Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 111/112 (1938)

Heft: 14

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

 ${
m INHALT}$: Eine dimensionslose Kennziffer K_s für hydraulische Kreisel-Gütebewertung und zulässige Spannungen von Schweissungen im Stahlbau. — Jugendherberge Fällanden am Greifensee. — Israelitisches Abdankungs- und Leichenhaus, Zürich. — Die Klima-Anlage in Verwaltungs- und Bureaugebäuden. — Neues «Gotthard Auto-Tunnel»-Projekt. — Mitteilungen: Kegums-Kraftwerk. Institut für angewandte Psychologie. Eidg. Technische Hochschule. Ferngedruckte Hauszeitung. Oesterreichischer Ingenieur- und Architekten-Verein. Betriebserfahrungen mit diesel-elektrischen Omnibussen. Trajektverkehr über den Bodensee. Neue Rheinbrücken bei Maxan. Graphische Sammlung der E. T. H. -Nekrologe: Alexander D. Zachariou. Robert v. Pfyffer. Sam. Dumas, — Literatur. - Mitteilungen der Vereine. - Sitzungs- u, Vortrags-Kalender.

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Band 112

Nr. 14

Eine dimensionslose Kennziffer K_s für hydraulische Kreiselmaschinen

Von Prof. ROBERT DUBS, E. T. H., Zürich

Bei der Berechnung von hydraulischen Kreiselmaschinen und insbesondere Wasserturbinen ist es üblich, mit sogenannten Einheitsgrössen zu rechnen, wobei diese Werte für jeden Typ charakteristisch sind. Den folgenden Betrachtungen ist die Berechnung der Wasserturbine zu Grunde gelegt, doch es lassen sich die gleichen Ueberlegungen sinngemäss ohne weiteres auch auf die Berechnung der Kreiselpumpe anwenden.

Wenn man von der, von Prof. Dr. Camerer im Jahre 1902 als Vergleichsbasis für die Schnelläufigkeit von Wasserturbinen vorgeschlagenen, und in der Folge allgemein akzeptierten, spezifischen Drehzahl ns ausgeht, so lässt sich diese Grösse bekanntlich aus der Beziehung

berechnen, wobei n die Drehzahl der Welle in der Minute, N_t die an der Welle vorhandene Leistung in PS und H das Gefälle in m bedeutet. Bei Freistrahlturbinen mit mehreren Düsen, oder bei Francisturbinen mit mehreren Leiträdern, ist jeweilen die Leistung pro Düse oder pro Leitrad in die Formel einzusetzen. Bei den Kreiselpumpen ist es nun aber üblich, an Stelle der Wellenleistung N_t die nützliche Förderleistung $N_d = \frac{\gamma \, Q \, H}{75}$ nehmen, womit dann die Beziehung

on, womit dann die Beziehung
$$n_s=rac{3,65\sqrt[3]{Q}}{4}\dots\dots$$
 (II) $\sqrt[3]{H^3}$

entsteht, worin Q in m^3/sec zu wählen ist 1). Wenn man nun in

$$N_t = \frac{\gamma Q H}{75} \eta$$

 $N_t = \frac{\gamma\,Q\,H}{75}\,\eta_t$ einsetzt, wobei η_t den totalen Wirkungsgrad bedeutet, so folgt

und wenn man in Gl. II in Konsequenz zu Gl. I die Wellenleistung einsetzt, so ergibt sich:

that such:
$$n_s = rac{3,65 \ \sqrt{Q}}{\sqrt[4]{H^3}} rac{1}{\sqrt[4]{\eta_t}} \qquad \ldots \qquad (IV)$$

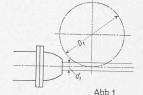
Da nun aber ein auf dem ganzen Umfang beaufschlagtes Turbinenlaufrad sich von einem Kreiselpumpenlaufrad grundsätzlich nicht unterscheidet, erscheint es nicht konsequent, die Schnellläufigkeit dieser Räder verschieden zu definieren. Ich möchte deshalb vorschlagen, entweder durchwegs die Gleichungen III und IV oder noch besser durchwegs die Gleichung II für die Berechnung der Schnelläufigkeit eines hydraulischen Kreiselrades zu benützen. Der Vorteil der Gl. II ist nämlich der, dass sie den Wirkungsgrad η_t nicht enthält, sodass man direkt auf Grund der Konstruktionsdaten H, Q und n die charakteristische Grösse n_s berechnen kann, ohne vorher einen Wirkungsgrad, der ja dann mehr oder weniger eine Funktion von n_s ist, annehmen zu müssen. Die Berechnung der spezif. Drehzahl würde sich damit nicht mehr auf die Wellenleistung N_t sondern auf die disponible Leistung N_d beziehen und es ergäbe sich somit bei den Wasser-Turbinen eine kleine Erhöhung der spezif. Drehzahl gegenüber der bisherigen Berechnungsweise. Da die Wirkungsgrade der Wasserturbinen im letzten Jahrzehnt Werte erreicht haben, die nicht mehr sehr weit unterhalb des idealen Wertes einer verlustfreien Arbeitsumsetzung liegen, und da im Interesse des Fortschrittes das Bestreben, dem Grenzwert noch näher zu kommen, nie erlahmen darf, könnte man wenigstens bei der Berechnung der spezif. Drehzahl den Grenzwert ($\eta_t = 1$) zu Grunde legen, da diese Grösse ja doch nur Vergleichswert besitzt²). Aus den Beziehungen I und IV ist ohne weiteres zu erken-

nen, dass die Dimension der spezif. Drehzahl ns keine befriedigende physikalische Interpretation dieses Wertes gestattet und dass die Grösse von n_s abhängig ist von der Wahl der Einheiten. Es ist dies ein Mangel der spezif. Drehzahl als Kennzeichen, der von mir im Unterricht und auch von den Fachleuten schon lange empfunden wurde. Wohl hat Prof. Camerer s. Zt. die spezif. Drehzahl n, als Drehzahl der 1 PS-Turbine bei 1 m Gefälle definiert, aber wenn man die betr. Dimensionen in die Gleichung einsetzt, erhält man eben nicht den reziproken Wert einer Zeit, und daraus ergeben sich, insbesondere beim Anfänger, ganz erhebliche Schwierigkeiten.

Am zweckmässigsten wäre es wohl, wenn eine dimensionslose Grösse für die Charakterisierung des Types, d. h. der Schnellläufigkeit einer hydraulischen Kreiselmaschine gefunden werden könnte, und es soll nun im folgenden ein solcher Vorschlag gemacht werden.

1. Die Aktionsturbine (Freistrahlturbine u. dgl., s. Abb. 1). Es sei: $c = \sqrt{2gH}$ eine Definitionsgeschwindigkeit, die, wie üblich, als Gefällsgeschwindigkeit bezeichnet werden soll. Wenn ferner d_1 der kleinste Durchmesser des freien Strahles und φ die Ge-

schwindigkeitsziffer bedeutet, so ist die Strahlwassermenge zu berechnen



$$Q = \frac{\pi}{4} d_{1}^{2} \varphi c . . . (1)$$

$$Q=rac{\pi}{4}\,d^{2}{}_{1}\,arphi\,c$$
 . . . (1) Wenn man ferner mit: $u_{1}=rac{\pi\,D_{1}\,n}{60}$ (2)

die Umfangsgeschwindigkeit des Freistrahlrades auf dem Durchmesser D,

bezeichnet, so kann man einen Umfangsgeschwindigkeitskoeffi-

$$K_{u_1} = \frac{u_1}{c} = \frac{\pi D_1 n}{60 c} \dots \dots \dots (3)$$

$$\frac{n}{c} = \frac{60 K_{u_1}}{\pi D_1} \dots \dots (4)$$

$$\frac{Q}{c} = \frac{\pi}{4} d^2_1 q$$

Wenn man nun die linken und die rechten Seiten der beiden letzten Gleichungen miteinander multipliziert ergibt sich:

$$\frac{Q\,n^2}{c^3} = \frac{\pi\,d^2{}_1\,\varphi\,3600\,K^2{}_{u_1}}{\pi^2\,4\,D^2{}_1}$$
 oder:
$$\frac{Q\,n^2}{c^3} = \frac{900\,\varphi\,K^2{}_{u_1}}{\pi\,\left(\frac{D_1}{d_1}\right)^2}$$
 Es ist nun im Freistrahlturbinenbau üblich,

$$\frac{D_1}{d_1} = m$$

zu setzen, wobei die Grösse m ein Charakteristikum der Schnellläufigkeit der betr. Turbine bedeutet 3).

Dann folgt:
$$\frac{Q n^2}{c^3} = \frac{900 \, \varphi \, K^2_{u_1}}{\pi \, m^2} \, \dots \, \dots \, (5)$$

Die rechte Seite dieser Gleichung ist, wie man auf Grund der Definitionsgrössen ohne weiteres erkennt, eine reine Zahl, also muss auch die linke Seite eine dimensionslose Grösse sein, was sich bei Einsetzen der Dimensionen von Q, n und c auch bestätigt. Es soll nun im folgenden die Grösse

$$\frac{Q n^2}{c^3} = K_s$$

gesetzt und als neues Kennzeichen für den betr. Turbinentyp benützt werden, denn es lässt sich, wie später gezeigt werden wird, eine solche Grösse auch für die Reaktionsturbinen ableiten.

Wenn man nun eine bestimmte Freistrahlturbine, d. h. einen Typ rein geometrisch vergrössert oder verkleinert, so bleibt naturgemäss m konstant. Sofern weiter die relative Rauhigkeit der

¹⁾ Siehe Prof. Pfleiderer: «Die Kreiselpumpen», Seite 258.

²⁾ Siehe Camerer: «Vorlesungen über Wasserkraftmaschinen».

³⁾ Siehe «SBZ» vom 19. Mai 1928, Bd. 91, S. 241: «Die Entwicklung und der gegenwärtige Stand des Freistrahlturbinenbaues».