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Nr. 6

Berechnung, der Setzung von Bauwerken
Vortrag im Rahmen des Erdbaukurses der E. T. H., März 1938

Von Prof. Dr. E. MEYER-PETER, Zürich

I. Einleitung.
Der Vortrag: bezweckt eine Uebersicht über den heutigen

Stand der Theorie der Setzung von Bauwerken zu geben. Dabei
kommen vor allem die auf lose Böden (Lockergesteine)
abgestellten Bauwerke in Betracht.

Bei der einaxialen Belastung eines prismatischen Stabes
durch eine Druckkraft erfährt dieser eine elastische Verkürzung
in der Längsaxe und gleichzeitig eine Dehnung in der Querrichtung.

Wird die letztgenannte nicht durch äussere Kräfte
verhindert, so erleidet jedes Element ds in der Kraftrichtung eine
Verkürzung nach Massgabe des Hooke'schen Gesetzes:

4dz -?Ldz
E

Die Gesamtverkürzung wird:

Jl ¦/>
und, wenn sowohl die spezifische Beanspruchung a als auch
der Elastizitätsmodul E auf die ganze Stablänge l konstant sind :

Jl. E l

Falls der Spannungszustand dreiaxial ist, sodass die Querdehnung

verhindert wird, lassen sich bekanntlich sowohl die
erforderlichen Seitenkräfte, als die Längsdehnung berechnen:

o"_

ax %

Adz. ¦ dz 'm -f. i) (m — 2)
E m'm — 1)

Man sieht hieraus, dass für die Berechnung der Zusammendrük-
kung bei verhinderter Seitenausdehnung zwei Materialkonstanten,

nämlich der Elastizitätsmodul E und die Poisson-Zahl m
gegeben sein müssen.

Um mit Hilfe der mathematischen Elastizitätslehre die
Berechnung von Setzungen durchzuführen, wurde der durch das
Bauwerk belastete lose Boden als elastisches isotropes Material
vorausgesetzt, das sowohl Zug- als Druckbeanspruchungen aus-
hält und das sich in allen Richtungen hinsichtlich Dehnungen
und Zusammendrückungen gleich verhält, also einen konstanten,
auf Zug und Druck gleichen Elastizitätsmodul und eine
konstante Querdehnungszahl aufweist.

So ist im Falle örtlich belasteter Sande zuerst von Boussi--
nesq für verschiedene Spezialfälle sowohl die Spannungsverteilung,

als die in einem Punkt des elastisch isotropen Halbraums
zu erwartende Setzung theoretisch berechnet worden. Ich kann
mich hier auf den Vortrag von Prof. Dr. M. Ritter: «Spannungs-
Verteilung im Baugrund» beziehen1).

Die Setzung einer rechteckigen Fundamentplatte mit
gleichförmiger LastverteUung ist von Dr. W. Steinbrenner berechnet
worden a).

Die Brauchbarkeit der Resultate der Setzungsberechnung mit
Hilfe der mathemat. Elastizitätslehre hängt nun im wesentlichen
vom tatsächlichen elastischen Verhalten des Bodenmaterials ab.

Fröhlich weist mit Hilfe des Prinzips der geradlinigen Kraft-
ausbreitung *) (siehe Vortrag von Prof, Dr. M. Ritter) darauf
hin, dass neben dem Spannungszustand, der von Boussinesq mit
Hilfe der mathematischen Elastizitätslehre gekennzeichnet wurde,
auch noch andere Spannungszustände statisch möglich sind.

Der Fröhlich'sche Ansatz, für den Fall einer Einzellast,
ergibt für die radial gerichtete Hauptspannung a den Ausdruck :

r"
(siehe Abb. 1)

J) Dieser Vortrag wird erscheinen in: «Mitteilungen aus dem Bausta-
tischen Institut der E. T. H.», herausgegeben von Prof. Dr. M. Ritter und
Prof. Dr. F. Stüssi.

9) «Tafeln zur Setzungsberechnung». «Die Strasse», Heft 4, 1934.

•) O. K. Fröhlich : «Druckverteilung im Baugrund». Verlag Springer,
Berlin, 1934.

wobei v eine statisch unbestimmte Grösse ist, die als «Ordnungszahl

der Spannungsverteilung» bezeichnet wird. Die Grösse /
ergibt sich aus einer einfachen Gleichgewichtsbetrachtung einer
Halbkugelschale, wonach folgt:

r 2nr*
vP

e 2%r*
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h 2nr2
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Nachdem weiter der Nachweis geleistet wird, dass der oben
beschriebene Spannungszustand mit demjenigen im elastisch
isotropen Halbraum mit der Poissonzahl »1 2 übereinstimmt,
falls man für v 3 setzt, ergibt sich, dass v nicht kleiner als
3 sein kann, denn dieser Wert beschreibt das Verhalten des nicht
zusammendruckbaren Materials. Für praktische Verhältnisse
kommen also im Allgemeinen Werte von v ~y 3 in Betracht.
Wesentlich ist dabei, dass der Fall v 3 nur dann möglich ist,
wenn ein Material mit konstantem Elastizitätsmodul vorliegt
und also das Hooke'sche Gesetz gilt. Der Fall v 4 setzt
dagegen einen Elastizitätsmodul des Bodens voraus, der zur Tiefe
unter der Oberfläche proportional ist. Besitzt der Boden schon
in der Tiefe z 0 einen gewissen Wert des Elastizitätsmoduls,
so liegt nach Fröhlich der Wert der «Ordnungszahl der
Spannungsverteilung» zwischen 3 und 4.

II. Das elastische Verhalten der Böden.

Wie aus dem Vortrag von Ing. R. Haefeli4) hervorgeht, wird
die Zusammendrückbarkeit der losen Böden nach heutiger
Anschauung im wesentlichen darauf zurückgeführt, dass sich bei
einer Druckbeanspruchung eine innigere Lagerung der Körner
einstellt, wobei das Porenvolumen, bezw. die Porenziffer abnimmt.
Die elastische Zusammendrückung der Körner selbst spielt dabei
eine untergeordnete Rolle, wodurch sich zum grossen Teil die
Tatsache erklärt, dass der primäre Zusammendrückungsvorgang
irreversibel ist. Die spezifische Längenänderung eines prismatischen

Versuchskörpers ist darnach annähernd durch die
Verringerung des Porenvolumens bezogen auf das Gesamtvolumen
auszudrücken.

Denkt man sich den Stab (Abb. 2) aus einer Festmasse von
der Höhe a, die sämtliche festen Körner enthält, und einer
Porenmasse von der Höhe b zusammengesetzt, so dass

l a -\-b
so ist also a konstant, b veränderlich, weshalb dl^=db. Die

dl db
spezifische Längenänderung wird: -^— —^t-~. Anderseits istl
laut Definition der Porenziffer s :

b
woraus d b a ds

somit
dl ade

a-\-b
de ds

T+T (1)

Die Abhängigkeit der Porenziffer vom Normaldrück bei verhinderter

Seitenausdehnung muss für jedes Material durch den
Oedometerversuch festgestellt werden. Dabei ist klar zu
unterscheiden zwischen dem durch die primäre Zusammendrückung
erhaltenen Druck-Porenzifferdiagramm (Hauptast) und
demjenigen Druckporenzifferdiagramm, das der Schwellkurve ent-

*) Gedruckt in «SBZ», Bd. 111, Nr. 24 und 26 (Juni 1938).

Spannunqsverteiiunn im Boatti Zusammenhang zwischen spei Langenanderung
nach der Methode der geradlinigen Kraftausbreitung einer Bodenprobe A der Änderung der Porennffer
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spricht (Abb. 3). Die Schwellkurve stellt den mehr oder weniger
elastischen Anteil der in der Hauptsache plastischen, primären
Zusammendrückung dar. Diese ist somit irreversibel, der Schwellvorgang

dagegen reversibel, sofern man von der durch die
Wiederbelastung entstehenden Hysteresisschleife absieht. Terzaghi *)
hat gezeigt, dass sich für die Beziehung zwischen Porenziffer
und Druck auf Grund der Schwellkurve folgender empirischer
Ausdruck ergibt:

A p,
Hierin ist p0 die «Vorspannung» oder der Anfangsdruck, von
dem der Versuch ausgeht. A (Schwellbeiwert) und C (Porenziffer

für den Gesamtdruck p0 ¦{- p p, sind vom Material
abhängige Konstante. Für den Anfangsdruck p0 sei: s s0 (p 0)
woraus:

i - p. m

+ c (2)

e„ — In
A p,

und

6 S„
1

VÄ"
In Po + P

Po
Durch Differentiation dieser Gleichung erhält man:

1 dpde

dp
A- Po

-A(Po

P

P)

(3)

(4)

Infolge der Krümmung der Druck-Setzungskurve definieren wir
den Elastizitätsmodul als Neigung der Tangente an die Kurve
(Abb. 4), also:

dp dp¦E ^4V
l

dl' (5)

(weU Z Z0 — Jl ist dl — dJl).
Unter Berücksichtigung von Gl. (1) und (4) ergibt sich also

dpE ds
(1 + e) A (1 + e) (p0 + p) (6)

ye -ys(l — n)
y'e-- ys(l — n) + yn
y"e.= (y _ y) (1 _ n)

Für eine nicht zu grosse Laststufe p zeigt Fröhlich an Hand
eines Zahlenbeispiels, dass es ohne namhaften Fehler gestattet
ist, statt des variablen Wertes g einen Mittelwert für die betreffende

Laststufe einzuführen. Wird dieser mit s bezeichnet, so
ergibt sich:

E A(l + sm)(p0 + p) (6a)
d. h. der Elastizitätsmodul ist proportional dem ausgeübten Druck.
Für einen Punkt in der Tiefe z unter der unbelasteten Erdoberfläche

ist dann p y z.
Für y ist einzusetzen:

bei trockenem Boden
bei gesättigtem Boden
bei Boden unter Wasser
Damit wird der Elastizitätsmodul:
ohne Vorbelastung E A(l-\-em)yz (6b)
mit Vorbelastung E A (1 + s (p0 + y z) (6 c)
Dabei ist zu berücksichtigen, dass die obigen Beziehungen nur
unter der Voraussetzung gültig sind, dass die Vertikalspannung
im Boden ursprünglich in allen Punkten der betrachteten Zone
grösser waren, als p0 + p (z. B. infolge einer, bei der
Wiederbelastung nicht mehr vorhandenen Ueberlagerung). Ist dies nicht
der Fall, so muss der durch die primäre Zusammendrückung der
Bodenprobe erhaltene Hauptast des Druck-Porenzifferdiagramms

5) O. K. Fröhlich: Druckverteilung
im Baugrund, Wien 1934; K. v.

Terzaghi: Erdbaumechanik, 1925;
M. J. Hvorslev : Ueber die
Festigkeitseigenschaften gestörter
bindiger Böden. Kopenhagen, 1937.

\-~Hauptas, (primäre Verdicht i*9)
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de l do
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Definition des Elastizitätsmoduls

l

lo

Y

/

il
^déhdì

P

der Berechnung zu gründe gelegt werden, dessen Gleichung nach
Terzaghi, ähnlich wie die Gleichung der Schwellkurve lautet:

e=-4_inP° + g +DB Pi

III. Rechnerische Setzungsanalyse.
Die Berechnung erfolgt unter der ausdrücklichen Annahme

verhinderter Seitenausdehnung, da die für den Elastizitätsmodul
massgebenden Konstanten A und der Wert s im Oedometer
bestimmt wurden. Die vertikale Verschiebung * des Punktes M
(Abb. 5) beträgt unter dem Einfluss einer gegebenen Spannungsverteilung

:

V —
H

azdz
E

Ist der Boden homogen bis zur Tiefe H oo, so wird :

z
.dz

00
E

In diesen Gleichungen ist nun E nicht mehr konstant,
sondern durch die Beziehung

E A(l + em)(p0 + yz) gegeben.
Beispiel: Setzung des Mittelpunkts einer kreisförmigen,
gleichmässig mit qt belasteten Fläche mit dem Radius r0 in der Tiefe t
(Abb. 6).

it i't-yt
qt ist also gleich der Differenz zwischen der Gebäudelast q'+ und
dem Gewicht des ausgehobenen Bodens.
Für v 4 ergibt sich (siehe Fröhlich) :

az qt(l — cos4a)

und die Setzung an der Oberfläche:
0

1t f 1 4- cos* a
y A 0- + et J Po + y (* + t)

dZ :

0

1 4- cos4

A^ + ^my dz

Die Lösung lautet:

4A(1 + Sm)y X

X { (i + C2)2
Ud + *) +xc'l + 3c*) — 4(1 +2c») Znclj(7)

wobei c (t 4- -=-?-1
*•» V y

Diese Berechnung setzt zwar voraus, dass der Elastizitäts-
Modul variabel, d. h. linear mit der Tiefe unter Bodenoberfläche
zunehme, jedoch wird nicht berücksichtigt, dass der Ansatz E
A (1 -f- s (p0 -f- p) im Falle der Belastung durch ein Bauwerk
eigentlich E A'l -\- e (p„ + P 4- O heissen sollte. Durch
Einführung des Wertes von a wird aber die Durchführung der

Integration praktisch unmöglich.
In vielen Fällen ist für die Zusammendrückbarkeit des Bodens

bis zu einem gewissen Lastpunkte die Schwellkurve, bei noch
höheren Drücken dagegen die primäre Zusammendrückimg
(Hauptast) massgebend (vgl. Abb. 3, Knickpunkt D). Die
Berücksichtigung dieses Umstandes gestaltet die rechnerische
Setzungsanalyse äusserst
umständlich.

Fröhlich bemerkt, dass
im Falle bindiger Böden
in die Formel für den
Elastizitätsmodul das so-

òetiung des Mittelpunktes einer kreisförmigen,
gteictimässig beiasteten fläche in der Tiefe t.

9t • It'-t ¦ 9/ '

t

1*

Da Al* lo ¦1 miri:
e #; ¦ -4& ;

na th Früheren*fft
E ¦fifa ).A(he)lp, 'PI

WW/MM/m/M////.

füry»4 : Gz.qi(i-cnsiit)

* WitnU J pi*ti*tt'1
ii f(l-m**) dz

0 I
Sent man .r„£. dz r0dt,

,fiZi* rodi
~A(h*m)lJ(ht>)ir0(i.c)

Vi .°A";tg) dt.
AO*lm)fJ(UiO)i(t*t)

o

-&-

Abb. 4 Abb. 5 Abb. 6
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genannte Druck-Aequivalent pk
werden müsse, sodass

E A (1 4- e pk konstant (8)
Die Einführung eines konstanten Elastizitätsmoduls führt, wie
bereits gesagt, auf den Wert v 3, bezw. m 2, d. h. auf die
Formeln der mathematischen Elastizitätslehre. Es ist indessen,
wie aus der im Vortrag von Ing. Haefeli betonten Abhängigkeit
der Kohäsion von der Belastung hervorgeht, nicht anzunehmen,
dass in verschiedenen Tiefen der Wert pfc tatsächlich konstant ist.

Kritik des Begriffes «Bettungsziffer».
Durch die Arbeiten über die Berechnung des Eisenbahnoberbaues

wurde der Begriff «Bettungsziffer» eingeführt, der dann
später auf die Berechnung von Fundationsplatten sowohl, als
von Setzungen von Bauwerken angewendet wurde.

Die Definition der Bettungsziffer lautet:
C yL (kg/cm') (9)

wobei a die Bodenpressung (kg/cm2) und y die Setzung der
Oberfläche unter der Fundamentplatte bedeutet (cm). Dieser
Wert wurde als «Materialkonstante» aufgefasst, d. h. man nahm
an, dass eine bestimmte Bodenart einen von der Grösse der Platte
und dem Mass der Belastung unabhängigen Festwert von G
aufweise.

Schon eine einfache Ueberlegung zeigt, dass dies nicht
zutreffen kann : Je nach Grösse und Form der Platte ergeben sich
im Boden verschiedene Belastungsverteilungen a weil die Spannung

in einem bestimmten Punkte das Integral der sämtlichen
Einflüsse der einzelnen Flächenelemente ist. Durch die Bettungsziffer

kann eine variable Schichtfolge nicht berücksichtigt werden.

Nun spielt sich die Zusammendrückung nicht nur in der
Schicht direkt unter der Lastplatte ab, sondern reicht bis in
grosse Tiefen herab.

Auch mathematisch lässt sich die Unmöglichkeit nachweisen,
durch eine Bettungsziffer die Grösse der Setzungen zu erfassen.
Das geht deutlich aus dem vorhin erwähnten Beispiel hervor:

Der Klammerausdruck

der Konsistenzform eingeführt zeigt. Setzt man Xi e 2,718 so wird :

1 Z J (Zusammendrückungszahl).
Aus dieser Gleichung ergibt sich durch Differentiation der
Begriff des Zusammendrückungsmoduls M„, der ähnlich wie der
früher betrachtete Elastizitätsmodul E mit dem Druck linear
zunimmt :

o.
M

-j-J2(l + C) + nc(l 4. 3c2) —4 (1 + 2c')Zwc)l
\ d + c*y

in Gl. (7) für die Setzung in der Axe
fläche ist eine Funktion von c, wobei

einer belasteten Kreis-

U \ V I
war. Daraus ergibt sich, dass die Setzung y eine Funktion des
Radius der Kreisplatte ist.

IV. Graphische Setzungsanalyse.
Diese Methode wurde von Ing. R. Haefeli entwickelt. Sie

fusst auf folgendem Gedankengang: Durch den Oedometerver-
such kann bei verhinderter Seitenausdehnung direkt die spezifi-

h, — Ä,
sehe, primäre Zusammendrückung A, des Bodens in
Funktion des Druckes a, ermittelt werden. Die empirische
Gleichung, die diesen Zusammenhang darstellt, wird im Vortrag von
Ing. R Haefeli wie folgt angegeben :

J. Zln'aXi -f 1 et) (10)

wobei

ä;~l,(a0
s, -, {log)

"Kg/

f,(2 UZ)

/FBrAf.i' und Ar.n

» 2

S 1 kg/cm2

Für viele Fälle lässt
sich mit genügender
Annäherung cc 1
setzen, sodass das
Glied 1 — cc vernachlässigt

werden kann
und die Gleichung die
einfachere Form:

A. ZlnX. (10a)

E A,
Die Methode besteht nun darin, aus der empirisch bestimmten

Druck-Zusammendrückungskurve : A. ft (a.) (Abb. 7 a)
und aus der bekannten, durch das Eigengewicht bestimmten
Spannungsverteüung a. /2 (z) (Abb. 7b) durch einfache
graphische Uebertragung die Kurve A, fs(z) (Abb. 7 c)
aufzuzeichnen.

Erfährt nun der Baugrund eine Neubelastung, so wird in
einer bestimmten Tiefe die Spannung um den Betrag a geändert

(Abb. 8). Wir bezeichnen mit a die Spannung im Anfangszustand,

mit a. die Spannung im neuen Zustand, also:

ab aa + az

Im neuen Zustand (à.) muss nun das Bodenelement eine
spezifische Zusammendrückung A. erfahren, die gleich gross ist wie

diejenige, die ein Bodenelement erfuhr, das schon im Anfangszustand

eine Beanspruchung erlitt, die gleich ab war. Wir müssen

also im Diagramm der ursprünglichen a denjenigen Punkt
H suchen, für den GH a.. Für die zugehörige spezifische
Zusammendrückung ergibt sich aus der Zusammendrückungs-
Kurve der Wert G'H'. Dieser Wert ist in der Höhe z
aufzutragen, so dass

G' H' J> K- Ab
Die ursprüngliche Höhe eines Bodenelementes bei a. 1 kg/cma
sei mit dzl bezeichnet. Die entsprechende Länge unter der
Belastung a ist dann ds =dz1'l — A Dieses Element erleidet
unter der neuen Belastung eine Zusammendrückung :

Adz. (4h
A„

Die totale Setzung wird dann:

1 — A„ dza ydza dF

yT fdF F (12)
od bezw. H

In den meisten Fällen kann mit genügender Genauigkeit
dza gleich ds, bezw. die Abszisse y (siehe schraffierte Fläche F)
gleich (Ab — Aa) gesetzt werden, wodurch sich die Konstruktion

der punktierten Linie bei E< K' F' erübrigt.
Es geht aus der Beschreibung der Methode hervor, dass sie

neben dem Vorzug der Einfachheit und Uebersichtiichkeit gegenüber

der analytischen Methode noch weitere Vorteile aufweist.
Die Veränderlichkeit des Zusammendrückungsmoduls, die

durch die Einführung von a entsteht, ist in der graphischen
Methode implicite enthalten. Die Berücksichtigung einer
komplizierten Zusammendrückungs - Belastungskurve, wie sie z. B.
bei stark vorbelasteten Böden festgestellt wird, oder wie sie dann
entsteht, wenn bei tonigen Böden bei einer gewissen Belastung
plötzlich das Gefüge zerstört wird, also eine Strukturänderung
eintritt, kann auf Grund der graphischen Methode ohne
Schwierigkeiten erfolgen.

Abb. 9 und 10 zeigen eine Anwendung der Methode für den
Fall eines unendlich langen Laststreifens. Bei gleicher spezifischer

Belastung q sind die Setzungen ermittelt für die Breiten
2 b 1, 2 und 4 m

sowie für zwei verschiedene Mächtigkeiten der kompressiblen
Schicht „ ,- „ „ „H 5,0 und 10,0 m.

Terratnoberftache

Fundamentunterböte
f. I '•* |0'M

ffliiifflÄrarifc:
dt 2/1

111111111

H..ko
WTrrpTryr/Sf-ricwrfi)

Bettungsziffern G — dar, wobei y die totale

Abb. 7 Abb. 8. Graphische Setzungsanalyse

Abb. 10 b stellt die sich hieraus ergebenden
o

~y~

Setzung bedeutet. Es ist daraus ersichtlich,
dass G sowohl mit der Breite des Laststreifens,

als auch mit der Mächtigkeit der
betrachteten Schicht stark variiert.

' Es ergeben sich hieraus einige für die
Praxis sehr Wichtige Folgerungen:

a) Die direkte Uebertragung der Setzung
einer Versuchsplatte (Probebelastung) auf das
fertige Bauwerk führt zu unrichtigen Resultaten.

Die Setzung des grossen Bauobjektes
mit einer Grundplatte, deren Fläche ein Viel-
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Abb. 9. Graph. Setzungsanalyse für verschiedene Breiten der Lastflächen

faches derProbeplatte
ausmacht, wird stets
ein Mehrfaches der
durch den Versuch
ermittelten Setzung
sein.

b) Die Berechnung
von elastischen
Fundamentplatten auf
elastischer Unterlage
erfolgt bekanntlich
auf Grund der
Differentialgleichung :

d*y
_

C

"3F — ~ËT~ y
Da der durch eine
gewöhnliche Probebelastung

ermittelte Wert
von C nur einen Brachten

des für die zu
berechnende grosse Platte geltenden Wertes beträgt, wird also
nach bisherigem Verfahren die Konstante der rechten Seite
obiger Gleichung zu gross eingesetzt. Das hat zur Folge, dass
die Rechnung unter den Lastpunkten der Platte zu grosse
Pressungen ergibt, während die auf die Platte wirkenden Biegungsmomente

zu klein ermittelt werden.

V. Einfluss des Porenwassers auf den zeitlichen Verlauf der
Setzungen.

Die Setzung ist nicht als elastische Zusammendrückung der
Bodenteilchen, sondern als Verminderung des Porenvolumens zu
betrachten. Falls die Poren mit Wasser gefüllt sind, muss also
das Wasser ausgedrückt werden. Der zeitliche Vorgang ist
deshalb abhängig von der Durchlässigkeit des Materials.

Deshalb unterscheiden sich kohäsionslose Böden grundsätzlich
von bindigen. Bei Sauden ist die Durchlässigkeit so gross,

dass mit dem Aufbringen der Gebäudelast sozusagen gleichzeitig
das Porenwasser verdrängt wird. Die neue Last wird also durch
den «Druck von Korn zu Korn» übertragen, Setzungen erfolgen
deshalb rasch und sind auch verhältnismässig klein. Bei tonigen
Böden dagegen erfordert das Ausdrücken des Porenwassers viel
Zeit, die Setzung, die eine Verminderung des Porenvolumens,
also einen Wasserverlust bedeutet, geht entsprechend langsam
vor sich und nimmt grosse Beträge an.

Grundhypothese für die Berechnung der Setzung von tonigen
Böden in Funktion der Zeit ist : Im Anfangszustand übernimmt
das Porenwasser vollständig die Neulast, während der Korn-zu
Korn-Druck in diesem Moment unverändert bleibt Durch den so
entstandenen Ueberdruck des Porenwassers wird eine GfrMttd-
wasserStrömung erzeugt, die ein allmähliches AusfHessen des
Wassers aus der Druckzone bedingt. Dieses Ausfliessen ist an
das Vorhandensein einer freien Oberfläche oder einer Drainage-
schicht gebunden6). Die Wasserbewegung dauert so lange an,
bis der ursprünglich nach Aufbringen der Neulast entstandene
Porenwasserüberdruck sich ausgeglichen hat. Erst dann ist auch
die Hauptsetzung vollendet, weil erst dann der Korn-zu-Korn-
Druck der Neulast das Gleichgewicht hält. Dieser Vorgang ist
in Abb. 11 schematisch dargestellt.

Damit ergibt aich, dass die allmählich vom Porenwasser auf
die feste Phase übergehende Neubelastung in jedem Punkt des
Bodens durch die Differenz zwischen dem ursprünglichen Ueberdruck

des Porenwassers zur Zeit 0 (Lastaufbringung) und dem
endgültigen Ueberdruck 0 im Moment T der Beendigung der
Hauptsetzung ausgedrückt wird. Diese Druckdifferenz ist aber
nichts anderes als die im Halbraum unter der Neulast sich
ergebende Spannung a Trägt man deshalb nach Abb. 12 die
Werte a als Abszissen über den Ordinaten z auf, so stellt die

so bestimmte Fläche (schraffiert) die Lastfläche dar, die
allmählich durch Auspressen von Wasser von den festen TonteU-
chen übernommen wird.

Um also das Problem der Setzung in Funktion der Zeit zu
lösen, sind drei Aufgaben zu erledigen, die hier anhand der
erwähnten Veröffentlichung von K. von Terzaghi und O. K. Fröhlich

in ihren grossen Zügen skizziert werden.

a) Ermittlung der Lastfläche.
Die Lastfläche wird durch die sogenannte Nullisochrone

(Z 0) und die Endisochrone (t T) begrenzt. Zunächst handelt

es sich also um die Ermittlung des durch die Neulast im
Porenwasser entstehenden Ueberdruckes zur Zeit der als plötzlich

gedachten Lastaufbringung. Dabei wird nur die senkrechte

•) tìiehe TerzagM-WröhUoh: Theorie der Setzung von Tonschiehten

3) Totêle Setzung AH in funklion von b
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Abb. 10. Setzung und Bettungsziffer
in Funktion der Breite der Lastfläche

Komponente oz
berücksichtigt. In
gewissen Fällen ist die
Neulast über die ganze
Fläche gleichmässig
verteilt, sodass die
Nullisochrone ohne
weiteres als
senkrechte Gerade
angegeben werden kann.
Dies trifft beispielsweise zu bei der Belastung einer Tonschicht
mit einer Wasserschicht (Füllung eines Stausees, Abb. 13a).
Im Falle örtlicher Belastung ist die Nullisochrone eine Kurve
(Abb. 13b). Die Endisochrone ist bei örtlicher Neubelastung
stets eine Gerade, die mit der Ordinatenaxe zusammenfällt.

Die Lastfläche wird durch die schraffierte Fläche dargestellt.
Die Ausströmung des Porenwassers erfolgt unter dem Ueberdruck

entweder nach der freien Oberfläche, also nach oben, oder
nach einer unten liegenden drainierenden durchlässigen Schicht,
also nach unten, oder nach beiden Richtungen.
Erster Fall, Strömung nach oben. Der hydrostatische Ueberdruck
wird sofort, also zur Zeit t 0 oben auf Null reduziert. Die
Druckverteilung im Porenwasser in einem beliebigen Zeitpunkt t
zwischen 0 und T wird durch Kurve (t) dargestellt (Abb. 14a).
Zweiter Fall, Strömung nach unten. Die Druckverteilung sinkt
schon zur Zeit t 0 unten auf Null herab (Abb. 14b).
Dritter Fall, beidseitige Strömung. Sowohl oben als unten sinkt
der Wert des Ueberdrucks schon zur Zeit t 0 auf Null herab
(Abb. 14 c).

b) Ermittlung der Setzung aus der Lastfläche.
In allen drei Fällen wird die Lastfläche zur Zeit t durch die

Nullisochrone einerseits und die t-Isochrone anderseits definiert.

VOR OEM BAU NACH DEM BAU
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Abb. 11. Vertikale Drücke in der Bauaxe in der festen
und flüssigen Phase
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Der Abszissenabschnitt zwischen beiden Kurven A a gibt die im
Zeitintervall 0 bis t erfolgte Zunahme des Korn-zu-Korn-Drucks
an. Die Zusammendrückung eines Elementes von der Höhe dz
beträgt also in diesem Zeitintervall

4°zAdz —dzE
Für den Fall konstanten Elastizitätsmoduls nach Gl. (8) wird
dann die totale Setzung zur Zeit t gemäss Abb. 14:

Da die Vermehrung des Korn-zu-Korn-Drucks auf Kosten des

Wasserdrucks a geht, gilt für jeden Moment

"z + aw const
sodass

d<s„ do.„

und Zeitein-

y
0

dz
1

~E~ (13)

dt " dt
Damit wird der Porenwasserverlust pro Volumen-
heit

*.—*Durch Gleichsetzung der beiden Werte von V, ergibt sich:
und die totale Setzung am Ende T des Vorgangs (siehe Abb. 13)

ym — F0 (14) oder auch'T- E
Für den Fall veränderlichen Elastizitätsmoduls wird am besten
die graphische Methode, die in Abschnitt IV beschrieben ist,
verwendet. Eine zweckmässige Kombination beider Methoden besteht
darin, dass man die totale Setzung yT (für t oo) nach der ¦Der Ausdruck

y dz1

dz»

dt

dt
(16)

(Dimension cm2 sec *) wird von Terzaghi

graphischen Methode bestimmt, während der zeitliche Vorgang
der Setzung nach Terzaghi-Fröhlich auf Grund eines konstanten,
mittleren Elastizitäts- bezw. Zusammendrückungsmoduls untersucht

wird.

c) Ermittlung der Druckverteilung im Porenwasser zur Zeit t.
Aufstellung der Differentialgleichung der nicht stationären

Grundwasserströmung bei einaxiger Strömung.
Kontinuitätsbedingung. In der Zeit dt fliesst durch den obern

Querschnitt eines Prismas von den Abmessungen dx, dy, dz
folgende Wassermenge (Abb. 15):

k da
s—dxdydt

y oz
Dabei ist o der in der Höhe z herrschende Ueberdruck im
Porenwasser, k der Durchlässigkeitskoeffizient. Analog fliesst aus
dem untern Querschnitt heraus:

k da.,
+ dz»

-dz dxdydt
Der Wasserverlust in dem IntervaU dt beträgt somit:

k d*ov
dV -dzdxdydt

y dz»
Der Wasserverlust pro Volumen- und Zeiteinheit beträgt also:

Zr d» O
V, j- - / dz2

Bezeichnen wir anderseits mit v den sogenannten spezifischen
Porenwasserverlust, d. h. den Wasserverlust pro Volumen- und
Zeiteinheit für eine Zunahme des Korn-zu-Korn-Drucks A a =1.
Der Korn-zu-Korn-Druck nimmt nun in der Zeiteinheit um den

da
Betrag -hkt1* zu.dt
Der Porenwasserverlust pro Volumen¬

halb auch :

und Zeiteinheit wird des-

da
V. v

dt

infenglfcnet
Porenwasser
jberdrucK

r»T
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Fröhlich als Verfestigungsbeiwert bezeichnet.
Ueber die Bedeutung des spezifischen Porenwasserverlustes

v sei noch folgendes bemerkt: Nach den Ueberlegungen, die zu
Gl. (1) geführt haben, gut:

\ i it/für A ff 1

nun ist aber

also

mfür » 1

1

E

1
~E~

sfii
TJ

Abb. 18 Abb. 14 Abb. 15

Die Gl. (16) kann mithin auch wie folgt geschrieben werden:

k^l^^öo^
y dz> dt

Die Lösung der Differentialgleichung (16) bezw. (16 a)
verlangt in erster Linie die Kenntnis des Durchlässigkeitskoeffi-

zienten fc und des Elastizitätsmoduls E während y das
v

spezifische Gewicht des Wassers ist. Terzaghi und Fröhlich geben
im erwähnten Buche eine Anzahl von Lösungen bei verschiedenen

Randbedingungen.

Aerodynamik und Automobil
Im Institut für Aerodynamik der E. T. H. hielt Obering. Paul

Jaray am 1. Juli vor zahlreichem Auditorium einen Vortrag,
dessen erster Teil die Entwicklung des Stromlinienautomobils
darlegte; im zweiten Teil erläuterte er die Auswirkungen der
Stromlinienkarosserie auf den Chassisbau.

Nach kurzer Ableitung der Kräfte- und Leistungsformeln
folgte eine äusserst interessante, mit Lichtbildern erläuterte
Uebersicht über die Versuchsserien, die die Vorteile der
Stromlinienkarosserie erhärteten. Im Jahre 1922 wurden in der Zeppelinwerft

in Friedrichshafen die ersten Modellversuche auf Anregung
von Jaray durchgeführt, und zwar wurde damals schon Seitenwind

berücksichtigt1)- Es wurden folgende Widerstandsbeiwerte
gemessen:

Offener Kastenwagen cv 0,88 bis 1,00
Geschlossener Kastenwagen 0,64 » 0,68

Wagen mit bootsförmiger Karosserie 0,52 » 0,54

dgl. mit Stromlinienkarosserie 0,24 » 0,30
Halber Stromlinienkörper 0,09

Im darauffolgenden Jahre wurden zwei gleiche Ley-Chassis
zu Versuchszwecken karossiert, eines mit normaler Limousine
(Kastenkarosserie) und eines mit Stromlinienkarosserie nach

Plänen von Jaray. Das Lichtbild dieses Wagens zeigte
im grossen und ganzen schon die heutigen Linien, je-

*~6w,x doch mit etwas übertriebenen Höhenmassen. Es gab
eben damals noch keine Niederrahmen und man stellte
zudem noch grössere Anforderungen an die Innenhöhen
der Wagen. Die Vergleichsversuche ergaben z. B. für
die Stromlinienkarosserie bedeutend längere Auslaufzeiten,

bei einer Durchschnittsgeschwindigkeit von
40 km/h einen Brennstoffverbrauch von nur 8,51/100 km
gegenüber 12,0 1, und wesentlich günstigere
Beschleunigungszelten. Die Stromlinienwagen fanden jedoch
beim Publikum trotzdem keinen Anklang und erst im
Jahre 1928 wurden weitere Versuche unternommen. Die
Ingenieure Tschudi und Ad. Brüderlin führten sehr
genaue und ausgedehnte Vergleichsversuche mit zwei

>i Vgl. Band 81, Seite 7* (6. Januar 1923).
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