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Nr. 8

Genauere Differenzengleichungen zur Berechnung gebogener Platten
Von Dipl. Ing. E. AMSTTJTZ, Mitarbeiter von Prof. Dr. F. Stüssi, Zürich

Die strenge Berechnung biegsamer Platten stösst In der Praxis
immer noch auf Schwierigkeiten. Reihenentwicklungen sind meist
sehr umständlich zu handhaben, aber auch die Lösung mittels
Differenzengleichungen wird durch die numerische Ausrechnung
fast ebenso umfangreich.

Den Bedürfnissen der Praxis entspricht wohl am besten, die
Methode von Dr. H. Marcus.1) Darnach lässt sich die Differentialgleichung

für die Plattendurchbiegung durch Systeme von
Differenzengleichungen ersetzen, indem man die Platte durch ein
Netz unterteilt und für jeden Netzpunkt eine Differenzengleichung

anschreibt. Die Genauigkeit des Verfahrens steigert sich
mit engerer Netzteilung, zugleich nimmt aber auch die Zahl der
Gleichungen und Unbekannten rasch zu. Um zum Beispiel eine

quadratische Platte mit befriedigender Genauigkeit zu
untersuchen, ist die Quadratseite in mindestens acht Felder zu teilen.
Es sind also bei allgemeiner Belastung 49 Gleichungen mit 49

Unbekannten aufzulösen, die sich allerdings im Falle zweiseitiger
Symmetrie auf 10 reduzieren lassen. Damit diese Theorie die in
der Praxis noch oft verwendete aber gänzlich unzulängliche
Streifenmethode verdrängen kann, ist es erforderlich, das
Verfahren von H. Marcus soweit zu verbessern, dass selbst mit sehr
weiter NetzteUung praktisch noch genaue Resultate erzielt werden.
Dies ist das Ziel vorliegender Untersuchung.

Bezeichnen x, y die rechtwinkligen Koordinaten eines
Plattenpunktes, Ç die Durchbiegung der Platte unter der Belastung p

m3 Ed3
und N —-—z- ——— die Plattensteifigkeit, so lautet die

Bern2—1 12

Stimmungsgleichung für die Durchbiegung der Platte:
d*Ç „ <94Ç ô4Ç p

oder mit Z Wt
dx*
â*z

+ 2- + ^ïdx3dy3 ' dy*
i d*z ,ô*z

N

dx* ' dx3dy3 dy1
Sie lässt sich durch Einführen einer Hilfsgrösse M in zwei

Gleichungen aufspalten:
y>M ff M

— p
d3z o3z
dxa "^ dy"

— M
dx' ^ dy*

Um diese Differentialgleichungen in Differenzengleichungen
überzuführen, ersetzt Marcus im Bereiche des untersuchten
Punktes die M-, bezw. «-Fläche durch ein Paraboloid. Ich will
hingegen eine entsprechende Voraussetzung nicht für M und tu

selber, sondern für ihre zweiten Ableitungen nach den Koordinaten

machen, wodurch die Genauigkeit des Verfahrens
offensichtlich stark erhöht wird. Zu diesem Zweck verwende ich die
bekannten Beziehungen - zwischen einer Grösse und ihrer zweiten
Ableitung, die sich aus den Eigenschaften des Sellpolygones
erergeben, wenn diese Grösse als Durchhang eines Seiles gedeutet
wird, das unter dem Horizontalzug 1 steht und mit der zweiten

Ableitung der Grösse belastet ist (vergi.
Abb. 1).

Die Seillinie z wird durch das Sehnenpolygon

ersetzt, sofern die Knotenlast
K, d. 1. der Auflagerdruck der benachbarten

Felder, als Belastung gewählt
wird. Es ist daher

«m-i — 2zm + gro + i
X

117-1

Abb.1

Km

her im Bereiche m-

Ich nehme an, dass die Belastungsfunktion

z" stetig sei und kann sie da-
-1 bis m + 1 durch eine Parabel ersetzen

(im Falle unstetiger Belastung wie Einzel- oder Streckenlasten
wäre zweckmässiger linearer Verlauf anzunehmen). Es gilt
somit anderseits auch

Km 12" (*"m-1 + 10g"n + «"m + l)
und wir gewinnen die Beziehung
12
-rj- («m_i —2«m + *m + i) *>' m —1 + 10«" + 1 (1)

') Dr. B. Marcus : Die Theorie elastischer Gewebe und ihre Anwendung
auf die Berechnung biegsamer Platten.

') Dr. F. Stüssi: Baustatische Methoden, «SBZ» Band 107, Seite 277

(20. Juni 1986).

Diese Beziehung lässt sich für die 9 Punkte des Plattenabschnittes

der Abb. 2 (unten) sechsmal anschreiben:
12 d2 ¦

(Zi — 2zk-\-zi) ^— (s£ + 10«Ä + S/)
A2*
12
— («„ — 2Sfc + Sm):

x\
12

12

(zq — 2zn + zr)

dx2
ff"

~dy'
ô2

dx1
d'

dx'
d

r («« + !0 «fc + zm)

(3,+ 10s„ + sr)

F (z0 + 10 zm + zp)-Tï- («„ — 2zm-\-zp)

12
-^— (.Zq — 2Z: + Z0) -3-j. («„ + 10 «£ + Ä„)
l3r * dy3
12 d3

—- («r — 2 zi + zp) -—- (zr + 10 zi + s»)
A?y r dy*

Addiere ich die beiden zehnfach genommenen ersten
Gleichungen mit den übrigen, so treten die zweiten Ableitungen nur

noch in der Verbindung „ 4- „ auf, wofür ich den Wert
dx3 ' dys

¦M einsetze und erhalte:
12

(201 2z„ 2zn ¦ 10 Zi — 10 3/— Z0 — 2p — Zq — Zr)

+
12

TAT (20 zk + 2 a,- + 2 Zi — 10 zm —10 zn ' «p «q 2*r)

100^ + 10 (Mi + Mi + Mm + Mn) +M0 + Mp + Mq + Mr (2)

was sich symbolisch auch so schreiben lässt

p/ +2 ~fy f-** i-flp ~'l +t +to +f\
&

-10 t-20 -10 »â£-t— f-2 *¦?(> *? .fil HO +100 +10

4
* -r +2 -f

tf!
-f -IQ -t

4
M +10 *4

*-=-? *--.-¦* i i

A-X A-X

Für kx Xy~X gilt speziell:
-; -u ~r i*' +» */\

-u +20 -0 *<¦*__ HO HOO HF
H HO *i

•4 -« -fJ

¦M

Entsprechende Gleichungen gelten zwischen M und p, wenn
man z durch M und M durch p ersetzt.

Der frei aufliegende Rand einer Platte ist charakterisiert
durch M o und z o, und es gelingt daher in einer ersten
Berechnungsstufe die Werte M zu ermitteln und daraus in der
zweiten Stufe die elastische Fläche Ç, bezw. z festzulegen. Es
bleibt noch die Aufgabe zu lösen, aus der elastischen Fläche die
Beanspruchungen, insbesondere die Biegungsmomente der Platte
zu ermitteln. Dazu greife ich auf die Gleichung (1) zurück, die
ich für jeden Punkt einer Netzlinie anschreiben kann. Diese nur
dreigliedrigen Gleichungssysteme sind mit geringem Aufwand
nach «" auflösbar, sodass anhand der bekannten Beziehung

—dsz 1 d2z

dx* m dy3
die biegenden Momente berechnet werden können.

Von Interesse ist oft noch der Verlauf der Auflagerkräfte.
Diese setzen sich zusammen aus der Rand-Scherkraft

dM
V= —,dx

und den zusätzlichen Auflagerkräften
dtXY m—1 d»z

êy

i n f
{

{ k
T "

0 m P

« *i J '—M—* Abb. 3

Abb. 2

n dxôy*
die die Rand-Drillungsmomente

ersetzen sollen (vergi.
Abb. 3). Beachten wir, dass
auf dem Rande nicht nur e
und M, sondern auch ihre
sämtlichen Ableitungen nach
3/ zu Null werden, so folgen
aus der Plattengleichung die
weiteren Beziehungen:
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d2Mk
— Pk

d*zk
+ Pkdx2 "" dx*

Zur Berechnung der Randquerkraft finden wir die erste
Derivierte wieder aus den Eigenschaften des Seilpolygons (Abb. 4).

dMkDer Winkel
d'tt

setzt sich nämlich zusammen

aus der Sehnenneigung
Mi und dem Sehnen-

Tangenten-Winkel, der bekanntlich gleich dem
Auflagerdruck der M"-Fläche in fc ist. Ich er- Ite*)
setze die Hf"-Fläche im Bereiche fc bis Z durch Abb. 4
eine Gerade und erhalte:

Mk—Pk

Ì.-JM'

ô'Mj,.
dx

d2Mk
Pk ist-

ML_X!L
Xx- 6

d3Mi

d3Mk
+

d3Mitö^ dx' ' dx'
will ich noch zur Erhöhung der

dx2 rK " dx
Genauigkeit durch die andere partielle Ableitung ausdrücken und

erhalte :
d2Mi

Pi:
d2Mi

dx2 dy
Pl klein ist, genügt es, den Verlauf von M über die Punkte r
als parabelförmig vorauszusetzen, womit

d3Mi 2Mi — Mr — Mp

Da das zweite Glied gegenüber

l-p

dy3 X\
wird, und die Rand-Scherkraft erhalte ich zu

Mi
Ax

A*
d2pk + Pi) {2Mi — Mr — Mp)6 " ' *,*' 6/IA

Ganz entsprechend finde ich, wenn ich noch

beachte, die zusätzlichen Auflagerdrücke:
d3Zi Xx d*zi

d*zk
dx3dy2

v'

m — 1

m

m — 1

m
d2zi

X, dy3

(- 6

d3zi
dx3dy

d3zr

*)

6A, dx2 dx" dx3

(3)

0

(4)

die Glieder z" wurden schon bei der Momentenbestimmung
berechnet.

Um die Wirksamkeit der dargelegten Methode zu belegen,
untersuche ich im folgenden eine quadratische frei aufliegende
Platte von der Seitenlänge l mit der konstanten Belastung p.

Ueberraschend gute Resultate ergibt schon ein Netz mit
l

Xx: d. h. mit einem einzigen Netzpunkt. Die Beziehungen

(2) lauten: 20 M

20«

Somit folgt z ¦.

144 pl3
24T~

100 Ml2
2Ï

ferner, da für den Rand M o ist,

16

M

p X*

-d'z

pl*
1

256
d3z

dx2 dy3
und daher ergibt sich mit m co (keine Querkontraktion) unter
Beachtung der Symmetrie das Biegungsmoment in Plattenmitte zu

3

3 3
v X3 p l3

10 * 40 *

m, m v 80 pl2.

Für den Auflagerdruck in Mitte der Plattenseite erhalte ich
schliesslich nach Formel (3) und (4) und in der selben Reihenfolge:
v= (0,30 + 0,50 — 0,10) pA 0,35pl; V (0,15 +0,05 j pX 0,10pl

a v + v' 0,450 pl
lIch habe die Rechnung mit X -p d. h. mit drei Unbekannten

wiederholt. Die Resultate sind zum Vergleich mit den Werten
10
-5- ih folgender Tafel zusammengestellt:von Marcus für m

Smax Wmax vm&x ^rnax

Genauer Wert 0,00406 0,0479 0,337 —

INetz mit 1 —-2 0,00391 0,0487 0,350 0,420

lNetz mit X —4 0,00406 0,0479 0,339 0,418

Nach Marcus mit A
l

0,00403 0,0457 0,344 0,415

Nach Marcus mit À
2

0,00406 0,0473 0,339 0,419

l*
¦pTT •pl3 ¦pl ¦pl

Es zeigt sich deutlich, dass mit einem halb so engen Netz
die selbe oder noch grössere Genauigkeit (insbesondere für die
Momente) erzielt wird als nach Marcus, m. a. W. die Zahl der
Gleichungen und Unbekannten kann auf den dritten bis vierten
Teil herabgesetzt werden.

Die guten Werte, die ich mit einem einzigen Netzpunkt
erhielt, veranlassten mich, Näherungsformeln für eine rechteckige
Platte von der Länge l und der Breite b abzuleiten,., Gleichung
(2) lautet für die Plattenmitte

20

und analog 20

4 4

4

w +
4

"fc2

M
144

-w p

100
"Ï2"

M

M

3
~2Ö~

1

"64"

P

Aus Gleichung (1) ergibt sich ferner 10 s"/
Setze ich zudem m 00

so betragen die Momente m;

V

Pb2
P + b3

l*b*
(P+b2)2

-2z4-12
wie es im Eisehbetonbau oft üblich ist,

3 Pb*
P

mb

20

3

{P b3)3

P
l*b3

20 S (P-\- b3)3
Der Unterschied gegenüber der Streifenmethode zeigt sich —

abgesehen vom Zahlenfaktor — darin, dass im Nenner das
Doppelprodukt 2 P b" hinzutritt, das die Drillingssteifigkeit der Platte
zum Ausdruck bringt. — Die Formeln gelten vorzüglich, solange
das Seitenverhältnis der Platte den Wert 2:1 nicht wesentlich
übersteigt, und zwar approximitiert m; das maximale Moment
in Längsrichtung der Platte. Für l : b 2 ergibt sich beispielsweise

e
100

12
m6=Î25

3

b*
TT 0,010 • p

b*

mi 500

p b3 0,0960 • p b2

¦pP== 0,0060 • p P

Die Behauptung ist jedenfalls gerechtfertigt, dass diese Werte
lnoch genauer sind als jene, die Marcus aus einem Netz mit A -r-4

b*
fmdet, nämlich Ç 0,0103 • p -^

mb 0,0938 • p b3

max
mi ^0,00582 -pZ2

wenn man sich erinnert, dass Marcus schon bei der quadratischen
Platte etwas zu kleine Momente erhielt.

Zur Frage der Lüftung langer Autotunnel
Die unter diesem Titel in der «SBZ» vom 30. April 1938

erschienene Abhandlung von Prof. Dr. C. Andreae veranlasst
mich, zu dieser Frage einige ergänzende und kritische
Bemerkungen anzubringen.

Die Motorisierung der Landstrasse hat die Auffassung über
die Anlage von Strassen — besonders im Gebirge — in den
letzten Jahren geändert. Bei dem grossen Kostenaufwand, den
solche Strassen heute bedingen, muss man sich fragen, ob es
zweckmässig sei, sie so zu bauen, dass sie nur vier bis fünf
Monate des Jahres befahrbar sind. Die Frage stellt sich sowohl
vom volkswirtschaftlichen, wie auch vom militärischen Standpunkt.

Diese Ueberlegung hat in jüngerer Zeit mehrere Projekte
mit längern Autotunneln entstehen lassen. Dabei sind leider auch
solche aufgetaucht und der Oeffentlichkeit aufgedrängt worden,
die besser unterblieben wären1), da sie technisch zu wenig
studiert und derart sind, dass sie einer Opposition rufen mussten,
woraus dann eine zu sehr verallgemeinernde Voreingenommenheit
gegen alle solche Projekte mit langen Tunneln entstand.

Wie Prof. Andreae in seiner Abhandlung ausführt, ist die
Lüftung das wichtigste Problem, das bei der Projektierung
langer Autotunnel abzuklären ist. Die von Ihm entwickelten
Grundsätze sind u. a. beim Projekt für den Gotthardtunnel
(«SBZ» 1935, Bd. 106, S. 171*), sowie beim hier veröffentlichten
Projekt für einen Titlis-Tunnel (Verbindung des Engelberger-
tales mit der im Bau begriffenen' Sustenstrasse, Abb. 1 und 2)
von 5,8 km Länge, bereits berücksichtigt worden. Für den
Entwurf der Lüftungsanlage des zweitgenannten hat der
Unterzeichnete eingehende Beobachtungen im Scheide-Tunnel in
Antwerpen3) und im Mersey-Tunnel in Liverpool") durchgeführt, die
ihn ebenfalls zum eindeutigen Schlüsse führten, dass für einen
langen Autotunnel nur Querlüftung in Betracht
kommen kann. Allein, die Lösungen, die bei den bereits be-

0 z. B. Simplon, vergi. «SBZ» Bd. 106, S. 174* — Red.
•) Bd. 106, S. 168«. — •) Bd. 106, S. 160».
(Ein * bedeutet stets, dass der betreffende Artikel illustriert ist. Red.)
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