Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 111/112 (1938)

Heft: 2

Sonstiges

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

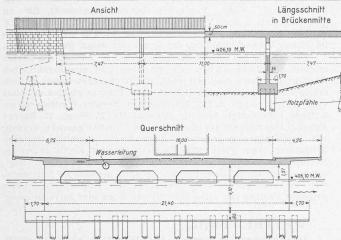


Abb. 3. Neue Brücke über den Schanzengraben in Zürich. 1:300

um die Mehrlast der Verbreiterung aufzunehmen, und es sei für diese eine Pfahlfundation notwendig. Inzwischen hat sich ergeben, dass die alten Pfeiler doch nicht verlängert werden müssen, worüber Stadtingenieur H. Steiner folgende interessante Aufschlüsse erteilt:

«Die vier Pfeiler und die beiden Widerlager sind auf Holzpfählen fundiert. Der ursprünglichen Berechnung dieser Fundationen war die Annahme zugrunde gelegt worden, dass sich die gesamte Brückenlast gleichmässig auf die einzelnen Pfähle verteile. Diese Annahme entspricht nicht den tatsächlichen Verhältnissen. Die Pfeilerfundamente über den Pfahlköpfen sind nämlich in der Brückenaxe weitgehend unterteilt und deshalb nicht in der Lage, durch Biegungsbeanspruchungen die Brückenlasten gleichmässig auf die Pfähle zu übertragen. Geht man bei der Berechnung von der Annahme aus, dass die Pfeilerlasten lotrecht sind und deshalb an der Fundamentsohle keinerlei waagrechte Komponenten übertragen werden können, so kommt man zum Schluss, dass zum Beispiel bei den zwei mittleren Pfeilern die maximale Pfahllast in der Mitte jedes Pfeilers 22,8 t beträgt, an den beiden Enden der Pfeiler dagegen nur 9,7 t. Aehnlich liegen die Verhältnisse bei den Widerlagern, wo die maximalen Pfahllasten in der Mitte 14,9 t und an den Enden nur 6,5 t betragen. Diese Feststellungen haben dazu geführt, zu untersuchen, ob eine Verbreiterung der Quaibrücke ohne Verstärkung der Widerlager und Pfeilerfundamente möglich ist. Den angestellten Berechnungen ist zu entnehmen, dass sich die Pfahllasten bei einer Brückenbreite von 28,5 m in der Mitte der Fahrbahn nicht, an den Pfeilerenden von 9,7 t auf 16,2 t und an den Widerlagerenden von 6,5 t auf 9,4 t erhöhen. Aus den alten Bauplänen und den Rammprotokollen erhält man den Eindruck, dass die Pfahlfundation seinerzeit sehr sorgfältig und sachgemäss durchgeführt wurde. Ferner ist den Akten zu entnehmen, dass alle Pfähle gleich gut eingerammt wurden. Es darf also angenommen werden, dass die bis jetzt nur schwach belasteten äussern Pfähle etwas stärker belastet werden dürfen. — Die Richtigkeit. der angeführten Berechnungen ist durch kürzlich durchgeführte Probebelastungen der Pfeilerköpfe bestätigt worden.» -(Hätte man diese Erkenntnis etwas früher gewonnen, so wäre den Bewerbern erhebliche Arbeit und Enttäuschung erspart geblieben; es betrifft dies hauptsächlich die Ing. Ch. Chopard und M. Meyer, deren originelle und ökonomische Lösung für eine leichte Pfeilerverlängerung in Bd. 110, S. 247* dargestellt ist.)

Die Ausführungspläne entstanden unter Mitwirkung von Ing. E. Rathgeb, der auch bei den Belastungsproben der Pfeilervorköpfe mitgewirkt hat. Es wurden auf jeden Kopf in Beton und Eisenmasseln 166 t aufgebracht, was der Mehrlast (vermindert um die Entlastung durch Herabsetzen der Vorköpfe) entspricht; die beobachteten Senkungen waren höchstens 1 mm. Die neuen Blechträger werden kontinuierlich zusammengebaut; sie werden 40 cm tiefer gelagert. Dazu erhalten die Gehwege Gefälle nach aussen, sodass die ganze Brücke nach aussen niedriger und schlanker wirkt.

Die beiden freien Fahrbahnen der Brücke sollen durch je einen Mittelstrich (Punkte-Reihe!) optisch in je zwei dreimetrige Fahrstreifen geteilt werden, um das in Zürich noch nicht gewohnte Auffahren in zwei Kolonnen zu erleichtern. Ausserdem sollten beide Gehwege auf die ganze Brückenlänge durch leichte Ketten-Schranken vom intensiven Fahrverkehr getrennt, bezw. die Fahrbahnen von Fussgängern befreit werden.

Die Erneuerung der Schanzengraben-Brücke

Im Zuge Quaibrücke-Alpenquai wird gleichzeitig die Brücke über den Schanzengraben verbreitert und im bisher gewölbten Längenprofil gerade gelegt; gemäss nebenstehendem Plan wird dadurch die Brücke breiter als lang. Es ist eine Eisenbeton-Rahmenkonstruktion über zwei schlanken, im obern Teil durchbrochenen Stützwänden. Die kontinuierliche Fahrbahntafel von nur 50 cm max. Stärke erhält eine Armierung von max. 43 cm²/m' im Mittelfeld und

32 cm²/m' in den Aussenfeldern. Projektverfasser ist Ingenieur F. Pfeiffer (Zürich); das trotz seiner Kleinheit interessante Bauwerk kann z. Zt. in Ausführung besichtigt werden.

In gleicher Fahrbahn-Breite (16 m) und -Gestaltung wird vom Schanzengraben bis zur Rentenanstalt auch der Alpenquai verbreitert, unter Beibehaltung des bestehenden landseitigen Gehweges von 4 m. An Stelle des seeseitigen Trottoirs dagegen bleibt nur ein 1 m breiter grüner Schutzstreifen, während der Fussgängerverkehr von der Strasse abgezogen und in den bestehenden 5 m breiten, leicht geschlängelten Parallelweg durch die Anlagen geführt wird, vom Fahrverkehr durch einen 5 bis 7 m breiten Gebüschstreifen getrennt. Diese Lösung ist ebenso ökonomisch wie menschlich sympathisch, schon deshalb, weil sie ein starres Schema durchbricht. — Die Baukosten für diesen etwa 550 m langen Strassenumbau sind immerhin auf eine halbe Million Fr. veranschlagt, inbegriffen 190750 Fr. für die Schanzengrabenbrücke (und 33000 Fr. für Ufermauer-Anpassung).

MITTEILUNGEN

Blendungsfreie Strassen- und Platzbeleuchtung. Seitdem der Bürkliplatz in Zürich mit einer übermässig grossen Zahl von Kandelaber-Laternen garniert worden ist, hat die Erfahrung das Unzweckmässige solcher Platzbeleuchtung gelehrt und hat auch die Beleuchtungstechnik sich entwickelt und bessere Möglichkeiten geboten.1) Als eine blendungsfreie Lampe hat sich die «Philora»-Quecksilberdampf (bläulich) und Natriumdampflampe (gelb) eingeführt. In den beiden Abbildungen auf nebenstehender Seite sind zwei gut geratene Anwendungsbeispiele gezeigt. Der Genfer Bahnhofplatz ist vor einigen Jahren umgebaut, mit einer runden Insel und runder Wartehalle (sehr ähnlich jener auf dem Bellevueplatz) versehen2) und neuerdings mit blendungsfreier Misch-Beleuchtung ausgestattet worden. Die Quecksilberdampf-Lampe eignet sich hierfür wegen der bläulichen Farbe ihres Lichts besser als die Natriumdampflampe, deren gelbes Licht zwar die Farben auslöscht, dafür aber eine nicht zu grelle und in ihrer gleichmässigen Belichtung der Strassenfläche ganz vorzügliche Strassenbeleuchtung ergibt (Abb. 2). Ihre Vorzüge sind grosse Kontrastwirkung und Sichtbarkeit und gutes Durchdringungsvermögen bei Nebel und Regen unter Vermeidung störender Reflexe. Die Natriumdampflampe gibt, bezogen auf gleichen Stromverbrauch, bedeutend mehr Licht als die gewöhnliche Glühlampe und zeichnet sich auch durch hohe Lebensdauer aus. Die Zürcher Ueberlandstrassen erfreuen sich in steigendem Mass dieser, die Verkehrssicherheit erhöhenden Beleuchtungsart.

Ein Kirchenglocken-Geläute ohne Glocken dürfte als neueste Errungenschaft der Technik bezeichnet werden: «Die kürzlich eingeweihte Kathedrale von Kattowitz, deren Fertigstellung allerdings noch Jahre dauern wird, ist die erste Kirche Polens, die keine Glocken besitzt. An ihre Stelle traten Schallplatten, deren Glockengeläute über eine Lautsprecheranlage vom Turm aus gesendet wird. Die Anlage war schon bei den Einweihungsfeierlichkeiten in Betrieb und hat sich bewährt.» - So wird der N.Z.Z. berichtet. Es ist dies allerdings nicht das erste Surrogat, das sich bereits in den geistigen Bezirk der Kirche eingenistet hat. Schon während des Weltkrieges ist da und dort das Symbol des «ewigen Lichtes» vor dem Altar der kathol. Kirche aus Oelmangel durch ein elektr. Glühlämpchen ersetzt worden, das der Messner zwecks Stromkosten-Ersparnis jeden Abend abdreht und zur Frühmesse wieder einschaltet, heute noch. Uebrigens gibt es ja auch elektr. Christbaum-Kerzli (feuersicher!), zu schweigen von der massenhaften Konserven-Musik, die wir am Radio als echte Darbietung wehrlos hinnehmen.3) - Es sei denen, die nicht blinde Bewunderer jeglichen technischen «Fortschritts» sind, überlassen, sich ihre Gedanken über derartige Kultur-Fortschritte zu machen.

¹⁾ Näheres über Metalldampflampen vgl. J. Guanter in Bd. 108, S. 41*; daselbst auch über Platzbeleuchtung mit Gasentladungslampen.
2) Vgl. den Plan und die textlichen Erläuterungen der Vor- und Nachteile der Genfer Platzlösung in Bd. 103, S. 190* (21. April 1934).
3) Nicht nur einmal genossen wir am Radio am Samstag Abend das «Geläute der Zürcher Kirchenglocken»; dazwischen hörte man — und zwar mitten im Winter — deutlich eine Amsel vom nahen Lindenhof singen — wie stimmungsvoll: Aber: im Winter singt doch keine Amsel? Auskunft auf Anfrage: das Geläute sei halt «ab einer Industrieplattes geliefert worden, die man einst im schönen Monat Mai aufgenommen hatte! — Ach so!

Pendelaufzug. Ein gleichzeitiger Auf- und Ab-Verkehr zwischen nur zwei Stockwerken lässt sich statt durch einen Paternoster-Aufzug, der ja noch zwei weitere Stockwerke benötigen würde, einfacher durch einen Pendelaufzug, d. h. mit periodischer Umkehr der Fahrtrichtung, bewerkstelligen, der mit dem Umlaufaufzug den Vorteil des geringen Leistungsbedarfs dank dem Energieaustausch zwischen den beiden Fahrkörben gemein hat. Ein solcher Pendelaufzug für 2×2 Personen ist in der «Z.VDI» 1938, Nr. 22 dargestellt. Der Antrieb geschieht über Schubstangen durch zwei im Schacht umlaufende endlose Ketten, zu deren Entlastung die Körbe ausserdem an einer über Rollen an der Schachtdecke geführten Kette aufgehängt sind. Vor Erreichung des Stockwerks wird durch Polumschaltung des Motors die Fahrgeschwindigkeit von 0,45 auf 0,15 m/s herabgesetzt; der Korb überfährt das Stockwerkniveau um Stufenhöhe, kehrt um und nimmt nach abermaligem Ueberfahren um etwa Stufenhöhe wieder die höhere Geschwindigkeit an. Die Zwischenzeit genügt zum Aussteigen der ankommenden und Einsteigen der abgehenden Benützer. Vom Dauerbetrieb kann der Aufzug auf Einzelfahrten umgeschaltet werden. Schiebetüren, von den Fahrkörben durch Anschläge gesteuert, schliessen Stürze in den Schacht aus. Der auf ein Schneckengetriebe arbeitende Motor ist für die Höchstleistung (zwei aufwärts fahrende Personen) auf 3 PS bemessen.

Eidg. Technische Hochschule. Doktorpromotionen. Die E. T. H. hat folgenden Herren die Würde eines Doktors verliehen:

hat folgenden Herren die Würde eines Doktors verliehen:
a) der technischen Wissenschaften: Nobile Guido, dipl. Elektroingenieur aus Lopagno (Tessin), Dissertation: Nuovo sistema di modulazione per microonde. Cohen Abner, dipl. Ingenieur-Chemiker aus Istanbul (Türkei), Diss.: Ein Beitrag zur Kenntnis der Bildungsenergie des Magnesiumchlorids. Mannhart Emil, dipl. Ingenieur-Chemiker aus Flums (St. Gallen), Diss.: Azofarbstoffe aus 1-Amino-2-methylnaphthalin-4-sulfosäure und deren Nachchromierung. Schmidt Willi, dipl. Ingenieur-Chemiker aus Zürich, Diss.: Langsame Oxydation von Propan unter hohem Druck. Kiener Albert, dipl. Ingenieur-Agronom aus Bolligen (Bern), Diss.: Le type actuel de la vache d'élevage de la race suisse tachetée rouge et blanche (prototype Simmental) et comparaison de deux lignées héréditaires.
b) der Mathematik: Schilt Heinz, dipl. Physiker aus Schangnau

b) der Mathematik: Schilt Heinz, dipl. Physiker aus Schangnau (Bern), Diss.: Ueber die isolierten Nullstellen der Flächenkrümmung und einige Verbiegbarkeitssätze.

c) der Naturwissenschaften: Busch Georg, dipl. Physiker aus Zürich, Diss.: Neue Seignette-Elektrika. Dietiker Hugo, dipl. Naturwissenschafter aus Hirschtal (Aargau), Diss.: Der Nordrand der Hohen Tauern zwischen Mayrhofen und Krimml (Gerlostal, Tirol). Huber Paul, dipl. Physiker aus Mägenwil (Aargau), Diss.: Eine Hochspannungsapparatur zur Erzeugung von Neutronen. Messung von Ausbeute und Energie der Neutronen, Valko Andreas, dipl. Maschineningenieur aus Budapest, Diss.: Sekundärstrahlen der kosmischen Strahlung aus Kohle Kohle.

Langsam-Flugzeug «Storch». Am Internationalen Flugmeeting Zürich 1937 hat das einmotorige, dreisitzige Kabinenflugzeug «Storch» der Fieseler Flugzeugbau, G. m. b. H., Kassel, abgebildet in «SBZ» Bd. 110, Nr. 5, S. 54, Aufsehen erregt. «Z.VDI» 1938, Nr. 13 enthält nähere Angaben darüber. Es gestattet, bei 185 km/h Höchstgeschwindigkeit, einen stationären Langsamflug von nur 51 km/h Geschwindigkeit. Die Abflug-Rollstrecke wird bei Windstille mit bloss 67 m, bis auf 15 m Höhe mit 155 m angegeben, die Auslauf-Rollstrecke, gebremst, mit 26 m, bei Gegenwind noch weniger! Abflug und Landung sind daher auf kleinen, allenfalls sogar unvorbereiteten Plätzen möglich. Aus diesen Eigenschaften ergibt sich die besondere Eignung des Flugzeugs für Luftaufnahmen, Polizei- und militärische Zwecke, Forschungs- und Hilfsexpeditionen, als Bordflugzeug auf Schiffen usw. Die mit festem Schlitz-Vorflügel und Wölbungsklappe versehenen Tragflügel lassen sich für die Beförderung auf Strassen und die Unterbringung in beschränkten Räumen zurückklappen.

IV. Internat. Schienentagung Düsseldorf 1938. Bezugnehmend auf unsere Mitteilung auf S. 46 letzten Bandes kann heute mitgeteilt werden, dass seitens der Schweiz fünf Berichterstattungen angemeldet sind. Aus Zürich, wo seinerzeit die beiden ersten Schienentagungen stattgefunden haben (vergl. Diskussionsbericht Nr. 44 der E. M. P. A., 1932) sollte eine gute Beteiligung am diesjährigen Treffen zu erwarten sein, umsomehr, als Düsseldorf nicht nur wegen der vorgesehenen Besichtigung der nahe gelegenen Hütten- und Stahlwerke und der Forschungsinstitute Interesse bietet, sondern auch als Städte der Kunst einen Namen von gutem Klang hat. Die Tagung ist nunmehr angesetzt auf die Zeit vom 19. bis 22. September; das Programm ist bei der Geschäftsstelle des S.V.M.T., Leonhardstr. 27 in Zürich erhältlich.

Querkraft und Knicklast. Prof. R. Gran Olsson, Trondhjem, fasst in den «Forhandlinger», Bd. X, Nr. 21 der Kongelige Norske Videnskabers Selskab seine eigenen wie auch die Studien anderer Autoren über den Einfluss der Querkraft auf die Knicklast eines gedrückten Stabs zusammen. Für den Rechteck- und für den T-Querschnitt wird die diesen Einfluss berücksichtigende Knicklast

$$P_k = rac{P_e}{1+\left(rac{12}{5}+rac{3\,
u}{2}
ight)rac{\pi^2}{\lambda^2}c}$$

Hierin bedeuten: $P_e = E F \pi^2/\lambda^2$ die Euler'sche Knicklast, $\lambda = l/l$ die Schlankheit des Stabes und ν die Querdehnungszahl ($\nu = 0.32$ für Baustahl). c ist = 1 für den Rechteckquerschnitt, für den $\mathsf{T} ext{-}\mathsf{Querschnitt} = \mathsf{dem} \ \mathsf{Verhältnis} \ F/F_f \ \mathsf{des} \ \mathsf{Gesamtquerschnitts} \ F$ zu dem Querschnitt F_f der beiden Flansche. Für schlanke Stäbe ist Eulers Vernachlässigung der Querkraft damit gerechtfertigt.

Gestaltung des «Alten Tonhalleareals» in Zürich. Als letztes im Zusammenhang mit den vorbeschriebenen Erneuerungsarbeiten im Zürcher Quaigebiet sei noch die nach Jahrzehnten endlich erfolgende Gestaltung dieses Fest- und Rummelplatzes erwähnt (vgl. Abb. 1 rechts, S. 13). Nach der im Seeufer-Wettbewerb im 2. Rang prämiierten Idee in Entwurf Nr. 21 (Arch. R. Barro) soll das Platzniveau auf die Höhe des Utoquai gesenkt werden, mit landseitiger Begrenzung durch breite amphitheatralische Trittstufen. Der Platz öffnet sich in breiter Front gegen die Seeseite; an den drei andern Rändern soll er Blumen- und Grünschmuck erhalten. Diese Lösung ist auch deshalb zu begrüssen, weil sie ermöglicht, auch weiterhin am Sechseläuten (dem grössten Festtag des alten Zürich) den Bögg hier zu verbrennen.

WETTBEWERBE

Gemeindehaus in Epesses (Kt. Waadt). Das Preisgericht, dem als Fachleute die Architekten A. Laverrière, M. Piccard und Ed. Virieux, alle in Lausanne angehörten, hat in dem Wettbewerb zur Erlangung von Entwürfen folgenden Entscheid getroffen:

- I. Preis (1050 Fr.): Jean Perrelet, Arch. S.I.A., Lausanne.
- II. Preis (1000 Fr.): Marcel C. Baud, Arch., Lausanne.
- III. Preis (250 Fr.): Alois Dutoit, Arch., Vevey.

Wie aus der Verteilung der Preissumme deutlich hervorgeht, besteht in der Wertung der beiden ersten Entwürfe ein sehr kleiner Unterschied. Umso mehr ist anerkennenswert, dass sich das Preisgericht nicht mit einer «ex æquo»-Bequemlichkeit abgefunden, sondern entsprechend den S.I.A.-Grundsätzen auch unter den fast gleichwertigen Entwürfen doch eine Rangordnung aufgestellt hat.

LITERATUR

Boulder Canyon Project. Final Reports. Part VI-Hydraulic Investigations. Bulletin 1: Model Studies of Spillways. 190 Seiten - Bulletin 2: Model Studies of Penstocks and Outlet Works. 165 Seiten mit 88 Fig. Denver (Col.) und Washington (D. C.) 1938, Offices of the U. S. Bureau of Reclamation. Preis pro Bulletin geh. \$ 1.15, geb. \$ 1.70.

Diese beiden, mit Zeichnungen, Diagrammen und Photos schön ausgestatteten Bände über Modellversuche für die Ueberfälle, Druckleitungen und Grundablässe bilden nur den Anfang einer Reihe von 41 Büchern über sämtliche Probleme des Boulder Canyon Werkes: Allgemeines, Hydrologie, Geologie, Projektierung und Ausführung, wissenschaftliche Versuche. Herausgeber ist das Bureau of Reclamation (Chief Eng. R. F. Walter). Wir werden auch die später erscheinenden Bücher, die für die Fachwelt grosses Interesse bieten werden, hier ankündigen.

Eingegangene Werke; Besprechung vorbehalten:

Geleisekrümmung und Fliehkraft auf Eisenbahnbrücken. Von Josef Hailer, Techn. Reichsbahnoberinspektor. Eine Anleitung zur Berechnung dieser Einflüsse auf die stählernen Eisenbahnbrücken unter Beachtung der Vorschriften der Deutschen Reichsbahn. 49 Seiten mit 46 Abb. Berlin 1938, Verlag von Wilhelm Ernst & Sohn. Preis geh. etwa Fr. 5,35.

Beachtung der Vorschriften der Beachtung der Abb. Berlin 1938, Verlag von Wilhelm Ernst & Sohn. Preis gemeine 46 Abb. Berlin 1938, Verlag von Wilhelm Ernst & Sohn. Preis gemeine 46 Abb. Berlin 1938, Verlag von Ernst Von der Spurführung bei Geleisefahrzeugen in Bögen. Von Dr. Ing. Paul Becker am Reichsbahnzentralamt München. 208 Seiten mit 50 Abb. und 26 Leistungstafeln. Köln-Lindenthal 1938, Verlag von Ernst Stauf. Preis geb. etwa Fr. 13,50.

Klima und Gradtage in ihren Beziehungen zur Heiz- und Liittungstechnik. Von Ing. M. Hottlinger, Privatdozent an der E. T. H. in Zürich. 120 Seiten mit 60 Abb. und 60 Zahlentafeln. Berlin 1938, Verlag von Julius Springer. Preis kart. etwa 13 Fr.

Die Steigerung der Dauerhaltbarkeit von Schrauben durch Gewindedrücken. Von Ernst Wedemeyer. Oberflächendrücken und Druckeigenspannungen. Von O. Föppl. 65 Seiten mit 24 Abb. und 15 Zahlentafeln. Heft 33 der «Mitteilungen des Wöhler-Instituts». Braunschweig 1938, Verlag von Friedr. Vieweg & Sohn. Preis kart, etwa Fr. 5,60.

Für den Textteil verantwortliche Redaktion: Dipl. Ing. CARL JEGHER, Dipl. Ing. WERNER JEGHER Zuschriften: An die Redaktion der «SBZ», Zürich, Dianastr, 5, Tel, 34 507

SITZUNGS- UND VORTRAGS-KALENDER

Zur Aufnahme in diese Aufstellung müssen die Vorträge (sowie auch nachträgliche Aenderungen) bis spätestens jeweils Donnerstag früh der Redaktion mitgeteilt sein.

- 12. Juli (Dienstag): Akad. Masch.-Ing.-Verein E.T.H. 20 h im Hörsaal 15 c des Physikgebäudes der E. T. H., Gloriastrasse 35, Experimentalvortrag von Prof. Dr. K. Kuhlmann: erregte Asynchronmotoren» (Asynchrongeneratoren).
- 15. Juli (Freitag): S. I. A. Sektion Bern. Ortsgruppe Bern des SWB. 16.30 h Besichtigung des Neubaues der Gewerbeschule (Leitung: Arch. Hans Brechbühler).
- 15. Juli (Freitag): S.I.A. Sektion Bern. 20.15 h im Restaurant zur Innern Enge, 1. Stock, Lichtbilder-Vortrag von Prof. Dr. C. Andreae: «Technisches über Aegypten».

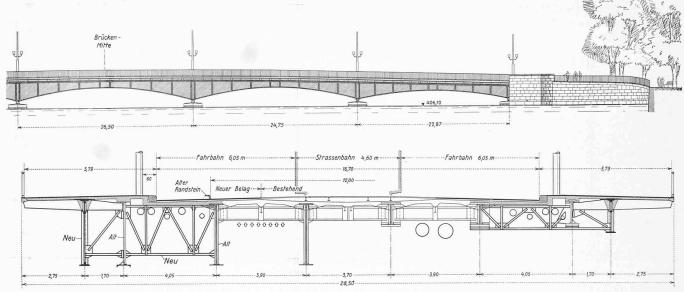


Abb. 1. Teilansicht 1:500, und Abb. 2 Querschnitt 1:50, linke Hälfte am Auflager, rechte Hälfte im Scheitel

$$=y_{0m}\frac{1}{1-\alpha} \quad . \quad . \quad . \quad . \quad . \quad (13)$$

wobei $y_{_{0}m}=rac{Hl^{_{3}}}{3\,E\,J}$ die Ausbiegung infolge H allein und lpha=das Verhältnis der Last P zur Eulerschen Knicklast bedeutet. Aus der Gleichsetzung der Durchbiegungen der Einzel-

$$y_{1m} = \frac{H_1 l^3}{3 E J_1} \frac{1}{1 - \alpha_1} = y_{2m} = \frac{H_2 l^3}{3 E J_2} \frac{1}{1 - \alpha_2} = \dots y_m$$
 (14)

ergibt sich in Verbindung mit der Gleichgewichtsbedingung

$$H_1 + H_2 + \cdots = H \cdot \cdot \cdot \cdot \cdot \cdot \cdot (15)$$

die gemeinsame Ausbiegung
$$y_m$$
 aller Stützenköpfe zu
$$y_m = \frac{H l^4}{3 \sum E J} \frac{1}{1 - \frac{\sum P}{\sum P_E}} = \frac{H l^3}{3 \sum E J} \frac{1}{1 - \alpha} \ . \ . \ (16)$$

Damit kann nun für jeden einzelnen Ständer der auf ihn entfallende Anteil der Belastung H bestimmt werden:

$$H_1 = y_m \frac{3EJ_1}{l^3} (1 - \alpha_1) \dots$$
 (17)

worauf die Beanspruchungen eines jeden Ständers ermittelt werden können. Da bei diesem Spannungsproblem zweiter Ordnung die Beanspruchungen nicht mehr linear mit den Belastungen wachsen, ist die Rechnung mit den mit dem Sicherheitsgrad multiplizierten Belastungen P und H durchzuführen. Im vorliegenden Falle wurde der Sicherheitsgrad gegen Erreichen der Fliessgrenze mit

$$s_{\overline{F}} = \frac{\sigma_{\overline{F}}}{\sigma_{\mathrm{zul.}}} = \frac{2.6}{1.6} = 1,625$$

eingeführt. Unter den s-fachen Lasten durfte dann in keinem Ständer die Fliessgrenze $\sigma_F=$ 2,6 t/cm 2 überschritten werden. Für die am stärksten belastete Aussenstütze ist die Momentenfläche in Abb. 9 skizziert. Die Horizontalkraft H_1 nach Gleichung (17) ist wegen $a_1>1$ negativ, d. h. sie wirkt der Aus-

biegung y und damit dem Moment Py entgegen. Das Maximalmoment tritt etwas oberhalb der Einspannstelle auf, sodass nicht nur der grösste Wert der Ausbiegung nach Gl. (16), sondern nach Bestimmung von H, nach Gl. (17) der ganze Verlauf der Biegungslinie mit dem Gleichungssystem Gl. (12) bestimmt werden musste. Unter 1,625-facher Belastung ist

$$\sigma_{
m max} =$$
 2,37 t/cm $^{3} < \sigma_{F}$,

sodass die Anforderungen der Verordnung an die Sicherheit reichlich erfüllt sind.

Im fertigen Zustand sind die Beanspruchungs- und Stabilitätsverhältnisse des Bauwerkes noch wesentlich günstiger, weil durch das Zusammenwirken der Gunitdecke mit der StahlkonstruktionVerbundträger mit grösserer Tragfähigkeit entstehen und weil durch die pilzkopfartige Ausbildung der Ummantelung eine teilweise Einspannung der Stützenköpfe entsteht. Diese günstigen Wirkungen wurden jedoch bei der Bemessung nicht ausgenützt, weil im Bauzustand, vor Abbinden der Gunitdecke, doch mit der Möglichkeit einer Vollbelastung durch Schneefall gerechnet wer-

Verbreiterung der Quaibrücke in Zürich

Wie im Plan des erweiterten Bellevueplatzes Seite 13 dieses Heftes angedeutet, wird die vor 55 Jahren erbaute Quaibrücke den heutigen Verkehrsanforderungen entsprechend verbreitert. Obige Abb. 1 und 2 geben den nötigen Aufschluss in Ansicht und Schnitt; in diesem sind die beibehaltenen alten Teile dünn gehalten bzw. im Schnitt der Fahrbahnplatte weiss gelassen, während die neuen Teile, vor allem die beiden auf die abgetragenen Pfeilervorköpfe abgestützten Blechträger mit gebogenem Untergut kräftig gezeichnet und die Schnittflächen schraffiert sind. Wie man sieht, erfolgt die beidseitige Verbreiterung symmetrisch zur Brückenaxe; die Pfeiler werden von den dekorativen Kandelaber-Aufbauten befreit und auch das schmucklose Geländer trägt zur Erleichterung des Aspektes bei. Die formale Gestaltung durch die Arch. Gebr. Pfister bestätigt also im wesentlichen die vor kurzem im «Seeufer-Wettbewerb» im 1. und 2. Rang prämiierten Vorschläge (Entwürfe Nr. 15 und Nr. 21, vgl. Bd. 110, S. 243* ff.). In konstruktiver Hinsicht dagegen weicht das heutige Bauprojekt wesentlich ab von dem, was im Wettbewerb massgebend war. Dort war den Bewerbern erklärt worden, die Pfeilerfundamente seien nicht stark genug,

Abb. 1 (links) Der neue Bahnhofplatz Genf-Cornavin (ebenfalls mit runder Wartehalle) beleuchtet mit Philips-«Philora»-Quecksilberdampflampen HO 2000, gemischt mit 1500 Watt-Glühlampen

Abb. 2 (rechts) Zürichseestrasse bei Meilen mit «Philora»-Natrium dampflampen SO 650

