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Die Eigenschwingung des Schwingers mit Spiel
und Vorspannung
Von Dipl. Phys. HANS ZIEGLER, Zürich

Im Anschluss an eine Studie von Kryloff und Bogoljuboff
«Ueber einige Methoden der nicht-linearen Mechanik in ihren
Anwendungen auf die Theorie der nicht-linearen Resonanz» *) ist
in einem hier erschienenen Aufsatze2) von Prof. Dr. Ernst Meissner

die Schwingung mit Vorspannung behandelt und insbesondere
nachgewiesen worden, dass sich die Meissnersche Integrations-
Methode3) zur Herstellung der Lösung sehr gut eignet.

Im Folgenden sei gezeigt, dass sich die Meissnersche Methode
sehr leicht auch auf ähnliche Schwingungsvorgänge anwenden
lässt. Es soll das allgemeinste Problem eines Schwingers mit
Spiel und Vorspannung untersucht und ein allgemeiner Ausdruck
für die Periode der Eigenschwingung abgeleitet werden. Das
Problem lässt sich auch rein analytisch behandeln, wie es etwa
von K. Klotter *) angedeutet wurde ; die Methode der graphischen
Integration bietet aber den Vorteil der Anschaulichkeit und Ueber-
sichtlichkeit.

Es handelt sich darum, die Funktion x(t) zu bestimmen, die
der Differentialgleichung

ä2 x
+ k(x) 0 (1)

dt2
und gegebenen Anfangsbedingungen genügt, wobei k (as) ein
Kraftgesetz nach Art der Abb. 1 a bis f ist, wie es in den
einfachen Anordnungen der Abb. 1 oder bei drehfedernden
Kupplungen auftreten kann5). In allen Fä^Si ist das Rückstellkraft-
gesetz symmetrisch zum Koordinatenursprung.
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Abb. 1. Links Kraftgesetze, rechts Anordnungsbeispiele für
Fall a bis f (es ist in allen Fällen die selbe Feder verwendet).

Fall a) ist der gewohnte Fall einer rein linearen Rückstellkraft.

Im Falle b) hat der Schwinger eine Vorspannung fc0. Man
verwirklicht ihn etwa folgendermassen : Ein Massenpunkt soll
sich längs einer Geraden bewegen können. Um diese Gerade legt
man in einer Normalebene einen dünnen (theoretisch unendlich
dünnen) Ring, der als Anschlag dient für zwei gleichstarke,
gleichlange, gleich vorgespannte Federn, die beide an ihrem
freien Ende eine Platte gegen diesen Ring drücken. Die
Gleichgewichtslage für den Massenpunkt ist das Zentrum des Ringes.

1 «SBZ.», Bd. 103, S. 255* u. 267* (Nr. 22 u. 23 vom 2. und 9. Juni 1934).

2) Meissner : «Ueber eine nicht-harmonische Schwingung», «SBZ.», Bd.
104, S. 35* (Nr. 4 vom 28. Juli 1934).

3) Entwickelt in «SBZ.». Bd. 62, Nr. 15 und 16 (1913) ; Bd. 84, Nr. 23 und
24 (1924) ; Bd. 98, Nr. 23 und 26 (1931) ; Bd. 99, Nr. 3, 4 und 13 (1932) ; zusam-
mengefasst in dem Büchlein «Graphische Analysis vermittelst des Linienbildes

einer Funktion», Verlag der «SBZ.», 1932. Preis 3 Fr.
ä) K. Klotter : «Ueber die freien Bewegungen einfacher Schwinger mit

nicht gerader Kennlinie». «Ing.-Arch.», VII. Bd., 2. Heft, April 1936, S. 87.

6) Altmann: «Drehfedernde Kupplungen», «ZVDL», Bd. 80, Nr. 9, S. 245

(29. Februar 1936).

Entfernt man ihn nun längs der Geraden um einen kleinen
Betrag aus der Gleichgewichtslage, so wirkt von der Feder her,
gegen die er ausgelenkt wird, sofort eine beträchtliche Rückstellkraft

auf ihn. Im Falle c) handelt es sich um einen Schwinger
mit Spiel, den man etwa so herstellen kann, dass man zwischen
zwei Federn, die in der selben Axe liegen und an ihren äussern
EndeiMDefestigt sind, während sich in der ungespannten Lage
die inneren Enden bis auf den Betrag 2 a nähern, einen Massenpunkt

bringt. Im Spielraum zwischen den beiden Federn bewegt
sich der Punkt frei, während er weiter rechts von der rechten
Feder eine Rückstellkraft nach links, weiter links von der linken
Feder eine sole» nach rechts erfährt. In den Fällen d), e) und
f) haben wir die selben Anordnungen wie in den Fällen a), b)
und c), also den linearen Schwinger, den Schwinger mit
Vorspannung und denjenigen mit Spiel, nur dass jetzt durch geeignete

Anschläge ein Spielraum zwischen den Federn geschaffen,
bezw. der vorhandene Spielraum vergrössert wird.

Man entnimmt deafe-bb. 1, dass in allen sechs Fällen der
Betrag der RüöjEtellkraft folgenden Verlauf hat:

|fc| k0 -j- n2 x für x y a 1

\k\ fc0 — n2 x
\k\=0

In den Fällen a) und b) ist a

m

für x <[ — «.

für \x\ <^ a j
: 0, im Falle c) a

(2)

und im Falle f a ~> —BS- zu setzen, wie dies in Tabelle 1 ver-¦ n2

merkt ist. Die Differentialgleichungen der Bewegung lauten damit :

mx -f- n2 x 4- fc0 0 für x > a

mx -\- n2 x — fc0 0 für x < — a \ (3)

mx 0 für \x\ a

Die Fälle a) f unterscheiden sich in der Wahl von a und
k0. Führt man mit der Substitution

n
u ¦t (4)

die Funktion x (t) in die neue Funktion p (w) über, so hat man
für diese, wenn man Ableitungen nach u mit ' bezeichnet,
folgende Differentialg^chungen :

p " + p — d für p > a \

p" -f p — d für p < — a l (5)
pu L o für |p| < a

n2

Die Werte für fc0, d und a, die man der Abb. 1 entnimmt,
sind in Tabelle 1 für die sechs verschiedenen Fälle zusammengestellt.

Tabelle 1

mit d. (6)

Fall Charakteristikum \ d a

a) Weder Spiel noch Vor¬
spannung 0 0 0

b) Vorspannung >o >o 0

c) Spiel <o <o s5 —
K
n2

— <Z>0

'd) Spiel und Vorspannung 0 0 >o
e) >o >o >o
f) < ° <o >- K 1

n2 — d>0

Ein Blick auf die Gleichungen (5) zeigt, dass sich die Linienbilder

der Schwingungen ausschliesslich aus Punkten, Kreisen
und Kreisevolventen zusammensetzen. Im Folgenden sollen die
Linienbilder der einzelnen Fälle hergestellt und aus ihnen die

Eigenperioden bestimmt werden.
Fall a) : Er entspricht dem harmonischen Schwinger mit der

Periode U 2n (7)

Fall b) : Dieser Fall wurde von Prof. Meissner behandelt
(siehe Fussnote 2). Die Eigenperiode ist

d
U 2 n — 4 aresin

V<M + dr- P'o2

4 arecos
d

V(|Pol + <*)2 + n2
(8)
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Abb. 2 a. Linienbild für Fall c.

Fall c) :
Abb. 2 a zeigt das

Linienbild, in Abb. 2 b
zum Fahrplan
umgezeichnet. p0 und p'0
sind beide positiv
angenommen ; ausserdem

ist p0 >¦ a
gewählt. Es gut also
vorderhand die erste
der Gleichungen (5).
Der Radius des
Linienbildes ist gemäss
Tabelle 1 gleich — d

a, das Linienbild
also der Kreisbogen
P0 P1. In P. hat das
Linienbild eine
gemeinsame Tangente
mit dem Kreis k vom
Radius a um O :

pt a; die dritte der
Gleichungen (5) tritt
in Kraft. Es ist also
fortan^ß" 0, somit
p' konstant gleich p\
und p"' 0. Das
Linienbild der Ableitung

wird damit zum
Kreis vom Radius
q> p< -\- p"' p\ dessen Mittelpunkt wegen p"> 0 mit
dem Koordinatenursprung O zusammenfällt. Dementsprechend
wird das Linienbild zur Evolvente P. P2 P3 an diesen Kreis«^
Im Punkte P3 wird p kleiner als — a; es tritt die zweite der
Gleichungen (5) in Kraft, und das Linienbild wird zum Kreisbogen

P3 P4 vom Radius a. Nun wiederholt sich alles von neuem,
sodass das Linienbild abwechslungsweise aus den Kreisbogen
P0Plt P3Pi,Pl5P1, und den Kreisevolventen PtP2P3, P4P6PG,
P^P&P9, besteht.

Man sieht sofort, dass die Schwingung periodisch ist; Ort
und Geschwindigkeit des Schwingers sind beispielsweise in den
Linienbildpunkten P2 und P8 dieselben. DiSPeriode der Schwingung

ist
V 1st + 4:1p

Aus der Abb. 2 a liest man ab :

a a
V

Gerade

Abb. 2b. Fahrplan für Fall c.
Den Kreisbögen des Linienbildes entsprechen
die Sinusbögen P0 PlF Ps P4
den Evolventen die Geraden
Pj P, Ps, P4 P6 P6

1^1
"

y(|2>ol + <*)2 + n2

(9)

(10)

sodass die Periode endgültig lautet:
U 27T-+-

4a
l/(|Po| + <«2

(11)
-f- P'o2

Diese Formel für U gilt nur dann, wenn p0 > a, die anfängliche

Auslenkung des Schwingers also über das Spiel hinausgeht.

Die Untersuchung des andern Falles erübrigt sich aber aus
folgendem Grunde: Während der Bewegung bleibt die totale
Energie des Schwingers konstant. Bewegungen mit verschiedenen
Anfangsbedingungen, aber mit der gleichen Gesamtenergie
liefern kongruente, lediglich um O verdrehte Linienbilder. Die
Periode der Eigenschwingung hängt somit nicht von den
Anfangsbedingungen einzeln, sondern nur von der Energie des Schwingers
ab. Die am Schluss aufgestellte Formel für die Periode wird durch
Einführung der Energie von den Anfangsbedingungen unabhängig
gemacht werden und damit für beliebige Anfangsbedingungen
gültig sein.

Fall d) :
Abb. 3 zeigt das Linienbild,

das jenem von Fall c)
sehr ähnlich ist und sich
von ihm eigentlich nur
dadurch unterscheidet,
dass die Kreisbogen zu
Punkten entartet sind.
Auch hier sind p0 > a
und p'0 y> 0 gewählt. Das
Linienbild besteht wegen
d 0 anfänglich aus
dem Punkt P0 Pt. Die
Stützgerade dreht sich
solange um P0, bis sie
den Kreis k vom Radius a um O berührt. Da fortan p < a ist,
wird wie im letzten Fall das Linienbild zur Evolvente P1P2 P3 an
den Kreis k' vom Radius \p\\ um O, bis es in P3 eine neue ge-

ß=£

S=*?

Abb. 3. Linienbild für Fall d.

meinsame Tangente mit dem Kreis k besitzt, also wieder zum
Punkt P3 P4 wird usw.

Das Linienbild besteht also abwechslungsweise aus den Punkten
P0 Pt, P3 I P4, P6 P7, und den Evolventen Pj P2 P3.

Auch diese Schwingung ist periodisch und hat die Periode:
U 2n + lip (12)

Aus der Abb. 3 liest man ab:
a a af \P\\

— arcsm
Vpo2 +>o2 ho2 + n2 — «2

— arcsm

Damit wird die Periode:
4a2jr +U

yPo2 + p'*2

B 4 aresin
fPo3 + Po

4a

ypT

a2

- -)- 4arccos

VPo2 + P'o2

VPo

(13)

(14)
P'o2

Fall e) :

Konstruiert man wie
in den letzten Fällen
mittels der Gleichungen
(5) und den Werten der
Tabelle 1 das Linienbild,
so erhält man eine Figur,
wie sie in Abb. 4 dargestellt

ist. Das Linienbild
besteht abwechslungsweise

aus den Kreisbögen

P0Plt PsPit P6P7,
und den Evolventen

P P P P P P
Die Periode der

Eigenschwingung ist
Z7 2« + 4^. (15)
Ferner liest man aus der Figur ab :

a a -i- d
v> -j—; arcsm —

\P\\

Po d

Abb. 4. Linienbild für Fall e.

V 2n +

VciPoi + d>2 + n2
4a

(16)

V(|Po| + d>2 + P'o2— (« + <*)2

— 4 aresin a -f- d

V(|Pol + <*)2 + P'<

4a
l/(|Po| + d)2+ P'0*-(a + d)2

a -\- d
-j- 4arccos

V(N + <*)2 + P'o2
(17)

Fall f) :
Abb. 5 zeigt das

Linienbild für diesen
letzten Fall. Es
besteht abwechslungsweise

aus den Kreisbogen

P0m PsPit
P6P1 ¦ und den

Kreisevolventen
PtP2Ps, PtPbPe, ¦¦¦
Bei Berechnung der
Eigenschwingungsperiode

erhält man
genau die Formeln (15),
(16) und (17). Abb. 5. Linienbild für Fall f.

Zusammenfassung :
Ein Vergleich der Formeln (7), (8), (11), (14) und (17)

zeigt, dass in der letzten Formel (17) alle übrigen enthalten sind
und aus ihr sofort hervorgehen, wenn man die in Tabelle 1

zusammengestellten, für die verschiedenen Kraftgesetze
charakteristischen Werte für a und d in sie einsetzt. Insbesondere erhält
man den von Prof. Meissner angegebenen Wert für die
Eigenperiode des Schwingers mit reiner Vorspannung, wenn man in
(17) a 0 setzt. Wählt man auch noch d -= 0, so erhält mag
die Periode des harmonischen Schwingers.

Wie schon oben angedeutet, hängt die Periode V nicht von
den Anfangsbedingungen einzeln, sondern nur von der
Totalenergie des Schwingers ab. Durch Einführung der Energie soll
nun Formel (17), die nur gilt, wenn die anfängliche Auslenkung
über das Spiel hinausgeht, in einen allgemein gültigen Ausdruck
übergeführt werden:
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Die Energie des Schwingers ist
mxJE fkda

Aus (4) folgt n2
P'o

(18)

(19)

oder, wenn man unter Benützung von (4) und (6) wieder zur
ursprünglichen Veränderlichen, der Zeit, zurückkehrt:

2 — 2

Ferner ist die potentielle Anfangsenergie gleich dem Inhalt
des schraffierten Trapezes in Abb. 6 :

1kdx (k0 + n2\p0\ -f k0 + n2a)

n2

|Po|

-,/— i re a
41/m !— 1' 2»» ft ]/2E

ll

na + fco

1/2 fi

^-(2<ü + |p0| + a) (|p0| - a)

Daraus folgt
(|Pol + d)2 + P'o2— («

(|Poi + <*)2 — (a + d)H (20)

d)2
2B
?t2

(21)

Führt man dies in (17) ein, so hat man für die Eigenperiode
4aw n (a -f d)

U 27t
1/2 E

ian

4 aresin

1/2 E
-f- 4 arecos

]/2 E + n2 (a J- d)2

n(a -)- d)

1/2E + n2 (a -fd)a
(22)

Abb. 6*

I2E + Ina -f «d ^

na 4-

V/fc

i2 S -\-lna + M2
(23)

Aus diesem letzten
Ausdruck, dem man beiläufig
entnimmt, dass sich die Periode
der Schwingung mit wachsender

Energie jener der
harmonischen Schwingung mit gleich
geneigter Charakteristik
nähert, lässt sich bei Kenntnis
des Rückstellkraftgesetzes und
der Schwingungsenergie sofort
die Eigenperiode berechnen.

Contrôle de la qualité d'un béton au moyen de la densité de celui-ci
par J. BOLOMEY, professeur à l'Ecole d'Ingénieurs de Lausanne

La résistance à la compression d'un béton est donnée, avec

une précision suffisante pour les besoins du chantier, par la
formule :

B=-,(C7-E7 — 0,50) K S (1)
qui est une simplification de notre formule générale:

A \2 O
B

2,35

l2l2 K (2)

exécuté, nous en déduisons
de béton:

Dosage en kg/m3:

immédiatement le

Poids du ciment utilisé

par m3

C. P.
C. P.

R Résistance à la compression en kg/cm2.
CIE Rapport du poids du ciment au poids de Feau de gâchage.

xl Densité du béton lors de sa mise en oeuvre.
K Coefficient de résistance, variable avec la qualité du ciment,

le mode et la durée du durcissement. Pour les ciments
suisses actuels K est compris dans les limites siaœntes:

3 jours 7 jours 28 jours
ordinaire K 70 à 100 140 à 170 180 à 250

spécial K 130 à 160 200 à 260 280 à 350

Le coefficient K étant connu, la résistance probable du béton
le sera aussi dès que nous aurons déterminé le rapport C/E,
c'est-à-dire dès que nous connaîtrons le dosage effectif en ciment
et la quantité d'eau de gâchage totale eau retenue par le ballast
humide et eau ajoutée) par m3 de béton.

Détermination du dosage effectif. Le dosage effectif du béton

peut être déterminé exactement, sans perte de temps, en comptant

le nombre de gâchées nécessaires pour exécuter un élément
de l'ouvrage dont le volume est facile à calculer en raison de

sa forme géométrique (sommier, mur coffré, etc.). Connaissant
le nombre de gâchées, le poids du ciment par gâchée, le volume

^Dosage 400//- " 300
r- « ?nn

gss£
^ *^'s

vS. 1

N N^^ ^s iV V
ss

220

Graphique I :

2,30

Densité du béton A0

Eau de gâchage.

Volume de béton exécuté
Le dosage effectif peut aussi être déterminé en mesurant

exactement (par exemple au moyen d'une caisse sans fond posée

sur une surface plane) le volume occupé par une seule gâchée
du beton.

Détermination de la quantité d'eau de gâchage. Nous pouvons
calculer la quantité d'eau de gâchage dès que nous connaissons le

dosage et les densités absolues (vides nuls) du béton, du ciment
et du ballast. En effet, soient:
C, S, E les poids du ciment, du ballast et de Peau en kg/m3

de beton.
c, s, e, v les volumes en litres occupés dans 1 m3 de béton par

le ciment, le ballE^ffl l'eau et les vides.
/}b le poids du m3 de béton au moment du gâchage, vides

nuls, c'est-à-dire v 0.

Jc et Xls les densités absolues du ciment et du ballast. En général
on peut admettre, comme première approximation:

¦4, 3,10 4- 2,65
Nous avons

4 G -\-S + E
1000 c + s + <

O S

~JI~ J

d'où
e + v

+ E- en effet c

Ab — C A S + S
v 0, nous en tirons

C S

f- 1
-H -t -,

- t t_r t7 i
4-' /7 tt 1
i t

T X 1

U 1 -t
-lA -/ /J 1 -TSi*- -/ Jt t t

<sl / -Aéu -f t
$/ / L

,,cSC */ /itfy AgA _/
X A1** / /

s ¦£& Z
/ tf£A A<v

t- ** s' ¦*><-&£

S s- npSqä:
g^ ^ /,/''\ 1

i ^^* ¦**' é.

a-^ 8^S ^i Pia e=*^' ^^^ 3§*S ^'i% g5T
^—¦"*" —-""^

*^""^
— —¦"

2/0 2?0 2,30 2,10

Densité du béton A0

Graphique II : Résistance à la compression du béton.
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