Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 109/110 (1937)

Heft: 9

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Zur Revision der schweiz. Drahtseil-Normen. — Grundsätzliches zur Raumorganisation des Zürcher Tonhalle- und Kongressgebäudes. — Wettbewerb für ein Tonhalle- und Kongress-Gebäude in Zürich. — Strassenbeleuchtung und Unfallhäufigkeit. — Die Triborough Bridge in New York. — Mitteilungen: Spucken und Schäumen der Kessel. Einheitliche Bezeichnung der Schweissnähte in Zeichnungen. Betriebserfahrungen mit Kondensationsanlagen. Storström-Brücke. Turbinen des Beauharnois-

Kraftwerkes. Holzbeton-Verbundbauweise «Zeta». Stroboglow. Mechanisch-elektr. Kraftübertragung bei Dieseltriebwagen. Betonieren bei Frost. Automobil- statt Eisenbahnbetrieb bei den SBB. Metallograph. Ferienkurse an der T. H. Berlin. Hauptversammlung des Deutschen Betonvereins. Gradtagversuche. Intern. Kongress d. Beleucht.-Anwendungen, 14. Intern. Architektenkongress in Paris. — Wettbewerbe: Neubau Kasino Zürichhorn. — Nekrologe: E. Bosshard, — Literatur. — Zur Zürcher Kongresshaus-Frage.

Band 109

Der S. I. A. ist für den Inhalt des redaktionellen Tells seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Zur Revision der schweiz. Drahtseil-Normen

von Ing. RUD. REGER, Brugg

In Nr. 9 von Bd. 108 der «SBZ» hat Prof. M. ten Bosch den heutigen Stand der Drahtseilfrage besprochen und und dabei eine Revision der «VSM-Norm» Nr. 11403 vom Nov. 1928 empfohlen. Im Interesse der Industrien, die Drahtseile für ihre Fabrikate, wie Aufzüge, Kranen, Seilbahnen, Winden u.a.m. verwenden, sowie im Interesse der seilverbrauchenden Unternehmungen und Privaten ist der Vorschlag von Prof. ten Bosch lebhaft zu begrüssen. Zu beachten wird dabei sein, dass die schweizerischen Drahtseilfabriken, speziell auch die Firma Kabelwerke Brugg A.-G. (K.W.B.) seit der Inkraftsetzung der oberwähnten VSM-Norm (1928) nicht untätig geblieben sind, sondern die Qualität der Drahtseile von sich aus ganz erheblich verbessert haben.

Zu diesen bedeutenden Qualitätsverbesserungen gehört die Einführung des patentierten «Tru-Lay»-Verfahrens in die Seilfabrikation, bereits im Jahre 1928, und die Ersetzung der VSM-11403-Seilkonstruktionen durch die haltbareren Spezialausführungen wie Seale, Sealespezial, Warrington und Filler-Wire von 1930 an. Von den oberwähnten Neuerungen und Qualitätsverbesserungen hat der Inlandverbrauch für Drahtseile bereits in grossem Umfange Gebrauch gemacht, was aus nachstehenden Zahlen hervorgeht. In der Schweiz sind, seit der Fabrikationsaufnahme der trulierten Drahtseile im Herbst 1928, bis Ende 1936 bereits mehr als 2,9 Millionen Meter Tru-Lay-Drahtseile fabriziert und geliefert worden. Ganz ähnlich verhält es sich mit den Spezialseilkonstruktionen, die in Brugg schon seit sechs Jahren hergestellt werden. Zur Orientierung sei hier bekannt gegeben, dass hauptsächlich die Aufzugsbaufirmen und die Standund Luftseilbahnen für Personenbeförderung diese Neuerungen der Drahtseilfabrikation verlangen und bestellen. Von den gegenwärtig auf den 56 schweizerischen Personen-Standseilbahnen (mit total 62 Sektionen) laufenden Seilen sind ausgeführt: 36 Drahtseile in gewöhnlicher Machart $=58\,^{\circ}/_{\circ}$ und 26 Drahtseile in Machart Tru-Lay-Brugg =42 $^{0}/_{0}$, total 62 Drahtseile. Schon nahezu die Hälfte sind also, anstatt nach der gewöhnlichen alten Machart, in der neuen spannungsfreien Machart Tru-Lay-Brugg Diese 62 Seile weisen die folgenden verschiedenen Konstruktionen auf, bei denen der moderne Seale-Aufbau bereits im Uebergewicht ist: 27 Drahtseile in Compound- und ähnlicher Konstruktion = 43.5 $^{\circ}/_{\circ}$, 35 Drahtseile in Seale- und ähnlicher Konstruktion = $56,5^{\circ}/_{\circ}$.

Da in dieser Zeitschrift über das «Tru-Lay-Verfahren» noch keine Veröffentlichung erfolgt ist, seien die Grundidee und das

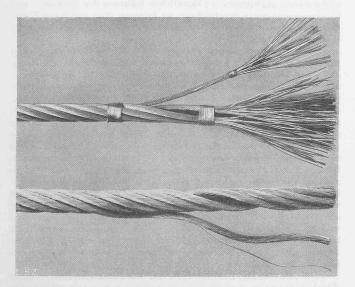


Abb. 1. Oben: Drahtseil 15 mm \oslash , 222×0.7 mm, verzinkter Stahldraht mit 180 bis 200 kg/mm² Bruchfestigkeit, *nicht* vorgeformt. Unten: Das selbe Seil in Machart «Tru-Lay-Brugg». Man erkennt deutlich die Vorformung des Einzeldrahtes und der Litze.

Wesen dieser Machart etwas näher erläutert. Beim Verseilen der Drähte zu Litzen und beim Verseilen der Litzen zu Drahtseilen werden die Stahldrähte auf Torsion beansprucht, trotzdem mit Rückdrehung verseilt wird. Die in einem gewöhnlichen Drahtseil (drallhaltig) von beispielsweise 15 mm Durchmesser mit 222 Drähten von 0,7 mm ⊘ mit 180 ÷ 200 kg/mm² Bruchfestigkeit entstehende Torsionsspannung erreicht einen derart hohen Wert, dass beim Oeffnen des Endbundes der kompakte Seilverband mit grosser Wucht sich in die einzelnen Drähte auflöst (Abb. 1 oben). Beim Biegen solcher Seile erkennt man, dass sie ungelenkig und steif sind, auch wenn eine sehr dünndrähtige Konstruktion gewählt wurde.

Die Beanspruchung der gewöhnlich fabrizierten Drahtseile im Gebrauch setzt sich bekanntlich zusammen aus Zug, Biegung, inneren Reibungswiderständen und Torsionsspannungen, die beim Verseilen entstehen. Eliminiert man die Torsions-Beanspruchung, so wird das gleiche Seil wesentlich biegsamer werden und im Betrieb eine längere Lebensdauer erreichen. Der Erfinder des Tru-Lay-Verfahrens (amerikanisches Grundpatent) hat diese Tatsache erkannt und löste durch seine vorzügliche Idee die Frage der Ausschaltung der beim Verseilen in den Drähten und Litzen entstehenden Torsionsspannungen. «Trulieren» heisst nun die einzelnen Drähte und Litzen beim Verseilen durch Biegen mit einer Beanspruchung, die über der Elastizitätsgrenze liegt, in diejenige Form bringen, die die Drähte und Litzen nach dem Verseilen theoretisch im Drahtseil einnehmen sollen. Drahtseile, die nach diesem Verfahren fabriziert worden sind, besitzen in der Tat keine inneren Materialspannungen, was sich beim Lösen der Endbünde bestätigt, indem die Drähte ihre vorgeformte Lage beibehalten (Abb. 1 unten). Die trulierten Drahtseile sind effektiv viel biegsamer und erreichen nachweisbar eine viel längere Lebensdauer. Im Sprachgebrauch der Drahtseiler spricht man bei Tru-Lay-Seilen von drallfreien Seilen im Gegensatz zu drallhaltigen oder drallarmen Seilen. Drallfrei ist ein Drahtseil, das sich im unbelasteten Zustande nicht dreht; am Boden ausgestreckt ganz gerade, d.h. nicht wellenförmig liegt (Tru-Lay-Seile). Drehungsfrei ist ein Seil, wenn es sich im unbelasteten und belasteten Zustand nicht dreht; drehungsfreie Seile braucht man z.B. bei einsträngigem Betrieb mit freihängender Last (Turmdrehkrane u. dergl.) und für solche Fälle verwenden auch die K.W.B. nicht drallfreie, sondern drehungsfreie Seile in Form von Doppelflachlitzen- und Litzenspiralseilen. Zur Bestätigung der effektiv erzielten wesentlichen Vorteile seien nachstehend drei Beispiele aufgeführt.

1. Eine Aufzugfabrik stellte fest, dass sie seit der Einführung der Tru-Lay-Drahtseile die Schwierigkeiten der Drahtseilfrage als überwunden betrachten könne, und dass sich die Seile auf der ganzen Linie sehr gut bewährt haben. — Ergänzend sei noch beigefügt, dass die K.W.B. bis 1928, d.h. bis zur Einführung der Drahtseile in Machart «Tru-Lay-Brugg» als Kabinen- und Gegengewichtsseile für Aufzüge Drahtseile mit 222 Drähten, entsprechend der V.S.M.-Norm 11403 fabrizierten. Mit dem Uebergang von der gewöhnlichen Seilausführung zur trulierten Machart wurde die Seilkonstruktion von 222 auf 114 Drähte abgeändert. Der Erfolg war, dass die trulierten Drahtseile mit 114 Drähten trotz der Steigerung des Drahtdurchmessers um $33 \div 40\, ^{\scriptscriptstyle 0}/_{\scriptscriptstyle 0}$ und unter gleichen Aufzugsverhältnissen eine viel längere Lebensdauer erreichten. Daraufhin wurde im Frühjahr 1931 noch eine weitere Qualitätsverbesserung der Aufzugseile vorgenommen durch Einführung der Sealekonstruktion in trulierter Machart; die Drahtdicke der Aussendrähte der Sealelitze mit 19 Drähten erhöhte sich dadurch gegenüber den Drähten der Seile mit 222 Drähten, z.B. beim 11 mm Seil, sogar um 70 %.

Als weiteres Beispiel seien nachstehend in graphischer Form (siehe Abb. 2) die bis zur Ausrangierung erreichten Fahrtenzahlen der ersten neun Drahtseile und des Seiles Nr. 10 (Abb. 3) das noch im Betriebe ist, der Personenstandseilbahn Locarno-Madonna del Sasso aufgeführt. Hieraus geht eindeutig die grosse Ueberlegenheit des trulierten Drahtseiles hervor. Dem Leser, der diese Seilbahn nicht kennt, sei noch mitgeteilt, dass ihr Tracé einige S-förmige Kurven aufweist, was für die Haltbarkeit der Drahtseile sehr nachteilig ist. Nachdem das Tru-Lay-Seil Nr. 10 zur Zeit erst eine ganz geringe Zahl von Drahtbrüchen aufweist, verglichen mit denjenigen, mit denen die früheren Seile auf dieser