quad \sigma_g' = \sqrt{(\frac{\alpha}{\alpha})^2 + (\frac{\alpha}{\alpha})^2} \cdot C\frac{\sigma}{\alpha}\frac{\sigma_g'}{\sigma_g'} + (\frac{x}{\alpha})^2} \stackrel{<}{=} \mathcal{O}_{zul}$ wenn of, und of, verschiederne Verzeichen haben.

Sind $\frac{A}{B}$ oder $\gamma = (1+0.4\frac{A}{B})$ bzw. $(1+0.3\frac{A}{B})$ für $\sigma_1', \sigma_2', u.t'$ verschieden gross so kann gerechnel werden gemäss: $\sigma_2' = \sqrt{\left(\frac{\sigma_1}{\sigma_1}\right)^2 + \left(\frac{\tau}{\alpha'}\right)^2}^2} < 12$ bzw. 14.0 kg/mm² bzw. $\sqrt{\left(\frac{\sigma_2}{\sigma_1}\right)^2 + \left(\frac{\tau}{\alpha'}\right)^2}^2} < 12$ bzw. 14.0 kg/mm² bzw. $\sigma_2' = \sqrt{\left(\frac{\sigma_1}{\sigma_1}\right)^2 + \left(\frac{\sigma_2}{\alpha'}\right)^2} < 12$ bzw. 14.0 kg/mm² bzw. $\sigma_2' = \sqrt{\left(\frac{\sigma_1}{\sigma_1}\right)^2 + \left(\frac{\sigma_2}{\alpha'}\right)^2 + \left(\frac{\sigma_2}{\alpha'}\right)^2}} < 12$ bzw. 14.0 kg/mm² wenn σ_1' und σ_2' verschiedene Vorzeichen haben.

³) Der Ermüdungsbruch ging von den Stellen der Elektrodenansätze aus. Geringe Schweissfehler sind schwerwiegender als Beanspruchungen durch Schub der Kehlnahtbindefläche von 4 bis 5 kg/mm².

den Abb. 12 und 13 eingezeichnete und auch in Tabelle I eingetragene, etwas höherwertige Güteklasse «II a» ersetzt würde, was mit Rücksicht auf den gegenwärtigen Stand der Schweisstechnik ohne weiteres möglich sein sollte.

In den Abb. 14, 15 und 16 sind zum Vergleich die jeweils zugeordneten Grenzwerte der zulässigen Zug-Spannungen für

Schlussi Güteklasse I : Zulässige Spannungen bei Ursprungsbeanspruchung.

Stumpfschweissung und Kehlschweissung-Einbrandzone

Spannunger bei Ursprungsbeanspruchung.

Spannunger bei Ursprungsbeanspruchung.

Spannunger bei Ursprungsbeanspruchung.

Stumpfschweissung und Kehlschweissung- Einbrandzone

Abb. 8

Stumpfschweissung und Kehlschweissung- Einbrandzone

Abb. 8

Stumpfschweissung und Kehlschweissung- Einbrandzone

Stumpfschweissung und Kehlschweissung und Kehlsc

----- Für Hauptbelastungen

Stumpfnaht v. Kehlnaht-Einbrandzone

Stumpfnaht v. Kehlnaht-Einbrandzone

Güteklasse

Tago

30 Sohweiz: Deutschland

Sohweiz: Deutschland

Solweiz: Deutschland

Solweiz: Deutschland

Solweiz: Deutschland

Solweiz: Deutschland

Solweiz: Deutschland

Solweiz: Deutschland

Abb. 13 Kehlnaht – Bindefläche Zug senkrecht Naht.

Todassige Spannungen

To Zudessige Spannungen

To Goteklasse 11.88/62 Schweiz 1938

Todassige Spannungen

Toda

Gülteklasse I : Zulässige Spannungen bei Ursprungsbeanspruchung. Hauptbelastungen: Stumpfschweissung und Kehlschweissung-Einbrandzone

Abb. 19

Kehlschweissung-Binderläche

Deutschland

Deutschland

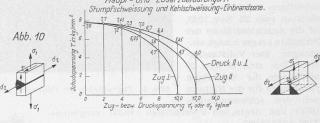
Deutschland

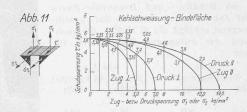
Deutschland

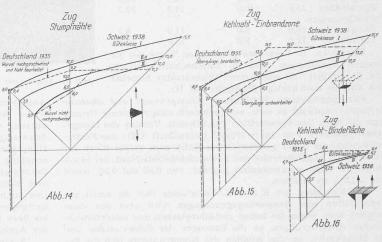
Deutschland

Volkentige Eisenbehnbricken von

19. Nov. 1935

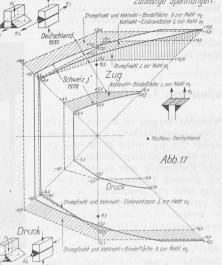

Zug II und Druck II

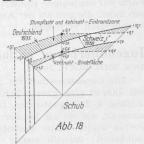

20. 20. 20. 454 4 4 5


Stumpfnähte, für die Kehlnaht-Einbrandzone und für die Kehlnaht-Bindefläche, stets winkelrecht zur Naht, entsprechend den heute gültigen schweizerischen Vorschriften (Güteklasse II), sodann gemäss den neuen «Vorschlägen 1938» der E. M. P. A. (Güteklasse «I» und «II a») und nach den vorläufigen deutschen Vorschriften vom 20. Nov. 1935, bei den Kehlnähten auf die Anschlussfläche umgerechnet, für Hauptbelastungen dargestellt.

In den Abb. 17 und 18 sind gegenübergestellt die zulässigen Spannungen entsprechend dem Vorschlage der E.M.P.A. 1938 für die Güteklasse I sowie gemäss den vorläufigen deutschen Vorschriften vom 20. Nov. 1935 und zwar für die Stumpfnähte,

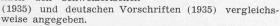
Gűteklasse II: Zulássige Spannungen bei Ursprungsbeanspruchung. Haupf- und Züsatzbelastungen. Stumpfschweissung und Kehlschweissung-Einbrandzone.


Geschweisste , vallwandige Eisenbahnbrücken .


Hauptbelastungen .

Zug vo. Zulässige Spannungen .

Stumpfraht und Kehlneht - Binderläche II zur Naht og .


Kehlnaht - Einbandtsene 1 zur Naht og .

Abbildungen nach den Originalzeichnungen der E. M. P. A. die Kehlnaht-Einbrandzone und die Kehlnaht-Bindefläche winkelrecht und parallel zur Naht für Zug und Druck sowie für Schub.

In Abb. 19 sind zum Vergleich auch die Grenzwerte der zulässigen Spannungen der Güteklasse I für Ursprungsbelastung im Falle gleichzeitiger Wirkung von $\sigma_{\scriptscriptstyle 1}$ und τ bzw. $\sigma_{\scriptscriptstyle 2}$ und τ entsprechend dem Vorschlag der E. M. P. A. und nach den vorläufigen deutschen Vorschriften vom 20. Nov. 1935. auf die Anschlussfläche der Kehlnähte umgerechnet, eingetragen. Der Vollständigkeit halber sind in Abb. 20 auch noch die zulässigen Spannungen für die Nietung nach den schweizerischen

Den äusserst beachtenswerten Fortschritten, die die Schweisstechnik des Behälter- und Druckrohr-Baues in den letzten vier Jahren zu verzeichnen hat, gebührend Rechnung tragend, schlägt die E.M.P.A. die nachfolgende Erhöhung der zulässigen Spannungen für Druckleitungen vor:

Stahlgüte:	$^{ ext{ ext{ ext{ iny M}}}}$ I» $^{ ext{ iny z}} = 36/44 \text{ kg/mm}^2$		$^{ m \ll M~II}$ $eta_z = 42/48~{ m kg/mm^2}$		
β					
	1938	1934	1938	1934	
Druckleitunger	n:				
Längsnähte	11,0	9,0	12,5	10,5	
Spiralnähte	13,5	10,5	14,5	12,3	
Verteilleitunge	n:				
Längsnähte	10,0	8,0	11,0	9,3	
Spiralnähte	12,0	9,5	13,0	10,8	
Die neuen	in Tran	noblas sohn	nobton Wort		

Die neuen, in *Vorschlag* gebrachten Werte der zulässigen Spannungen sind im Durchschnitt um \backsim 20 bzw. 25 0 / $_{0}$ höher; die niedrigeren Prozentsätze beziehen sich auf die hochwertige Stahlgüte «M II».

Für geschweisste Hohlkörper (Dampfkessel und ähnliche Gefässe) empfiehlt es sich, auf technisch ausgewiesener Grundlage die nach den Vorschriften des Schweiz. Vereins von Dampfkessel-Besitzern vom Jahre 1932/35 (Vorschrift XIII) das Festigkeitsverhältnis Z der geschweissten Naht zum vollen Blech für wurzelseitig ausgestemmte und nachgeschweisste Naht, der Hohlkörper im Ofen spannungsfrei geglüht, von 0,80 auf 0,90, somit um $\sim 13\,^{\circ}/_{0}$ zu erhöhen.

Die Erhebung der E.M.P.A.-Vorschläge 1938 zu amtlichen Vorschriften und Bemessungsgrundlagen wird aber nur dann möglich sein, wenn die hohen metallurgischen und materialtechnischen Anforderungen an die Erzeuger der Schweisstäbe und die Stahlwerke, an das Können des Konstrukteurs und die Zuverlässigkeit der Schweisstechnik — Schulung, Ausführung, Ueberwachung — in der Werkstätte und auf der Baustelle sicher erfüllt werden.

Das Schweissen ist eine Kunst, die einwandfreies Material, technische Kenntnisse, Erziehung, Disziplin, besonderes Geschick und Erfahrung verlangt, und die in der zur Diskussion gestellten Form nur denjenigen Konstruktions-Werkstätten zugebilligt werden kann, die sich als der Aufgabe in jeder Beziehung gewachsen auszuweisen vermögen.

Jugendherberge Fällanden am Greifensee Arch. EMIL ROTH, Zürich

Die Genossenschaft für Jugendherbergen in Zürich betreibt seit Jahren eine grosse Zahl von Jugendherbergen, z. T. Mietobjekte, z. T. Eigenbauten. Daraus hat sie reiche Erfahrung gesammelt, die sie als Bauherr der Jugendherberge Fällanden verwerten wollte. Eine wesentliche Forderung war leichte Unterteilbarkeit: deshalb ausser dem grossen Tagesraum der kleine Tagesraum, für kleinere Gruppen oder für Besuch zur Winterszeit bestimmt, deshalb auch vier Pritschenräume, statt nur zwei grosse wie sonst üblich: bessere Anpassungsmöglichkeit an die stets wechselnde Zusammensetzung der Benützergruppen von Mädchen und Burschen.

Ein weiterer Wunsch war die Unterbringung der Waschräume in unmittelbarer Nähe der Schlafräume, also im Obergeschoss;

Abb. 1. Jugendherberge Fällanden am Greifensee, Gesamtbild aus Südost

Abb. 4. Ansicht aus Osten, rechts unten die offene Halle

Anlage im Keller, wie sie etwa noch anzutreffen ist, bringt entweder Betriebstörungen mit sich oder hat ungenügende Benützung zur Folge. Die Erfüllung dieses Wunsches bot technische Schwierigkeiten wegen der konsequenten Holzkonstruktion der Hauptgeschosse, und wurde wie folgt bewältigt (Abb. 10): Holzschalung auf die Sichtbalken über Parterre, Pappe, 4 cm starke Betonplatte leicht armiert, Plättli im Mörtelbett im Gefälle nach dem Bodenablauf. Damit Spritzwasser nirgends in die Konstruktion eindringen kann, sind die Wände hinter den Apparaten mit hartgepressten Holzfaserplatten auf roher Schalung belegt, die bis über die Plättlikehle herabreichen. Zu- und Abfalleitungen der Apparate sind verdeckt im Hohlraum montiert.

Besondere Sorgfalt wurde der Belichtung und Belüftung der Schlafräume zu Teil. Da Flügelfenster in Pritschenräumen unbequem sind, hat man horizontale Schiebefenster erstellt, die in den Hohlraum der Aussenwand sich schieben lassen und ein beliebiges Oeffnen des Fensters gestatten. Ueberdies ergaben die ungleich hohen Bautrakte die Möglichkeit einer Querlüftung.

Abb. 5. Grosser Tagesraum mit Ausgang gegen die Bergseite