Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 107/108 (1936)

Heft: 26

Artikel: Dichtende Metallverkleidungen von Staumauern

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-48322

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

(7) bis (9). Wahl der Hülfsfunktion f(x), hier in der Form

$$f(x) \sim 1 - \cos\left(\frac{2\pi}{l}x\right)$$
.

Ihr Wert ist Null an beiden Enden des Intervalls; ebenso verschwindet dort ihre Tangente, in Uebereinstimmung mit den für die Welle selbst geltenden Randbedingungen. Bei der Schwingung n-ten Grades wäre vorteilhaft

$$f(x) \lesssim 1 - \cos\left(\frac{2\pi(n-1)}{l}x\right)$$

zu verwenden. Die Momentlinien (8) ergeben mit dem Kräfteplan (2) den Wert

$$w = \frac{\Sigma \, \theta_i \, f(x)}{\Sigma \, \theta_i}$$

Aus Kräfteplan (5) folgt mit Seilpolygon (9)

$$H_1 v = \sum m_i * f(x)$$

Nach Formel (10) erhält man

$$a = \frac{u}{v} w \qquad \qquad b = -\frac{u}{v}$$

(11) bis (12). Zur Amplitude jedes Trägheitsmomentes wird der Korrekturbetrag $b\,f(x)$ addiert und die Axe um den Betrag a nach (12) verschoben. Man erhält jetzt richtig eine Schwingungsform mit zwei Knoten. Ausgehend von der verbesserten Annahme kann nun die graphische Bestimmung der Eigenfrequenz wie früher erfolgen.

Um die erreichte Annäherung zu prüfen, wurde in die Figur die rechnerisch ermittelte genaue Schwingungsform zweiten Grades dieser Welle eingetragen. Man erkennt, dass bereits eine weitgehende Angleichung stattgefunden hat.

Handelt es sich um Eigenschwingungszahlen von noch höherem Grade, so ist es vorteilhaft, die Orthogonalitätsbedingung dieser Schwingung mit allen Schwingungen niedrigeren Grades aufzustellen, um die ursprüngliche Annahme zu verbessern. Der Rechnungsgang erweitert sich dadurch, bleibt aber im übrigen unverändert.

Dichtende Metallverkleidungen von Staumauern.

Solche finden sich in «L'Energia Elettrica» vom Februar 1936 ausführlich beschrieben, wonach folgendes hier mitgeteilt sei.

Die Staumauer am Lago del Diavolo wurde 1931 erstellt. Ihre Krone liegt auf Kote 2145 m, 2,5 m über HW; die Kronenlänge beträgt 54 m, die Kronenbreite 3 m, der maximale Aufstau 24 m, die benetzte Mauerfläche rd. 800 m². Der fugenlose Mauerkörper ist gebildet durch einen Kern aus Zyklopenmauerwerk mit Steinverkleidung; der Sporn auf der Wasserseite reicht rd. 1 m unter Fundamentsohle. Der Baugrund besteht aus oberflächlich verwittertem Quarzit (scisto quarzitico). Längere Beobachtungen an diesem Bauwerk in einem Voralpental zeigten, dass es auf die Dauer nicht einwandfrei werde bestehen können, sodass es ratsam erschien, mittels einer besonderen Abdichtung das Wasser vom Mauerwerk fernzuhalten und damit die statische Funktion von der Abdichtung zu trennen. Die hierauf ausgeführte Verkleidung besteht aus 2 mm starken Eisenblechen, 2×1 m gross, die untereinander zu 2 m breiten vertikalen Streifen verschweisst sind. Als Material wurde der geringeren Korrosion wegen reines «Armco»-Eisen gewählt. Diese Blechtafeln wurden in die Nuten H-förmiger Befestigungsschienen beidseitig eingeführt und darin mit Hanf und Bleiwolle verstemmt. Die Schienen bestehen aus 3 Flacheisen, wovon 2 Stück 100×10 mm und ein Stück 40 imes 7 mm, die miteinander vernietet sind. Der rückwärtige Teil der Nieten ist verlängert und dient als Ankereisen für die Schienenbefestigung an der Mauer. Am Mauerfuss wurde, nachdem die Bleche bis satt an das Felsprofil anstossend aufgebracht waren, eine 80 cm hohe Betonfüllung vor dem Blech, jedoch mit 8 cm Abstand davon, eingebracht. Diese rd. 8 cm breite Spalte wurde dann mit einem bitumengetränkten Hanfstrick verstemmt und hierauf mit Bitumen auf rd. 50 cm Höhe vergossen; der verbleibende obere Teil der Spalte ist ausbetoniert. Zahlreiche Bohrungen verbinden den Raum zwischen Verkleidung und Mauer mit den Drainageleitungen. Die Wasserseite der Dichtungsschürze erhielt einen Bitumenanstrich. Die Sickerverluste betragen heute 1,13 l/sec. Beim Bau wurden keine Zementinjektionen ausgeführt; es ist daher anzunehmen, dass dieses Sickerwasser seinen Weg durch den Fels der Talflanken findet. Die Erfahrung hat seit dem Bestand der Verkleidung gezeigt, dass infolge der kleinen, unvermeidlichen Ausbeulungen in den Blechen die Deformationen der Mauer keine Spannungen in der Verkleidung zur Folge haben. - Diese kleine erste Abdichtung dieser Art war zugleich als Versuch für eine grössere Ausführung am

Lago del Gabiet gedacht. Die bogenförmige Mauerkrone ist bei 12,5 m Pfeilhöhe 240 m lang und liegt 2378 m ü. M. (der

Wasserspiegel 2375 m). Die Mauer hat Schwergewichtsprofil und weist rd. 4800 m² wasserseitige Mauerfläche auf; sie ist auf dichten Serpentinfels gegründet. Das Mauerwerk besteht aus Kalksteinen in Zementmörtel, die Verkleidungen aus Quadern mit 2 bis 3 cm starken Fugen, die mit Zementmörtel ausgestrichen sind. Die Mauer ist mit senkrechten Drainagesträngen und mit Kontrollgängen versehen. Während der Füllung des Beckens im Jahre 1922 zeigten sich starke Sickerungen, die durch Drainagen abflossen. Bei vollem Stau wurden 275 1/sec gemessen. Wiederholte Abdichtungsarbeiten waren nur für kurze Zeit und nur teilweise erfolgreich: Gunitverkleidung mit wiederholten Siderosthen-Anstrichen, Zementinjektionen in Fundamente und übriges Mauerwerk. 1933 wurde auf Grund der Erfahrungen am Lago del Diavolo beschlossen, hier eine ähnliche Verkleidung anzubringen. Die Befestigung der Blechtafeln wurde abgeändert, um einen Anstrich auf der Mauerseite der Verkleidung zu ermöglichen. Die Befestigungsschienen bestehen aus Grundund Deckleiste, die nach Einbringen der 2 × 11 m grossen, auf einem besonderen Arbeitsplatz aus Blechen 2 x 1 m verschweissten und mit Anstrich versehenen Tafeln miteinander verschraubt wurden, und zwar mittels eines in der Grundschiene verschweissten Schraubenbolzens und einer Blindmutter mit Eisen- und Bleiunterlagscheiben, um den Zutritt des Wassers zum Gewinde zu verhindern. Nach Anbringen der Deckleiste wurde die Nut mit gefettetem Hanf und Bleiwolle verstemmt. Die Sickerverluste der Mauer betragen 0,2 1/sec. Die Verkleidung wiegt 58 kg/m² und kostete 252 Lire/m², Gerüste und Nebenarbeiten inbegriffen, gegen 30 kg/m^2 und 123 Lire/ m^2 am Lago del Diavolo.

Trockenmauerdamm im Khram-Fluss, Georgien-Transkaukasien. Durch den im Endzustand 35 m hohen, vorläufig bis 28 m Höhe in Ausführung begriffenen Damm wird auf 1500 m ü. M. ein Staubecken von 500 Mill. m³ geschaffen. Der Dammkörper besteht aus Trockenmauerwerk. Er ist mit 6 mm starken Blechtafeln 6105×2560 mm abgedichtet. Die Tafeln werden mittels Montagebolzen 5/8" zusammengebaut und hernach verschweisst. Die Horizontalfugen sind einfach 60 mm breit überlappt, während bei den Fugen in der Fallinie zwei Typen miteinander abwechseln. Der eine Typ ist Dilatationsfuge, sie wird gebildet durch Aufbiegen der Tafelränder und Verschweissen mit einer Flacheiseneinlage; der andere Typ dient der Verankerung, die Blechtafeln werden an U-Eisen angeschweisst. Diese U-Eisen werden in Abständen von 2,5 m mittels beweglicher Anker von 3/4" Durchmesser befestigt. Eine aufgeschweisste Gusstahlkappe verhindert den Wasserzutritt zu Schraube und Anker. Um eine absolute und dauerhafte Abdichtung zu erzielen, wird das Verschweissen sämtlicher Montagebolzen — Mutter-Blech und Mutter-Bolzen — vorgesehen (warum nicht erst die Mutter entfernen zwecks Wiederverwendung und den Bolzen mit dem Blech verschweissen?). Die Abdichtung am Fuss des Dammes erfolgt durch Vergiessen mit Asphalt. Die Materialfrage, Armco-Eisen oder Kupferstahl, ist noch nicht endgültig entschieden. Ein Verputz auf der Wasserseite des Dammes ermöglicht glattes Aufliegen der Verkleidung. Die Kosten sollen etwa 120 Lire/m² betragen.

Die Konstruktion von Sonnenuhren.

Von Ing. A. STEINBRÜCHEL, Zürich.

Bei einem Rundgang durch altertümliche Städte und Dörfer begegnet man öfters kunstvoll ausgeführten, malerischen Sonnenuhren. Man macht sich dabei unwillkürlich Gedanken über unsere heutige phantasielose Zeit, die nur noch für Zweckbauten Verständnis zu haben scheint und allen Zierrat verdammt. Es wäre sehr zu wünschen, dass Architekten und Bauherren die lange Zeit vernachlässigte und fast in Vergessenheit geratene Sonnenuhr wieder zu Ehren ziehen würden; manches Gebäude könnte durch Anbringen einer Sonnenuhr nur gewinnen.

Der architektonische Schmuck ist aber nicht das Einzige, das sich zugunsten der Sonnenuhr anführen lässt. Sie hat auch erzieherischen Wert; sie regt zum Denken an, indem sie an die Grundlagen unserer Zeitmessung erinnert. Der Einwand, den man etwa erheben könnte, dass die Sonnenuhr die Zeit nicht richtig angebe, weil wir jetzt nach Mitteleuropäischer Zeit (M. E. Z.) rechnen, ist hinfällig, denn man kann bei der Konstruktion dem Zeitunterschied zwischen M. E. Z. und Ortszeit leicht Rechnung tragen, sodass dann an der Sonnenzeit nur noch die unter dem Namen «Zeitgleichung» allgemein bekannte Korrektion anzubringen ist.

Es sollen nun kurz die astronomischen Grundlagen, auf denen die Konstruktion einer Sonnenuhr beruht, besprochen werden.

Die Sonne, die unsere Tageseinteilung bestimmt, bewegt sich bekanntlich infolge der elliptischen Bahn der Erde und der Schiefe