Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 109/110 (1937)

Heft: 15

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die Probleme der Düngung in der Landwirtschaft, mit besonderer Berücksichtigung der Verwertung von Abwasser und ausgefaultem Schlamm. — Neuere Bauten der Arch. Kündig & Oetiker, Zürich. — II. Kongress des Internat. Verbandes für Materialprüfung London, 19. bis 24. April 1937. — Eine neue, unsichtbare Strahlung — Mitteilungen: 25 Jahre STUAG. Neue Schifflände in Montreux. Eine neue Zugsheizung.

Rechenschieber «Wärme- und Kälteschutz«. Bahnbetrieb-Einstellung Leopoldshöhe-Hüningen-St. Ludwig. Vom Karren zum Auto. Holz als Baustoff. Kleinhaus in Holzbauweise. — Nekrologe: Alb. Stadelmann. bewerbe: Umbau der katholischen Kirche Sirnach. Kantonsbibliothek in Aarau. - Literatur. - Mitteilungen der Vereine. - Sitzungs- und Vortrags-Kalender.

Band 109

Der S. I. A. ist für den Inhalt des redaktionellen Tells seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 15

Die Probleme der Düngung in der Landwirtschaft, mit besonderer Berücksichtigung der Verwertung von Abwasser und ausgefaultem Schlamm

Von Prof. Dr. H. PALLMANN, E.T.H., Zürich; Vortrag gehalten am Einführungskurs für Abwasserreinigung an der E.T.H. 1936

[Im Rahmen unserer Berichterstattung über den letztjährigen «Abwasserkurs» an der E. T. H. bringen wir hier diesen, eigent-lich ausserhalb unseres Arbeitsfeldes liegenden Vortrag, weil er auch von den am Kurs teilnehmenden Ingenieuren als sehr aufschlussreich geschätzt worden ist. Red.]

Inhaltsübersicht.

- 1. Welche Funktionen des Bodens sind für das Gedeihen der Pflanzen wichtig?
 - a) Die mechanische Festigung der Pflanze im Erdreich.
 b) Die Versorgung der Pflanzenwurgel
- zen wichtig?

 a) Die mechanische Festigung der Pflanze im Erdreich.
 b) Die Versorgung der Pflanzenwurzeln mit Wasser.
 c) Die Versorgung der Pflanzenwurzeln mit Nährstoffen.
 d) Die biochemische Aktivität des Bodens.
 2. Welche Maßnahmen stehen dem Pflanzenbauer zur Verfügung, um diese vier erwähnten Bodenfunktionen für die Pflanzenproduktion günstig zu beeinflussen?
 a) Die richtige, kulturangepasste Bodenbearbeitung.
 b) Die Düngung, d. h. zweckentsprechende Zufuhr von Pflanzennährstoffen zum Boden.
 c) Die Bewässerung und Entwässerung.
 3. Neuere Gesichtspunkte bei der Bewertung der Düngemittel.
 4. Abwasser und Klärschlamm in ihrer Wirkung auf die Pflanzenproduktion und den Boden.
 a) Der Chemismus des Abwassers und des Klärschlammes im Vergleich zu Gülle (Jauche) und Stallmist.
 b) Düngeversuche mit Klärschlamm.
 c) Düngeversuche mit Klärschlamm.
 li. Allgemeines.
 II. Praktische Düngungsversuche mit Abwasser.
 III. Vor- und Nachteile der verschiedenen Methoden der Abwasser- und Klärschlammdüngung.
 5. Rückblick und Ausblick.
 Benutzte Literatur.
 Die eingeklammerten Zahlen beziehen sich auf das Literaturverzeichnis.

Die eingeklammerten Zahlen beziehen sich auf das Literaturverzeichnis.

Wer ist an einer richtigen Düngung landwirtschaftlicher Kulturpflanzen interessiert? Der Pflanzenbauer, der seine Erträge steigern will; die Technik, die eine optimale Verwertbarkeit ihrer landwirtschaftlichen Rohstoffe wünscht; der Physiologe, der bestimmte Ansprüche an die chemische Zusammensetzung der tierischen und menschlichen Nahrung stellt, und die Hausfrau, für die Haltbarkeit, Wohlgeschmack und Bekömmlichkeit der Feldfrüchte von Bedeutung sind.

Einige Probleme der Düngung sollen kurz dargelegt werden. Am Beispiel der Abwasserdünger soll die Problemstellung dann noch näher präzisiert werden.

- 1. Welche Funktionen des Bodens sind für das Gedeihen der Pflanzen wichtig?
- a) Die mechanische Festigung der Pflanze im Erdreich. Flachgründigkeit und Rutschtendenz des Bodens wirken ihr am meisten entgegen.

b) Die Versorgung der Pflanzenwurzeln mit Wasser. Kein Leben ohne Wasser! Zur Synthese der Trockensubstanz verbraucht die Pflanze grosse Mengen an Wasser. Bereits die vereinfachte Assimilationsgleichung zeigt dies:

 $6~\mathrm{CO_2} + 6~\mathrm{HOH} = \mathrm{C_c}~\mathrm{H_{12}O_6} + 6~\mathrm{O_2}$

Die Menge Wasser, die für den Aufbau von einem Gramm Trockensubstanz von der Pflanze benötigt wird, bezeichnet der Physiologe als Transpirationskoeffizient. Dieser ist für eine bestimmte Pflanze abhängig von Boden und Klima.

Tabelle 1

a) Transpirationskoeffizienten verschiedener Pflanzen nach Briggs und Shantz 1912.

b) Wasserverbrauch einer Trockensubstanzernte pro ha.

Feldfrucht	TranspKoeff. = g HOH pro g	Trocken- substanzertrag pro ha	Wasser- bedarf kg/ha	in mm Regen- höhe
Weizen*) Gerste*)	513 534	5400 kg 4300 kg	2770 000 2300 000	277 230
Hafer*) Kartoffeln**) Gräser	597 636 861	4800 kg 5000 kg 7000 kg	2870 000 3180 000 6030 000	987 318 603

*) Korn + Stroh; **) Nur Knollen in Hektarertrag eingesetzt.

Der Wasserhaushalt des Bodens (Gehalt, Magazinierung, Bindung) hängt von den Befeuchtungsverhältnissen der Gegend (Niederschlag, Temperatur, Verdunstung) und seinen physikalischen und chemischen Eigenschaften ab. Je schwerer

und humusreicher der Boden ist, um so grösser erscheint dessen wasserhaltende Kraft.

Feuchtigkeitsgehalt sandiger, lehmiger und toniger Böden. Woburn (England). Gleiche Niederschlagshöhen. Russell 1936 (4)

	Sandboden	Lehmboden	Tonboden
	₀ / ₀ HOH	⁰ / ₀ HOH	°/o HOH
Bei höchster Befeuchtung	14,0	16,5	35,0
Bei minimaler Befeuchtung	1,1	6,0	15,8
Mittel aller Beobachtungen	9,0	12,0	27,0

Der beste Wasserspeicherer ist der Humus, der durch seine schwammartige Feinstruktur das Vielfache des eigenen Gewichtes an Wasser magazinieren kann. Diese Eigentümlichkeit des Humus ist für die Beeinflussung der physikalischen und chemischen Bodeneigenschaften von grosser Bedeutung, später soll bei der Besprechung der Schlamm- und Abwasserdüngung darauf noch eingegangen werden.

Tabelle 3:

Wasserhaltende Kraft der obersten Bodenschicht (10 cm) verschiedener Bodentypen der Schweiz (Schmuziger-Pallmann) (8).

Bodentypen	Humusgehalt	Wasserhaltende Kraft							
Eisenpodsole A,	60 °/ ₀	402							
Humuspodsole A,	59 0/,	234							
Insubrische Braunerde iA,	17 %	192							
Braunerde bA,*)	7 0/0	122							
Rendzina rA,**)	700	100							

Eisen- und Humuspodsole = Mittelwerte.

*) Braunerde Kleinweid-Turbenthal (Zürich) (9). **) Rendzina: Remigen-Aargau.

Bei gegebenen Bodenklimaverhältnissen beeinflussen Bodenbearbeitung (Lockerung, Walzen, Decken) und die Vegetation den Wasserhaushalt eines Bodens (7).

c) Die Versorgung der Pflanzenwurzeln mit Nährstoffen. Die in Tabelle 4 schwarz umrandeten Elemente gelten als unentbehrliche pflanzliche Nährstoffe. Dem physikalischen Chemiker fällt dabei die interessante Tatsache auf, dass alle Pflanzennährelemente auf die chemischen Elemente mit ziemlich kleinem Atomgewicht oder niedriger Ordnungszahl entfallen (10). Die physiologische Bedeutung der schwereren Elemente ist bis heute noch nicht sichergestellt, Stimulationswirkungen bei sehr kleinen Konzentrationen scheinen häufig zu sein, bei höheren

Mahalla L

			Die	une					e für iodisc				rnähr	rung			
1		2		3		4		5		6		7		8		9	
Н		-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	He
Li		Be		В		С		N		0		F					Ne
Na		Mg		Αl		Si		Р		S		Cl					Ar
K		Ca		Sc			Ti		Vd		Cr		Mn	Fe	Co	Νi	
	Cu		Zn		Ga	Ge		As		Se		Br					Kr
Rb		Sr		Υ			Zr		Nb		Мо		-	Ru	Rh	Pd	
	Ag		Cd		In	Sn		Sb		Te		J					Xe
Cs		Ва		La			Ce		Ta		W		-	Os	Ir	Pt	
	Au		Нд	1- 1	Te	РЪ		Βi		Po		-					Em
	11	Ra	m"	Ac			Th	į.	Pa	FI	Ur				151		4