Zeitschrift:	Schweizerische Bauzeitung
Herausgeber:	Verlags-AG der akademischen technischen Vereine
Band:	111/112 (1938)
Heft:	10
Artikel:	Ueber eine einfache Methode zur Bestimmung von Momenten
Autor:	Baumann, Martin
DOI:	https://doi.org/10.5169/seals-49788

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 07.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Ueber eine einfache Methode zur Bestimmung von Momenten. — Fliehkraft und Verstellpropeller. — Notbrücken für grosse Spannweiten. — Landhaus am Burain in Rüschlikon. — Mitteilungen: Wärmezähler im Haushalt. Radialturbinen für Höchstdruckdampf. Höhen-Versuche über Durchzug an Riemenscheiben mit Kraftringen. Ein neues Wasserkraftwerk in Mittel-Schweden. Ueber «Die griechische Baukunst und der Architekt von heute». Wegleitungen für Lüftungsanlagen. Das betriebswissenschaftliche Institut an der E. T. H. Die Reichskanzlei - Wettbewerbe: Fernverkehrstrasse Baden-Brugg. in Berchtesgaden. Aufhebung des Niveauüberganges der SBB in Territet. Literatur. Mitteilungen der Vereine. - Sitzungs- und Vortrags-Kalender.

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Nr. 10 Band 111

Ueber eine einfache Methode zur Bestimmung von Momenten Von MARTIN BAUMANN, Dipl. Ing., Zürich

Die Bestimmung von Massenmomenten ist eine Aufgabe, die der Konstrukteur häufig zu lösen hat. Beispielsweise spielt die genaue Bestimmung von Trägheits- und Deviationsmomenten eine wichtige Rolle beim Entwurf von Verstellpropellern für Luftund Wasserfahrzeuge. An anderer Stelle1) wurde gezeigt, wie Momente beliebiger Ordnung, z. B. auch Massenmomente von beliebig gestalteten Körpern, auf neuartige Weise einfach ermittelt werden können. Die Methode wird hier kurz beschrieben und ihre vielseitige Verwendbarkeit an Beispielen aus dem Maschinenbau gezeigt. Eine Rechentafel (Schablone) wird angegeben, die die Berechnung wesentlich erleichtert.

Bestimmung von axialen Momenten.

Es sei das Moment beliebiger Ordnung einer Fläche F um ein beliebiges Axenkreuz, d. h. das über F zu erstreckende Doppelintegral

$$\partial = \iint x^m y^n \, dx \, dy$$

zu bestimmen. Darin bedeuten x und y die Abstände eines Flächenelements df = dx dy von den beiden Axen.

Wir schreiben dieses Integral in folgender Form

$$\partial = \iint\limits_{F} d\left(\frac{x^{m+1}}{m+1}\right) d\left(\frac{y^{n+1}}{n+1}\right) = \frac{1}{k_x k_y (m+1) (n+1)} \iint\limits_{F^*} d\xi d\eta$$

Die hier ausgeführte Transformation (Umformung) $\xi = k_x x^{m+1}$ und $\eta = k_y y^{n+1} \left(k_x, k_y ext{ konstant}
ight)$ bedeutet den Uebergang von der x, y-Ebene auf eine ξ, η -Ebene, wobei das ursprüngliche Flächenstück F auf ein Flächenstück F^* (Hilfsfläche) abgebildet wird. Wenn wir dessen Inhalt - das rechts stehende Doppel-Integral — gleichfals mit F^* bezeichnen, wird

$$\hat{o} = \frac{1}{k_x k_y (m+1) (n+1)} F^{*2}$$

Mit k_x und k_y bezeichnen wir für das Aufzeichnen geeignete Verkürzungsbeiwerte in x- bezw. in y-Richtung.

Wir haben das einfache Ergebnis: Das über eine Fläche zu erstreckende Doppelintegral $\partial = \iint x \mathrm{m} \, y \mathrm{n} \, dx \, dy$ kann durch einfaches Umzeichnen der Berandungskurve an Hand der Transformationsgleichungen und Flächenbestimmungen genau gelöst werden.

Bestimmung von polaren Momenten.

Mit Hilfe der Transformation kann man auch polare Momente beliebiger Ordnung einfach ermitteln. Zum Beispiel ist das polare Trägheitsmoment eines Flächenstücks bezüglich eines Punktes 0 seiner Ebene das über das Flächenstück zu erstrekkende Integral

$$J_0 = \int_{\overline{E}} r^2 df$$

M. Baumann: Praktische Anwendungen einer allgemeinen Integra-tionsmethode zur Bestimmung von Momenten, «Der Stahlbau», Heft 3, 1937, Seite 22. Verlag von Wilhelm Ernst & Sohn, Berlin.
 Ist a) m oder n, oder sind b) beide Zahlen ungerade, so ent-

sprechen bei der Abbildung jedem vom Nullpunkt verschiedenen Punkt der ξ , η -Ebene a) zwei oder b) vier Punkte der x, y-Ebene. Wird z. B. im Fall m = 1, n = 2 auf den Punkt ξ , η der Punkt x, yabgebildet, so auch der Punkt -x, y. In diesem Fall wird das Flächenstück F nur dann umkehrbar eindeutig auf das Flächenstück F^* abgebildet, wenn F ganz in einer der Halbebenen $x \geq 0$ oder $x \leq 0$ liegt. Im Falle m = 1, n = 1 nur dann, wenn F ganz in einem Quadranten der x, y-Ebene liegt. Um eine umkehrbar eindeutige Abbildung der Flächenstücke aufeinander, bei der allein die obige Umgestaltung des Doppelintegrals erlaubt ist, zu erhalten, hat man darum nötigenfalls das Flächenstück F in höchstens vier Stücke zu unterteilen, deren jedes ganz in einer Halbebene, bezw. ganz in einem Quadranten liegt (vergl. die Beispiele an der in Fussnote 1) angeführten Stelle). Ueber das Vorzeichen des Moments der jeweiligen Teilfläche kann kein Zweifel bestehen.

Dabei bedeutet r den Abstand des Flächenelements $df = (r d_{\varphi}) dr$ vom Bezugspunkt 0, vergl. Abb. 1. al in folgender Form Wir schreiber

$$J_0 = \int_0^{2\pi} d\varphi \int_0^{r_a} r^a dr = \frac{1}{4} \int_0^{2\pi} r^4(\varphi) d\varphi,$$

vergl. Abb. 1. Zur graphischen Integration zeichnet man die Kurve $R_a(\varphi) = k_r r_a^2(\varphi) \,,$

wo \boldsymbol{k}_r ein geeigneter Verkürzungsbeiwert in radialer Richtung ist. Die von dieser neuen Kurve eingeschlossene Fläche (Hilfsfläche) ist $F^* = rac{1}{2} \int\limits_{0}^{2\pi} R^2 \left(\varphi
ight) d \varphi = rac{1}{2} k_r^2 \int\limits_{0}^{2\pi} r_a^4 \left(\varphi
ight) d \varphi$

$$J_0 = \frac{1}{2} F^*$$

 $2 k_r^2$ Ein Beispiel: Zur Berechnung der kritischen Drehzahlen von Kurbelwellen ist die genaue Kenntnis der polaren Massenträgheitsmomente der Einzelteile bezüglich der Drehaxe erforderlich. In Abb. 1 ist ein Kurbel-

arm eines Dieselmotors dargestellt. Aus Symmetriegründen braucht nur eine Hälfte der Berandung $P_{(ra, \varphi)}$ transfor-miert zu werden. Zum Aufzeichnen der gestrichelt gezeichneten Kurve $P^*_{(R_a, \varphi)}$ genügt, wie auch bei den späteren Beispielen, das Ermitteln weniger Punkte. In unserem Beispiel wurde $k_r = 1/10$ gewählt. Wir r r r r $\frac{F^*}{2} = 100,9 \,\mathrm{cm}^2$. Das polare Trägheits-

moment bezüglich des Punktes 0 wird

$$J_0 = rac{1}{k_r^{-2}} rac{F^{**}}{2} =$$

 $= 10\,090 \text{ cm}^4$. Schon aus diesem Beispiel geht die Anschaulichkeit der Methode hervor. Schneiden wir z. B. die Ecke E am Kurbelarm weg, so wird das

Trägheitsmoment um $\frac{\Delta F^*}{F^*}$ 100 = $\frac{8,5}{100,9} \cdot 100 = 8,5^{9}/_{0}$ kleiner. Dadurch kann bekanntlich die Eigenschwingungszahl der Kurbelwelle erhöht werden.

moments bezüglich O

Weitere Anwendungen.

1. Ermittlung von Massenmomenten.

Je nach der Aufgabe wird man die Lösung vorteilhaft teils graphisch, teils analytisch suchen. Dies werden die folgenden Beispiele zeigen. Es sollen zunächst die Trägheitsmomente eines Massenkörpers bezüglich der drei Raumebenen ermittelt werden. Aus den Trägheitsmomenten kann man mit dem Mohrschen Trägheitskreis das Fliehmoment (Deviationsmoment) einfach ermitteln. Dies ist z. B. wichtig bei der Bestimmung der Ausgleichsgewichte von Verstellpropellern.

In Abb. 2 ist ein solcher Ausgleichkörper, ein Ausschnitt aus einem Umdrehungskörper mit dem Zentriwinkel φ_a , dargestellt. Die x-Axe falle mit der Propelleraxe zusammen, und eine Parallele zur y-Axe sei die Motoraxe, vergleiche Abb. 3. Die tech-

Abb. 1. Ermittlung des polaren Trägheits-

Abb. 3. Drehmomente

fall der Transformations-

methode. Es ist jedoch

einfacher, die Transformation $R = k_r r^2$ vorzu-

nehmen. Der Rauminhalt

bestimmt sich für unsern

F' ist der Inhalt der in

Abb. 5 von der strich-

punktierten Kurve ein-

 $F' = 41,4 \text{ cm}^3$

am Verstellpropeller

Körper zu $V_A = \frac{\varphi_a}{2 k_r}$

Abb. 2. Ausgleichgewicht für Verstellpropeller

nische Funktion eines solchen Ausgleichsgewichts ist kurz folgende: Die Fliehkräfte im Propeller suchen diesen in die Bremsstellung (flache Stellung) zu drehen. Die Fliehkräfte des Ausgleichsgewichts sollen nun diesen Kräften entgegenwirken, so dass die Regulierarbeit möglichst klein wird.

Die Masse des Raumelements dV beträgt in Polarkoordinaten, Abb. 2.

$$dM = rac{\gamma}{g} dV = rac{\gamma}{g} r d\varphi dr dx,$$

wo γ das spezifische Gewicht des Werkstoffes in gr/cm³ und g = 981 cm/sec² die Erdbeschleunigung bedeuten (Rechnungseinheiten: cm, gr, sec). Ferner ist x = x, $y = r \cos \varphi$, $z = r \sin \varphi$ und das Massenträgheitsmoment bezüglich der xy-Ebene beträgt

$$J_I = \int z^2 dM = \frac{\gamma}{g} \iint_{\vec{F}} r^3 dr dx \int_{\vec{F}} \sin^2 \varphi d\varphi = \frac{\gamma}{g} c^{-1/4} \iint_{\vec{F}} d(r^4) dx$$

 $c={}^{1_{/2}}(\varphi_{a}-\sin\varphi_{a})$ ist vorliegendenfalls ($\varphi_{a}=35\,^{\rm o})=0.0185.$ Das letzte Doppelintegral kann man zeichnerisch mittels der Transformation $R=k_{r}r^{4}$ ermitteln. In Abb. 4 ist $k_{r}={}^{1_{/200}}$ gewählt. Mit $F^{*}=28.5~{\rm cm}^{2}$ erhält man für Gusseisen ($\gamma=7.25~{\rm gr}$ pro ${\rm cm}^{3})$:

$$J_I = \frac{\gamma}{g} \frac{c}{4k_r} F^* = 0.195 \text{ gr cm sec}^2.$$

Die Ermittlung des Trägheitsmomentes bezüglich der xz-Ebene erfolgt in grundsätzlich gleicher Weise.

Es wird

$$J_{II} = \frac{\gamma}{g} \frac{\varphi_a + \sin \varphi_a}{2 \cdot 4 k_x} F^* = 6,23 \text{ gr cm sec}^2.$$

Aus diesen Massenträgheitsmomenten J_I und J_{II} kann man nun in bekannter Weise mit Hilfe des Mohrschen Trägheitskreises das gesuchte Massenfliehmoment $J_{I,\ II}$ für eine beliebige Auslenkung der Symmetrie-Meridianebene aus der xy-Ebene finden.

Um an einem Beispiel zu zeigen, wie in beiden Koordinatenrichtungen transformiert werden kann, wird noch das Trägheitsmoment bezüglich der *yz*-Ebene bestimmt.

Wir erhalten

$$J_{III} = \int x^2 dM = \frac{\gamma \varphi_a}{g} \int_{F} x^2 r \, dx \, dr = \frac{\gamma \varphi_a}{6 g \, k_x k_r} \int_{F^*} d\xi \, dR,$$

wobei $R = k_r r^2$ und $\xi = k_x x^3$, Abb. 5. Wir transformieren zuerst in der *r*-Richtung und erhalten die strichpunktiert gezeichnete Berandungskurve. Von dieser Kurve $P_{(x, R_a)}$ ausgehend lässt sich die gesuchte Kurve $P_{(\xi, R_a)}$ leicht einzeichnen.

Wir erhalten

$$J_{III} = \frac{\gamma}{g} \frac{\varphi_a}{6 k_x k_r} F^* = 0,409 \ {\rm gr} \ {\rm cm} \ {\rm sec}^2 \label{eq:JIII}$$

2. Ermittlung der Rauminhalte von Umdrehungskörpern. Das von Rötscher angegebene Verfahren³), nämlich das Aufzeichnen von πd^{2} $(d = 2r_{a})$ in radialer Richtung, ist ein Sonder-

³) Prof. Dr.-Ing. F. Rötscher: Einfache Verfahren zur Ermittlung des Schwerpunktes, des Rauminhalts und der Momente höherer Ordnung, «Z. VDI», Bd. 80 (1936), S. 1351.

Abb. 4. Ermittlung der Massenträgheitsmomente J1 und J11

Abb. 5. Ermittlung des Massenträgheitsmoments $J_{\Pi I}$ und des Rauminhalts V_A

↓ξ-x Abb. 7 und 8. Graphische Ermittlung der Massenträgheitsmomente von Schwungrädern

geschlossenen, nicht besonders hervorgehobenen Fläche.

3. Ermittlung der statischen Momente von Massenkörpern. Das statische Moment des Rauminhalts bezüglich der xz-Ebene wird

$$S_{xz} = \int y \, dV = \int_{\overline{F}} \int r^2 \, dr \, dx \int_{-\frac{q \cdot a}{2}}^{\frac{q \cdot a}{2}} \cos \varphi \, d\varphi = \frac{2 \sin \frac{q \cdot a}{2}}{3 \, k_r} \int_{\overline{F}} \int d (r^3) \, dx$$

Das Doppelintegral ist in Abb. 6 mit Hilfe der Transformation $R=k_rr^3$ ermittelt worden. k_r wurde $^1\!/_{\rm 30}$ gewählt. Somit wird

$$S_{xz} = \frac{2\sin\frac{\varphi a}{2}}{3k_{x}}F^{*} = 178,2 \text{ cm}^{4}$$

 Ermittlung der Massenträgheitsmomente von Schwungrädern⁴).

In Abb. 7 ist der halbe Schnitt eines Schwungrades dargestellt. Das Massenträgheitsmoment bezüglich der Drehaxe ist

$$J = \int r^2 dM = 2 \pi \, rac{\gamma}{a} \int \int r^3 dr \, dx$$

Das Doppelintegral ist das gleiche, das oben bei der Ermittlung von J_I auftrat. Die durch die Transformation $R = k_r r^4$ (r in cm gemessen!) in Abb. 8 erhaltene Fläche hat den Inhalt $F^* = 76,4$ cm², bei einem Verkürzungsbeiwert $k_r = \frac{1}{4000}$. Zur Umrechnung auf m ist der Wert von F^* durch 10^{10} zu teilen. Ferner wurde der Schnitt in Bild 7 im Masstab $M = \frac{1}{10}$ gezeichnet. Für den wirklichen Körper ist das Integral $\frac{1}{M^5}$ mal so gross. Wir

erhalten somit als endgültige Gleichung

$$J = rac{\pi \gamma}{2 \, g \, k_r \, M^5 \, 10^{10}} \, F^*$$

Für ein Gusseisenrad wird J = 3545 kg m sec².

Die Anteile einfacher Querschnitte wird man vorteilhafter berechnen. Auch den Beitrag von Speichen kann man leicht berechnen. Für einen Arm gilt folgende, praktisch genaue Beziehung

$$J = \frac{\gamma}{30 \, g} \left(F_1 + 3 \, \sqrt{F_1 \, F_2} + 6 \, F_2 \right) r_2^3$$

Diese Gleichung stellt das Trägheitsmoment eines Kegelstumpfes bezüglich seiner Grundfläche F_1 dar. Die Deckfläche ist F_2 und seine Höhe r_2 .

> 4) Vergl. das Verfahren von Rötscher an der in Fussnote 3 zitierten Stelle.

Abb. 6. Ermittlung des statischen Moments

Die Schablone zur Ermittlung von Momenten (Abb. 9) ermöglicht das einfache und rasche Aufzeichnen der neuen Kurven $P_{(\xi, \eta)}$, bezw. $P_{(R, \xi)}$. Es ist dies eine Erweiterung eines in diesem Blatt beschriebenen Verfahrens⁵).

Auf der rechteckigen Grundplatte A aus durchsichtigem Werkstoff (z. B. Zelluloid) sind Parabeln der 2., 3. und 4. Ordnung, die entsprechend verkürzt und gegeneinander verschoben sind, durch feine Bohrungen dargestellt. Ferner ist darauf eine durch den Ursprung 0* gehende Strahlenschar, sowie einige mit der y-Achse gleichlaufende Geraden aufgezeichnet.

Die Anwendung dieser Schablone ist in Abb. 9 am Beispiel eines Strömungsquerschnitts erläutert. Die Bezugsaxe wurde der Einfachheit halber als Tangente des Querschnitts gewählt. Die Schablone lässt man längs der Führungsschiene B gleiten, die so auf der Unterlage befestigt ist, dass sie die Bezugsaxe berührt. Die Ermittlung der Momente geschieht nun folgendermassen. Zunächst ist ein Strahl zu wählen. Im dargestellten Beispiel ist dies Strahl 8. Zum Aufzeichnen einzelner Punkte verschiebt man die Schablone und bringt z. B. den Punkt P mit dem entsprechenden Punkt P* der Flächenberandung zur Dekkung. Die zugehörigen Hilfspunkte P_8^* , P_i^* und P_4^* findet man mittels Durchstechen bei den Bohrungen P_s , P_i und P_4 . So wird man einige Punkte umzeichnen und die gestrichelt dargestellten Linienzüge erhalten, deren Flächeninhalte ein Mass für die gesuchten Momente sind. Die in der Tafel angegebenen Beiwerte s, i und p dienen zum Berechnen der Momente. Die durch die Integration erhaltenen Beiwerte sowie die Verkürzungsbeiwerte sind darin enthalten.

Z. B. ist das statische Moment der Fläche

 $S_x = sF_s = 1 \cdot 32, 1 = 32, 1 \text{ cm}^3$ Da der Flächeninhalt des Querschnitts F = 18,1 cm² beträgt, wird der Schwerpunktsabstand von der Bezugsaxe

$$\eta^* = \frac{S_x}{F} = \frac{32,1}{18,1} = 1,77 \text{ cm}$$

Das Trägheitsmor $J_r = iF_i = 4 \cdot 15,7 = 62,8 \text{ cm}^4$

und bezüglich der Schweraxe wird $J_{\xi} = J_x - \eta^{*2}F = 62,8 - 1,77^2 \cdot 18,1 = 5,8 \text{ cm}^3$

Für das Moment der 4. Ordnung erhalten wir $J_p = p F_p = 18 \cdot 9,65 = 173,7 \ {
m cm}^5$

Will man die Momente möglichst genau ermitteln, so wird man danach trachten, grosse Hilfsflächen F_s , F_i und F_p zu erhalten. In unserem Beispiel hätten wir dies erreichen können durch Wahl der Geraden 7 statt der Geraden 8. Auch wird die direkte

⁵) *M. Baumann*, Neue Methode zur Bestimmung des Trägheitsmomentes eines beliebigen Querschnitts, «SBZ», Bd. 104, 1934, Nr. 11, S. 121.

Ermittlung des Trägheitsmomentes bezüglich der Schweraxe genauer als die nachherige Berechnung.

Ferner können noch folgende Momente mit Hilfe der Schablone ermittelt werden. Zum Aufzeichnen sind die entsprechenden Parabeln zu verwenden. Das Deviationsmoment (Fliehmoment) $J_{xy} = s_1 s_2 F_{xy} \operatorname{cm}^4$

wo mit s_1 und s_2 die entsprechenden Beiwerte in den beiden Axrichtungen bezeichnet werden (Transformation in beiden Axrichtungen notwendig). Die Hilfsflächen des I. und III. Quadranten sind positiv, diejenigen des II. und IV. sind negativ zu zählen.

Das polare Trägheitsmoment

$$J_0 = o F_0 \,\mathrm{cm}$$

Zum Bestimmen einzelner Hilfspunkte kann man folgendermassen vorgehen. Man bringt z. B. den Punkt C der Schablone mit dem Bezugspunkt 0 zur Deckung, dreht die Schablone, bis der Punkt D (bei Wahl der Geraden 10) mit einem Punkt der Berandung übereinstimmt und sticht den gesuchten Punkt bei P_0 durch, vergl. Abb. 1.

Das Massenträgheitsmoment von Schwungrädern

$$J = \frac{2\pi\gamma}{p} \frac{p}{F_{-} \text{ kg m sec}^2}$$

$$g M^{3} 10^{10} p$$

Darin bedeutet M den Zeichnungsmasstab. Der Rauminhalt von Umdrehungskörpern

 $V = 2\pi s F_s \text{ cm}^3$

Die Masse von Umdrehungskörpern

$$M = rac{2\pi\gamma}{a} sF_s = rac{\gamma}{a} V ext{ kg cm sec}^2$$

 $\frac{\gamma}{2}$ hat folgende numerische Werte: für Gusseisen 739 und für q

Stahlguss 800 kg m⁻⁴ sec².

Fliehkraft und Verstellpropeller

In dem vorangehenden Aufsatz von Ing. M. Baumann veranschaulicht Abb. 3, S. 114 die Tatsache, dass die Fliehkraft einen (statisch und dynamisch ausbalancierten) Propeller nicht nur auf Zug, sondern auch auf Torsion beansprucht. Die Verhältnisse lassen sich im Wesentlichen an dem in der umstehenden Abb. 1 skizzierten Modell erläutern, bestehend aus einem Klümpchen von der Masse m und drei rechtwinklig aneinandergefügten, starren, masselosen Stäben (stark ausgezogen) von den Längen x, y, z. Dieses starre System S sei, in O befestigt, um die x-Axe (Flügelaxe) drehbar. Denkt man sich zur weiteren Vereinfachung die Schwerkraft aufgehoben, so bleibt der Massenpunkt m, einmal ruhend, in Bezug auf das gezeichnete Koordinatenkreuz an

seinem Platz - sofern dieses Kreuz selber ruht. Läuft aber die x-Axe um die y-Axe (Motoraxe) mit der konstanten Winkelgeschwindigkeit ω um (im einen oder andern Sinn), so bleibt für einen fest an die Motoraxe gebundenen Beobachter B das System S keineswegs in Ruhe (geschweige denn für einen ruhenden Beobachter), sondern beginnt eine (pendelnde) Drehbewegung um die x-Axe. Dies bekanntlich darum, weil für B der Massenpunkt m sich nicht kräftefrei verhält (auch für einen ruhenden Beobachter nicht: Zwangskraft der Stange z!), sondern so, als ob er sich in einem radial von der y-Axe wegge-richteten, proportional der Entfernung a von dieser anwachsenden Kraftfeld, dem Feld der Zentrifugalkraft, befinde. Diese Kraft, vom Betrag $m \omega^2 a$, übt auf S ein Drehmoment von der Stärke $m \omega^2 yz$ in dem durch den Pfeil angedeuteten Sinn um die x-Axe aus. Soll S relativ zu B

in Ruhe verharren, so ist auf S ein diesem Moment entgegengesetzt gleiches auszuüben.

Denken wir uns dieses primitive Modell zu einem um die x-Axe verstellbaren Propellerflügel ausgestaltet, von dem in Abb. 1 ein Querschnitt, in der Entfernung rvon O, angedeutet ist. Ein mit dem Flügel fest verbundenes Axenkreuz x, η, ζ falle in der zunächst betrachteten «Ausgangsstel-