Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 109/110 (1937)

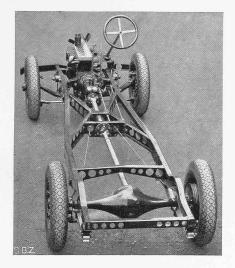
Heft: 14: Zur 21. Schweizer Mustermesse in Basel

Sonstiges

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

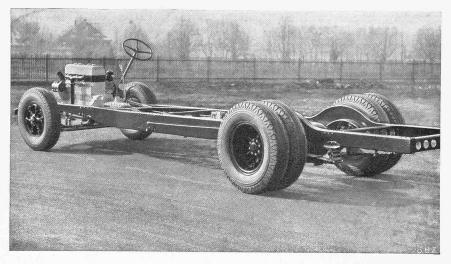


Abb. 3. Leichtlastwagen Saurer, 15 St.-PS, Benzin.

Abb. 4. Lastwagen-Chassis für 4,5 t Nutzlast, mit 6 Zyl. Saurer-Diesel 34,4 St.-PS, 6,75 l.

Betonstrasse liegt darin, dass annähernd der ganze Geldaufwand dafür im Lande selbst umgesetzt wird, und dass weitgehend ungelernte Arbeitskräfte dabei Verdienst finden.

Einen Sonderfall von Anwendung der Betonstrasse stellt die von Prader & Cie. A.-G. im Ausmass von rd. 5000 m² ausgeführte Zufahrt zur Empfangshalle im Güterbahnhof Zürich dar. Abb. 4 zeigt links die Zufuhr des Betons aus der Betonfabrik Zürich A.-G. in während der Fahrt rotierenden konischen Trommeln, rechts den Strassenfertiger der Betonstrassen A.-G. bei der Herstellung der 6 cm starken vibrierten und geriffelten Oberschicht aus P 400 (40 $^{\rm o}/_{\rm o}$ Natursand bis 8 mm Ø, $5\,^{\rm o}/_{\rm o}$ Brechsand bis 5 mm, 20% Splitt von 8 bis 15 mm und 35 Vol. % desgl. 15 bis 30 mm); mittl. Druckfestigkeit nach 7 Tagen rd. 650 kg/cm². Der Unterbeton P 250 (10 cm stark) enthält 45 Vol. % Natursand bis 8 mm und $55\,^{\rm o}/_{\rm o}$ Rundkies 8 bis 35 mm, und Rundeisenarmierung. Er ist mit dem Druckluft-Vibropil Ing. May (Lausanne) verdichtet worden. Die, je nach Jahreszeit der Erstellung 1 bis 2 cm weiten Dehnungsfugen zwischen den Platten von 5×10 m werden neuerdings mit Igaskitt, einem Erzeugnis von Kaspar Winkler & Co. (Altstetten) gefüllt.

In welchem steigenden Mass die Betonstrasse in der Schweiz Anwendung findet, mögen einige Zahlen der von der Betonstrassen-A.-G. Wildegg erzielten Jahresleistung zeigen; es wurden eingebaut: 1931 32452 m², 1932 45131 m², 1933 95621 m², 1934 113675 m², 1935 130400 m² und 1936 187380 m²; insgesamt von 1926 bis Ende 1936 rd. 830000 m², oder auf 6 m Strassenbreite umgerechnet rd. 138 km.

MITTEILUNGEN

II. Kongress des Internat. Verbandes für Materialprüfung (I.V.M.) in London vom 19. bis 23. April 1937. Dem I. Kongress vom Sept. 1931 in Zürich folgt nun der II., an dem in vier Hauptgruppen (je vormittags und gleichzeitig) verhandelt wird; drei

Nachmittage werden 20 Exkursionen und Besichtigungen (nach Wahl) gewidmet. Gruppe A behandelt Metalle (worüber 77 Berichte eingelaufen und veröffentlicht sind); B Anorgan. Bauund Werkstoffe (63 Berichte); C Organische Werkstoffe (45 Berichte); D Fragen allgem. Bedeutung (25 Berichte). Abzüge sämtl. Berichte über die seit 1931 erzielten Fortschritte stehen den Teilnehmern schon vor Kongresseröffnung zur Verfügung. Ausführliche Programme zu beziehen bei der Geschäftstelle im Gebäude der Instit. of Civ. Engineers, Great George Str., Westminster, London SW 1, auch einzusehen samt den Berichten bei der EMPA sowie auf der Redaktion der «SBZ», die in nächster Nummer näheres mitteilen wird.

Rüttelbeton und Rüttelgeräte in der Praxis. In «Beton und Eisen» vom 5. Februar 1937 beschreibt Arch. Hallensleben die modernen Rüttelgeräte (15 Abbildungen) und hebt die besonderen Vorteile des Rüttelverfahrens für die Betonqualität hervor: Beseitigung der Kiesnester, Verminderung der Anmachwassermenge, damit verbundene Erhöhung der Betonfestigkeit, Verminderung des Zementverbrauches infolge geringeren Anteiles der feinen Zuschläge, bis doppelte Haftfestigkeit der Eiseneinlagen gegenüber Stampfbeton. In der Praxis sind drei verschiedene Methoden gebräuchlich: 1. Aussenrüttelung mit an der Schalung befestigten Rüttelgeräten. Diese ist besonders in der Zementwaren- und Kunststeinindustrie und auf der Baustelle für die Verdichtung kleiner Bauteile gebräuchlich. Bei der Verwendung an massigen Bauteilen erzeugt sie eine dichte Oberfläche. Die Wirkung erstreckt sich auf 20 bis 30 cm Tiefe. 2. Die Oberflächenrüttelung erfolgt mittels eines auf einer Bohle oder Platte montierten Gerätes. Sie wird angewendet beim Betonieren von Decken, Betonstrassen und bei massigen Bauwerken zum schichtweisen Verdichten des Betons. 3. Die Innenrüttelung geschieht mittels flaschen- oder kastenförmiger Rüttler, die zuerst mit Beton lose zugedeckt werden

Abb. 3. Betonstrasse auf dem Monte Ceneri, Kt. Tessin.

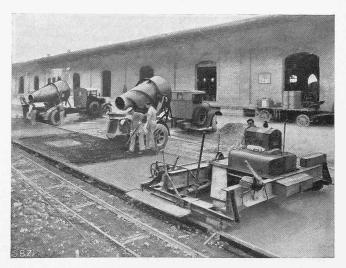


Abb. 4. Bau einer Betonstrasse am Güterbahnhof Zürich.