Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 109/110 (1937)

Heft: 13

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

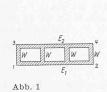
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

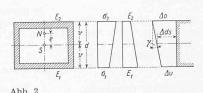
Download PDF: 03.12.2025

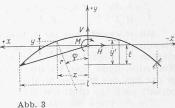
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Berechnung des eingespannten Bogens für verschiedene Elastizitätsziffern im Hohlquerschnitt nach der Elastizitätstheorie. Wettbewerb für eine Schulhausanlage im Marzilimoos in Bern. — Die Internationale Rheinregulierung von der Illmündung bis zum Bodensee. Vom Rheindelta in der Fussacher Bucht. — Von der Weltkraftkonferenz. Mitteilungen: Grossräumige Salzlagerhalle in Holz. Schweiz. Pumpen und Turbinen für Aegypten. Der Lauf der Drehgestellradsätze in der Geraden. Führerkurse des psychotechn. Institutes Zürich. Betoninstruktionskurs. Wirtschaftliches Autofahren. Ortsbewegliche Kirchen. Die Storström-Brücke. Die Graphische Sammlung der E. T. H. — Nekrologe: Franz Köppel. Carl Strasser. — Wettbewerbe: Neue Pfarrkirche in Littau (Luzern). — Literatur. — Mitteilungen der Vereine.

Der S. I. A. ist für den Inhalt des redaktionellen Tells seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Band 110


Nr. 13


Berechnung des eingespannten Bogens für verschiedene Elastizitätsziffern im Hohlquerschnitt nach der Elastizitätstheorie


Von Dr. Ing. ALFRED HAWRANEK, o. Prof. der Deutschen Technischen Hochschule Brünn

Die Herstellung von Eisenbeton-Bogenbrücken mit Hohlquerschnitt führt aus praktischen Gründen und wie Ausführungen beweisen, zur Betonierung des Bogens in mehreren Abschnitten. Es wird vorerst die untere Platte 1 bis 2 (Abb. 1) betoniert, dann erfolgt die Ausführung der Wände W, und schliesslich der oberen Platte 3 bis 4. Manchmal wurden auch mit der unteren Platte Teile der Wände gleichzeitig betoniert. Der für diese Arbeit bei

grossen Spannweiten nötige, beträchtliche Zeitaufwand ist abhängig von der täglichen Leistung beim Betonieren (die etwa mit 100 m3/ Tag angenommen werden kann), von der Brückenbreite und von der Stützweite. Selbst wenn man die beim Bau auftreten-

den Streuungen der Betongüte, die etwa 15 bis 20 % ausmachen können, berücksichtigt, ergeben sich doch wegen des verschiedenen Alters des Betons in der unteren, bezw. oberen Platte verschiedene Elastizitätsziffern, die im geschlossenen Bogen für die weiteren Belastungen, für das Schwinden und für die plastische Verformung Aenderungen der statisch unbestimmten Grössen und damit der Momente und Normalkräfte gegenüber einer Rechnung mit konstantem E-Wert bedingen. Deshalb sollen die bezüglichen Gleichungen für die statisch unbestimmten Grössen nach der Elastizitätstheorie abgeleitet werden. Diese Untersuchungen werden besonders dann notwendig werden, wenn man anlässlich der Ausrüstung des Bogens, behufs besserer Verteilung der Grösstwerte der Spannungen, mit hydraulischen Pressen arbeitet.

I. Ableitung der allgemeinen Formeln

Allgemein soll angenommen werden, dass in irgend einem Bogenquerschnitt die untere Platte eine Elastizitätsziffer E_1 , die obere E_{g} besitzt. Dazwischen erfolge der Uebergang in den Wandteilen linear (Abb. 2). Sonst seien die E_1 und E_2 in den einzelnen Bogenquerschnitten beliebig angenommen, aber für symmetrisch gelegene Bogenpunkte in der gleichen Verteilung. σ_1 und σ_2 seien die Randspannungen und du, do die Faserverkürzungen durch die exzentrische Normalkraft N_x . Weiter wird angenommen, dass die Querschnitte eben bleiben und im Bogen nur Druckspannungen, bezw. keine unzulässigen Zugspannungen im Beton auftreten. Eisenbetonbogen seien symmetrisch bewehrt. Dann sind die Span-

$$\sigma_1=rac{N_X}{F}-rac{M_X\,v}{J}$$
 , $\sigma_2=rac{N_X}{F}+rac{M_X\,v}{J}$. . . (1)

Die Verdrehung des Querschnittes sei $d \, arphi$, wobei mit den Bezeichnungen der Abb. 2:

$$d\varphi = \frac{\varDelta o - \varDelta u}{2v} = \frac{ds}{2v} \left(\frac{\sigma_2}{E_2} - \frac{\sigma_1}{E_1} \right) =$$

$$= \frac{ds}{2v} \left[\frac{N_x}{F} \left(\frac{1}{E_2} - \frac{1}{E_1} \right) + \frac{M_x v}{J} \left(\frac{1}{E_1} + \frac{1}{E_2} \right) \right] . \quad (2)$$

$$k_1 = \frac{E_1}{E_2} + 1$$
, $k_2 = \frac{E_1}{E_2} - 1$, $k = \frac{k_2}{k_1}$. (3)

$$d\varphi = \frac{k_2 ds}{2v E_1} \left[\frac{N_x}{F} + \frac{M_x v}{k J} \right] \cdot \cdot \cdot (4)$$

Ausserdem wird

Wir behandeln einen symmetrischen, eingespannten Bogen. Der Koordinatenanfangspunkt wird in den elastischen Schwerpunkt verlegt, die positiven Axrichtungen sind für x nach links, für y nach oben angenommen (Abb. 3).

Die Verschiebung 11 eines Elementes in der Richtung der x-Axe ist

$$\Delta l = y d \varphi - \Delta d s \cos \varphi + \alpha t d s \cos \varphi$$

Für unverschiebliche Widerlager ist

 $\int rac{k_2 \, d \, s}{2 \, v \, E_1} igg[rac{N_X}{F} \, + \, rac{M_X \, v}{k \, J} igg] = \, 0$

Alle Integrale sind über die ganze Bogenlänge auszudehnen.

Die drei im elastischen Schwerpunkt angreifenden statisch unbestimmten Grössen sind H, V, M. Das statisch bestimmte Grundsystem ist der nur im rechten Kämpfer eingespannte Frei-

Das Moment
$$M_x = \mathfrak{M}_x + M - Hy - Vx$$

Die Normalkraft $N_x = H\cos\varphi + Q_x\sin\varphi$
wobei die lotrechte Querkraft $Q_x = V + \mathfrak{Q}_x = V - \sum\limits_x G$

Mit diesen Werten erhält man die Gleichungen

Zeichnungen der Abb. 2: Mit diesen Werten erhält man die Gleichungen
$$d\varphi = \frac{\varDelta o - \varDelta u}{2 \, v} = \frac{d \, s}{2 \, v} \left(\frac{\sigma_2}{E_2} - \frac{\sigma_1}{E_1} \right) = \\ = \frac{d \, s}{2 \, v} \left[\frac{N_x}{F} \left(\frac{1}{E_2} - \frac{1}{E_1} \right) + \frac{M_x \, v}{J} \left(\frac{1}{E_1} + \frac{1}{E_2} \right) \right] \quad (2) \\ = \frac{d \, s}{2 \, v} \left[\frac{N_x}{F} \left(\frac{1}{E_2} - \frac{1}{E_1} \right) + \frac{M_x \, v}{J} \left(\frac{1}{E_1} + \frac{1}{E_2} \right) \right] \quad (3) \\ = \frac{d \, s}{2 \, v} \left[\frac{N_x}{F} \left(\frac{1}{E_2} - \frac{1}{E_1} \right) + \frac{M_x \, v}{J} \left(\frac{1}{E_1} + \frac{1}{E_2} \right) \right] \quad (4) \\ = \frac{k_1}{E_1} + 1, \quad k_2 = \frac{E_1}{E_2} - 1, \quad k = \frac{k_2}{k_1} \quad (3) \\ = \frac{k_2}{V} \left[\frac{1}{E_1} + \frac{1}{E_2} \right] + \frac{1}{E_2} \left[\frac{N_x}{F} + \frac{M_x \, v}{k \, J} \right] \quad (4) \\ = \frac{k_2}{2 \, v} \left[\frac{N_x}{F} + \frac{M_x \, v}{k \, J} \right] \quad (4) \\ = \frac{M_x}{E_1} + \frac{1}{E_2} + \frac{1}$$

In diesen Gleichungen wurden schon mit Rücksicht auf das gewählte Koordinatensystem jene Glieder gestrichen, deren Faktoren Null sind, und zwar: