Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 111/112 (1938)

Heft: 10

Artikel: Fliehkraft und Verstellpropeller

Autor: K.H.G.

DOI: https://doi.org/10.5169/seals-49789

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Schablone zur Ermittlung von Momenten (Abb. 9) ermöglicht das einfache und rasche Aufzeichnen der neuen Kurven $P_{(\xi,\,\eta)}$, bezw. $P_{(R,\,\xi)}$. Es ist dies eine Erweiterung eines in diesem Blatt beschriebenen Verfahrens 5).

Auf der rechteckigen Grundplatte A aus durchsichtigem Werkstoff (z. B. Zelluloid) sind Parabeln der 2., 3. und 4. Ordnung, die entsprechend verkürzt und gegeneinander verschoben sind, durch feine Bohrungen dargestellt. Ferner ist darauf eine durch den Ursprung 0* gehende Strahlenschar, sowie einige mit der y-Achse gleichlaufende Geraden aufgezeichnet.

Die Anwendung dieser Schablone ist in Abb. 9 am Beispiel eines Strömungsquerschnitts erläutert. Die Bezugsaxe wurde der Einfachheit halber als Tangente des Querschnitts gewählt. Die Schablone lässt man längs der Führungsschiene B gleiten, die so auf der Unterlage befestigt ist, dass sie die Bezugsaxe berührt. Die Ermittlung der Momente geschieht nun folgendermassen. Zunächst ist ein Strahl zu wählen. Im dargestellten Beispiel ist dies Strahl 8. Zum Aufzeichnen einzelner Punkte verschiebt man die Schablone und bringt z.B. den Punkt P mit dem entsprechenden Punkt P* der Flächenberandung zur Dekkung. Die zugehörigen Hilfspunkte P_s^* , P_i^* und P_4^* findet man mittels Durchstechen bei den Bohrungen P_s , P_i und P_4 . So wird man einige Punkte umzeichnen und die gestrichelt dargestellten Linienzüge erhalten, deren Flächeninhalte ein Mass für die gesuchten Momente sind. Die in der Tafel angegebenen Beiwerte s, i und p dienen zum Berechnen der Momente. Die durch die Integration erhaltenen Beiwerte sowie die Verkürzungsbeiwerte sind darin enthalten.

Z. B. ist das statische Moment der Fläche

$$S_x = sF_s = 1 \cdot 32,1 = 32,1 \text{ cm}^3$$

Da der Flächeninhalt des Querschnitts $F=18.1~{\rm cm^2}$ beträgt, wird der Schwerpunktsabstand von der Bezugsaxe

$$\eta^* = \frac{S_x}{F} = \frac{32,1}{18,1} = 1,77 \text{ cm}$$

Das Trägheitsmoment ist

$$J_x = i F_i = 4 \cdot 15,7 = 62,8 \text{ cm}^4$$

und bezüglich der Schweraxe wird

$$J_{\xi} = J_{x} - \eta^{*2}F = 62.8 - 1.77^{2} \cdot 18.1 = 5.8 \text{ cm}^{3}$$

Für das Moment der 4. Ordnung erhalten wir

$$J_p = p \, F_p = 18 \cdot 9,65 = 173,7 \, \mathrm{cm}^5$$

Will man die Momente möglichst genau ermitteln, so wird man danach trachten, grosse Hilfsflächen F_s , F_i und F_p zu erhalten. In unserem Beispiel hätten wir dies erreichen können durch Wahl der Geraden 7 statt der Geraden 8. Auch wird die direkte

⁵) M. Baumann, Neue Methode zur Bestimmung des Trägheitsmomentes eines beliebigen Querschnitts, «SBZ», Bd. 104, 1934, Nr. 11, S. 121.

16 256 4610 256 14 13 10 128 1800 100 100 cm² 12 6,3 64 715 39,7 Schablone 32 288 11 4 16 10 2,5 16 112.5 6,25 zur 9 1,6 8 46.1 2,56 8 1 18 Ermittlung von Momenten 7 0,63 2 0.397 7.15 6 0,40 2,88 0.160 5 0,25 1,125 0.0625 0,16 0,461 0,0256 4 3 0,10 0,180 0,010 2 0,063 0,0715 0,0040 /16 $J = i \cdot F_i$ 1 0,040 0,0288 0,0016 $J_p = p \cdot F_p$ $J_{xy} = s_1 \cdot s_2 \cdot F_{xy}$

s i

0

p

Abb. 9. Schablone zur Ermittlung von Momenten (Abbildung 4/10 natürlicher Grösse)

Ermittlung des Trägheitsmomentes bezüglich der Schweraxe genauer als die nachherige Berechnung.

Ferner können noch folgende Momente mit Hilfe der Schablone ermittelt werden. Zum Aufzeichnen sind die entsprechenden Parabeln zu verwenden. Das Deviationsmoment (Fliehmoment)

$$J_{xy} = s_{\scriptscriptstyle 1} \, s_{\scriptscriptstyle 2} \, F_{xy} \, \, \mathrm{cm}^{\scriptscriptstyle 4}$$

wo mit s_1 und s_2 die entsprechenden Beiwerte in den beiden Axrichtungen bezeichnet werden (Transformation in beiden Axrichtungen notwendig). Die Hilfsflächen des I. und III. Quadranten sind positiv, diejenigen des II. und IV. sind negativ zu zählen.

Das polare Trägheitsmoment

$$J_0 = o F_0 \text{ cm}^4$$

Zum Bestimmen einzelner Hilfspunkte kann man folgendermassen vorgehen. Man bringt z. B. den Punkt C der Schablone mit dem Bezugspunkt 0 zur Deckung, dreht die Schablone, bis der Punkt D (bei Wahl der Geraden 10) mit einem Punkt der Berandung übereinstimmt und sticht den gesuchten Punkt bei P_0 durch, vergl. Abb. 1.

Das Massenträgheitsmoment von Schwungrädern

$$J=rac{2\pi\gamma}{g}\,rac{p}{M^5\,10^{10}}\,F_p~{
m kg}~{
m m}~{
m sec}^2$$

Darin bedeutet M den Zeichnungsmasstab.

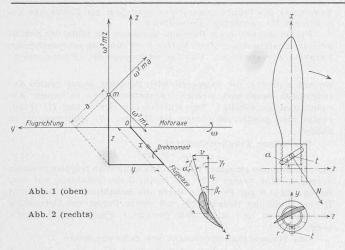
Der Rauminhalt von Umdrehungskörpern

$$V = 2\pi s F_s \text{ cm}^3$$

Die Masse von Umdrehungskörpern

$$M = rac{2\,\pi\,\gamma}{g}\,s\,F_s = rac{\gamma}{g}\,V\,\,\mathrm{kg}\,\mathrm{cm}\,\mathrm{sec}^2$$

 $\frac{\gamma}{g}$ hat folgende numerische Werte: für Gusseisen 739 und für Stahlguss 800 kg m $^{-4}$ sec².


Fliehkraft und Verstellpropeller

In dem vorangehenden Aufsatz von Ing. M. Baumann veranschaulicht Abb. 3, S. 114 die Tatsache, dass die Fliehkraft einen (statisch und dynamisch ausbalancierten) Propeller nicht nur auf Zug, sondern auch auf Torsion beansprucht. Die Verhältnisse lassen sich im Wesentlichen an dem in der umstehenden Abb. 1 skizzierten Modell erläutern, bestehend aus einem Klümpchen von der Masse m und drei rechtwinklig aneinandergefügten, starren, masselosen Stäben (stark ausgezogen) von den Längen x,y,z. Dieses starre System S sei, in O befestigt, um die x-Axe (Flügelaxe) drehbar. Denkt man sich zur weiteren Vereinfachung die Schwerkraft aufgehoben, so bleibt der Massenpunkt m, einmal ruhend, in Bezug auf das gezeichnete Koordinatenkreuz an

seinem Platz - sofern dieses Kreuz selber ruht. Läuft aber die x-Axe um die y-Axe (Motoraxe) mit der konstanten Winkelgeschwindigkeit ω um (im einen oder andern Sinn), so bleibt für einen fest an die Motoraxe gebundenen Beobachter B das System S keineswegs in Ruhe (geschweige denn für einen ruhenden Beobachter), sondern beginnt eine (pendelnde) Drehbewegung um die x-Axe. Dies bekanntlich darum, weil für B der Massenpunkt m sich nicht kräftefrei verhält (auch für einen ruhenden Beobachter nicht: Zwangskraft der Stange z!), sondern so, als ob er sich in einem radial von der y-Axe weggerichteten, proportional der Entfernung a von dieser anwachsenden Kraftfeld, dem Feld der Zentrifugalkraft, befinde. Diese Kraft, vom Betrag $m \omega^2 a$, übt auf S ein Drehmoment von der Stärke $m \omega^2 yz$ in dem durch den Pfeil angedeuteten Sinn um die x-Axe aus. Soll S relativ zu B

in Ruhe verharren, so ist auf S ein diesem Moment entgegengesetzt gleiches auszuüben.

Denken wir uns dieses primitive Modell zu einem um die x-Axe verstellbaren Propellerflügel ausgestaltet, von dem in Abb. 1 ein Querschnitt, in der Entfernung r von O, angedeutet ist. Ein mit dem Flügel fest verbundenes Axenkreuz x, η , ζ falle in der zunächst betrachteten «Ausgangsstel-

lung» mit dem der Motoraxe zugehörigen Koordinatenkreuz $x,\ y,\ z$ zusammen. In dieser, etwa durch den Winkel β_r (Abb. 1) gekennzeichneten Stellung übt das Zentrifugalfeld auf den Flügel nach dem Gesagten ein Moment M_0 aus, das den verkleinerten Stellungswinkel β_r zu verringern trachtet:

$$M_0 = \omega^2 \int \eta \, \zeta \, dm = \omega^2 \, T_{\eta \, \zeta}$$

 $M_0 = \omega^2 \int \eta \, \zeta \, dm = \omega^2 \, T_{\eta \, \zeta}$ (dm= Massenelement, $T_{\eta \, \zeta}=$ Deviationsmoment). In einer neuen Lage, bestimmt durch einen um den Verdrehungswinkel \u03c4 verkleinerten Stellungswinkel, wird das Moment M_{φ} :

$$egin{aligned} M_{arphi} &= \omega^2 \int y \, z \, dm = \omega^2 \int \left(\eta \, \cos \, \varphi - \zeta \, \sin \, \varphi
ight) \left(\eta \, \sin \, \varphi + \right. \ &+ \zeta \, \cos \, \varphi
ight) \, dm = \omega^2 \left[\left. rac{T_{\eta \eta} - T_{\zeta \zeta}}{2} \sin 2 \, \varphi + T_{\eta \zeta} \cos 2 \, \varphi \,
ight], \end{aligned}$$

mit den Abkürzungen $T_{\eta\eta}=\int\eta^2\,dm\,,\;T_{\xi\xi}=\int\zeta^2\,dm$ für die begrücklichen $T_{\eta\eta}=\int\eta^2\,dm\,$ züglichen Trägheitsmomente.

Gewusst hat man dies schon lange. Danach gehandelt haben die Konstrukteure gewisser Verstellmechanismen, indem sie das Drehmoment des Zentrifugalfelds entweder parierten oder ausnützten.

Die Ueberlegenheit der verstellbaren über die starre Luftschraube ergibt sich daraus, dass die Wirkungen der Luft auf den Propeller: die Zugkraft und das seiner Drehung widerstrebende, vom Motor zu überwindende Kräftepaar W, und damit der Propellerwirkungsgrad - abhängig sind von dem Verhältnis der Fluggeschwindigkeit v zu der Umfangsgeschwindigkeit uder Drehbewegung des Propellers relativ zum Flugzeug. Mit diesem Verhältnis, d. h. mit dem Steigungswinkel γ_r (Abb. 1) der Schraubenlinie, die ein im Abstand r von der Nabe befindliches Flügelelement relativ zur Erde beschreibt, ändert sich, bei fester Flügelstellung $\boldsymbol{\beta}_r,$ der Anstellwinkel $\boldsymbol{\alpha}_r$ für jedes Flügelelement. (Windstille vorausgesetzt. Bei Wind ist als Bezugskörper an Stelle der Erde die mit der Windgeschwindigkeit bewegte Luft zu wählen; v bedeutet dann die Fluggeschwindigkeit relativ zu dieser.) Beim Steigflug ist das sich einstellende Verhältnis v/ukleiner, sind die für die Luftkräfte massgebenden Anstellwinkel daher grösser, ist der Propellerwirkungsgrad ein andrer als beim Horizontalflug 1); das Luft-Kräftepaar W ist gestiegen; Drehzahl und Motorleistung sind gesunken.

Anders, wenn sich die Flügelstellung je nach dem wechselnden Verhältnis v/u verändern lässt, etwa, bei Regulierung auf

feste Drehzahl, so, dass Abweichung dieser die zu ihrer Korrektur nötige Propellerverstellung selbsttätig auslöst: Nimmt v zu, und daher das widerstrebende Kräftepaar W ab, so nimmt bei Vergrösserung des Stellungswinkels, herbeigeführt durch die etwas erhöhte Drehzahl n, W wieder zu, bis n wieder auf den alten Wert zurücksinkt. Umgekehrt bewirkt eine Abnahme von v mit einer kleinen Verringerung von

n eine automatische Selbstkorrektur durch Verkleinerung des Stellungswinkels. Mit n und W können so, bei fester Stellung der Gasdrossel, das Antriebsmoment und die Leistung des Motors auf konstanten, günstigen Werten gehalten werden, unter gleichzeitiger Wahrung eines guten Propellerwirkungsgrades.

Wovon immer die Verstellung der Luftschraube abhängig gemacht werde, so erheischt ihr prompter Vollzug eine Kompensation des durch die Fliehkraft ausgeübten Drehmoments. Diese gelingt bei dem nach System Ratier gelagerten Propeller auf die in Abb. 22) schematisch angedeutete Weise: Der in seiner schraubenförmigen Führung reibungslos bewegliche, mit dem Flügel starr verbundene Zapfen t gestattet diesem eine reibungslose Schraubung um seine Axe. Die Bedingungen für relatives Gleichgewicht (in Bezug auf die Motorwelle) sind sofort anzugeben: Auf den Flügel übt das Zentrifugalfeld (Abb. 1) einen Zug in Richtung der Flügelaxe vom Betrag $\omega^2 \int x \, dm$ aus, dem die entsprechende Komponente des Führungsdruckes N Gleichgewicht zu halten hat (Abb. 2):

$$N\cos \alpha = \omega^2 S_x$$
, $S_x = \int x dm$

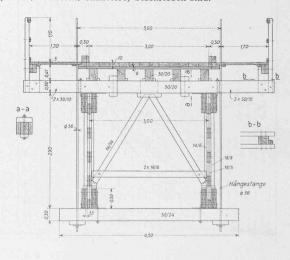
Das axiale Moment $rN\sin\alpha$ hat das Drehmoment des Zentrifugalfelds $\omega^2 T_{yz}$ zu kompensieren:

$$N \sin \alpha = rac{\omega^2}{r} T_{yz}$$
 .

Wird demnach α entsprechend dem Deviationsmoment $T_{\eta_{s}^{+}}$ des Flügels in einer mittleren Stellung, der «Ausgangsstellung», ge-

$$ag = rac{T_{\eta \zeta}}{r s_x}$$

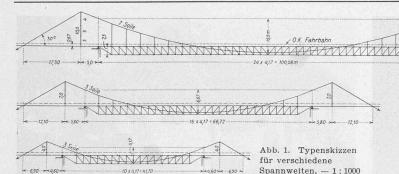
— so ist für diese Stellung das relative Gleichgewicht bei jeder Drehzahl gesichert. In dem Verstellbereich beträgt dann gemäss (1) das von dem Zentrifugalfeld und dem Führungsdruck zusammen ausgeübte Drehmoment


$$M_{\varphi \; {\rm tot}} = \omega^2 \bigg[\frac{T_{\eta\eta} - T_{\xi\xi}}{2} \; \sin 2 \; \varphi - T_{\eta\xi} \; (1 - \cos 2 \; \varphi) \bigg] \backsim$$

$$\sim \omega^2 \; (T_{\eta\eta} - T_{\xi\xi}) \; \varphi \, .$$
 Die bei kleinen Abweichungen φ von der Mittellage erlaubte Näherung weist auf die Möglichkeit hin, das relative Gleichgewicht, unabhängig von φ praktisch indifferent zu gestalten An

wicht, unabhängig von φ , praktisch indifferent zu gestalten. An der ausgeführten Konstruktion ist die skizzierte Idee durch Ausstattung des Flügelschaftes und -Lagers mit einem Schraubengewinde verwirklicht; Stahlkugeln zwischen Spindel- und Muttergewinde sorgen für Reibungslosigkeit.

Als Verstellkraft wirksam ist die Fliehkraft an dem hydraulischen Verstellmechanismus von Hamilton, wo die Luftschraube, je nach Stellung des Oelhahns, entweder vom Oeldruck in der einen, oder vom Zentrifugalfeld in der andern von zwei (einstellbaren) Positionen festgehalten wird. Aehnlich wie auf Abbildung 3, S. 114 erhält der Flügel einen Ausgleichkörper, dessen Deviationsmoment D_{yz} in dem Verstellbereich jenes des Flügels (T_{yz}) überkompensiert. Dies wird erreicht, indem der Ausgleichkörper so gestaltet und angebracht wird, dass in der «Ausgangsstellung» (grösster Stellungswinkel, Horizontalflug) sowohl


$$T_{\eta\zeta} + D_{\eta\zeta} < 0$$
.

²⁾ Entnommen dem Aufsatz von M. Chartron: «Hélices à pas variable en vol», R. de l'aluminium, Bd. 13 (1936), S. 7, wo verschiedene Verstell-systeme (Ratier, Hamilton, Chauvière) beschrieben sind.

1) Siehe R. v. Mises, Flug-

Abb. 4 und 5. Ansicht und Querschnitt der hölzernen Notbrücke. Masstab 1:85

 $D_{\eta\eta} = D_{\zeta\zeta} < T_{\zeta\zeta} - T_{\eta\eta} - \frac{T_{\eta\zeta} + D_{\eta\zeta}}{\varphi_{\max}}$

ist, worin q_{max} den grössten Verdrehungswinkel, entsprechend dem kleinsten Stellungswinkel (für Ab- und Steigflug) bedeutet. Dann ist das gesamte Deviationsmoment, d. h. angenähert der Ausdruck

 $(T_{\eta\eta}-T_{\xi\xi}+D_{\eta\eta}-D_{\xi\xi})\,\varphi+T_{\eta\xi}+D_{\eta\xi}$ für $0\leq\varphi\leq\varphi_{\max}$ negativ; das Zentrifugalfeld wirkt hier einer Verkleinerung des Stellungswinkels entgegen. Durch den Oelzylinder in der Abflug- und Steigstellung festgehalten, dreht sich der Propeller in die Stellung für Horizontalflug zurück, sobald der Oeldruck abgestellt wird. K. H. G.

Notbrücken für grosse Spannweiten

Aus einem Bericht von Ing. HANS CHRISTEN, Gruppenleiter am «Technischen Arbeitsdienst» Bern

Im Flachland wird es meist möglich sein, mit einfachen Mitteln eine Notbrücke zu erstellen, indem durch Joche oder Pontons Zwischenstützen geschaffen werden. Ganz anders im gebirgigen Gelände. Hier handelt es sich meistens um die Ueberbrückung von engen, tiefen Tälern, wo sich Zwischenstützen nicht anbringen lassen. Der «Technische Arbeitsdienst» des Kantons Bern hat sich deshalb die Aufgabe gestellt, eine allgemein verwendbare Notbrücke zu finden, bei der für beliebige Spannweiten immer wieder die nämlichen, normalisierten Brückenelemente verwendet werden können. Von den in Frage kommenden Brückentypen erwies sich der Typ der versteiften Hängebrücke (Abb. 1) als der günstigste.

Die rasche Erstellung bedingt, dass die Brückenelemente montagefertig vorhanden sind. Dies wird im allgemeinen nur für Stahlbauweise möglich sein, indem der Baustoff Holz erheblichen Volumen-Aenderungen unterworfen ist und die Gefahr besteht, dass nach längerer Lagerung die einzelnen Elemente schlecht oder gar nicht mehr passen würden.

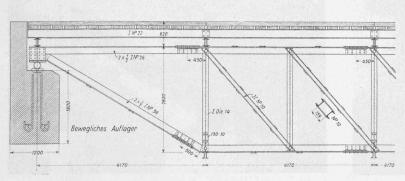
Anderseits ist aber für unser Land, vornehmlich im Kriegsfalle, wo die notwendigen Profileisen schwer zu beschaffen sein werden, der Baustoff Holz von besonderem Interesse. Es wurde deshalb neben reiner Stahlbauweise auch eine Lösung in reiner Holzbauweise untersucht. Hier können immerhin Tragkabel, Hängestangen und sämtliche notwendigen Eisenbeschläge als fertige Brückenelemente auf Lager gehalten werden. Die zimmermannsmässige Zurichtung hat jedoch erst unmittelbar vor Erstellung der Brücke zu geschehen. Die beiden ausgearbeiteten Projekte sind für eine grösste Spannweite von rd. 100 m verwendbar.

Statische Grundlagen. Es ist eine Kolonne schwerer Lastwagen (13 t) nach Art. 9 der Norm 112 des S. I. A. vorgesehen. Dagegen wurden die Stosszuschläge Art. 4 der provisorischen Nr. 111 des Holznormen S. T. A.

 $[\varphi = 2 (15 - 1)^{0}/_{0}]$ angenommen, um beide Lö-

sungen auf gleiche Basis zu stellen. Dieser ermässigte Stosszuschlag rechtfertigt sich zudem durch die Befahrung einer solchen Notbrücke in mässiger Geschwindigkeit. Alle Holztragwerke wurden nach den provisorischen Holznormen Nr. 111 des S. I. A. berechnet. Als Nutzlast der Gehwege sind 500 kg/m² angenommen, bei der Hauptträgerberechnung gemäss Art. 9 der Norm 112 mit p + 500 - 2 l ermässigt.

Stahlbauweise (Abb. 2 und 3).


Die Fahrbahnausbildung ist die gleiche für beide Lösungen. Die Befestigung des Belages auf der Tragkonstruktion wurde für die Stahlbauweise folgendermassen gelöst: Jede Querbohle des Fahrbahnbelages ist beidseitig mittels durchgehender Bolzen mit dem Radabweiserbalken verbunden, wodurch starre Tafeln von 3,60 m Breite und der Länge der Radabweiserbalken = 4,17 m entstehen. Diese Tafeln liegen lose auf den stählernen Längsträgern (I 22) und sind nur in ihren vier Ecken durch Bolzen mit der Tragkonstruktion verbunden. - Der obere Längsbohlenbelag ist mittels Tirefonds auf dem untern Querbohlenbelag befestigt. — Die Bohlen der Gehwege sind durch je zwei Leisten und kleinere Bolzen zu Tafeln vereinigt, in der Breite der Gehwege und 2,08 m Länge.

Längs- und Querträger, Versteifungsträger, Windverband. Es wurden beim Entwerfen nach Möglichkeit nur Profile verwendet, die jederzeit leicht erhältlich sind. Aus dieser Erwägung ergab sich auch die Wahl des Gurtquerschnittes aus zwei halben Normalprofilen I 36. Die Länge der einzelnen Elemente wurde auf maximal 5 m (ausnahmsweise 6 m) begrenzt. Um möglichst wenig loses Kleineisenzeug zu haben, sind alle Futter an die zugehörigen Elemente angeschweisst vorgesehen. Auch die Verbindungen der einzelnen Elemente unter sich wurden nach Möglichkeit vereinfacht. Es wurden ausschliesslich Schraubenbolzen dazu verwendet, zum Teil Pass-Schrauben, für Gurtstösse und Gelenkbolzen. Für die Herstellung von Fachwerkgliedern, die nicht aus einem einzigen Profilstab bestehen, wurde weitgehend Schweissung vorgesehen.

Die Montage geschieht in der Weise, dass zuerst, nach Befestigung der Hängestangen am Seil, die unteren Auflagertraversen versetzt werden. Nachher wird durch Verlegen von Holz-Bohlen ein provisorischer Arbeitsboden hergestellt. Es können nun die untern Gurtstäbe montiert werden, durch die dann die Auflagetraversen in Längsrichtung endgültig festgelegt und versteift werden.

Die Hängestangen, aus Rundeisen von 36 mm, sind durch Schraubenmuttern und entsprechend lange Gewinde um rd. 50 cm regulierbar. Die Regulierbarkeit ist notwendig zum Ausrichten der fertig montierten Eisenkonstruktion. Zudem gestattet das ziemlich grosse Spiel, ein und dieselbe Hängestange bei verschiedenen Spannweiten verwenden zu können. festigung am Seil geschieht durch Klemmlaschen (Seilschellen) und Rundeisenbügel mit Traverse.

Tragkabel und deren Verankerung. Die Anzahl der Seile für ein Tragkabel variiert mit der Spannweite. Jedes Seil besteht aus 37 Drähten von 5 mm Durchmesser und hat einen Gesamtdurchmesser von 35 mm; Bruchfestigkeit der

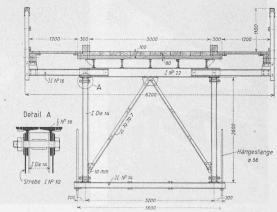


Abb. 2 und 3. Ansicht und Querschnitt der eisernen Notbrücke. - Masstab 1:85