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Zur Schalentheorie.
Von Dr. sc. techn. F. SCHULTZ-GRUNOW, Göttingen.

Durch die Entwicklung der Näherungstheorie für axensymme-
trische Schalen mit nicht zu flachen Rändern unter axensymme-
trischer Randbelastung ohne axiale Komponente durch Bauers-
feld-GecTcelerl) und Meissner*) wurde die schon lange als
notwendig empfundene einfache Festigkeitsberechnung der am
häufigsten vorkommenden schalenförmigen Konstrukticnselemente
ermöglicht. Für die praktische Anwendung liegt ein Nachteil
der Theorie aber in ihrer Ableitung aus den Ergebnissen der
exakten Schalentheorie, sodass ihr Verständnis ungleich höhere
Kenntnisse erfordert als die eigentliche Festigkeitsberechnung,
die nicht schwieriger ist, als die Berechnung einfacher Platten.
Diesem Mangel begegnet eine von Steuermann3) angegebene
Ableitung, die die Näherungstheorie auf die elementare
Balkenbiegelehre zurückführt. Hier soll dargelegt werden, wie diese
Ableitung aus den exakten Beziehungen hervorgeht, um einen
Einblick in den Näherungsgrad der Ableitung und in ihren
Zusammenhang mit der exakten Theorie zu geben; denn erst dann
erfüllt die angenäherte Ableitung ihren Zweck als Vorstufe für
das Verständnis der umfassenderen exakten Ableitung. Darüber
hinaus wird ein besserer Einblick in den räumlichen Spannungszustand

einer Schale verschafft, als ihn die formale Ableitung
der exakten Theorie zu geben vermag, ferner ergeben sich
Aussagen über die Grenzen des Anwendungsbereiches der Näherungstheorie.

Abb. 1 zeigt den Meridianschnitt einer axensymmetrischen
Schale, die durch Randkräfte ohne axiale Komponente und
Momente mit den Beträgen T0, G0 pro Längeneinheit des Randes
belastet ist. Wie in der exakten Theorie werde kleine Wandstärke

2 h vorausgesetzt. Die Verformung des Meridians sei
gekennzeichnet durch den Biegewinkel &, die Durchbiegung u senkrecht

zum Meridian und die Verschiebung v in Richtung der
Meridiantangente. Die senkrecht zur Schalenaxe stehende
Komponente w von u und v ist die Veränderung des Ringhalbmessers

r infolge der Verformung:
w — u sin a -\- v cos a

Daher die spezifische Ringdehnung
w u v

+ -T5-ctga (1)r
mit R,

R, | R2
Ctgtt

2. Hauptkrümmungsradius. Ferner gilt

# M' + v
~R~, (2)

von & lautet 9-v : da $-v der Winkel ist, den der Krttm-

()' =r Ableitung nach der Meridianlänge x. Der zweite Teilbetrag
v

mungshalbmesser Rx eines festgehaltenen Meridianpunktes bei
dessen Verschiebung v beschreibt. Der erste Teilbetrag ist 9-u W
aus gleichen Gründen wie am geraden Balken.

Durch zwei benachbarte Meridianebenen werde nun ein Streifen
aus der Schale herausgeschnitten (Abb. 2) und so belastet,

dass er die gleiche Verformung erfährt wie im Verband der
Schale. Um dies zu erreichen, wird man auch die Schnittflächen
des Streifens belasten müssen mit Zugspannungen at, deren
Resultierende pro Längeneinheit der Schnittfläche die Schnittkraft

») J. Oeckeler, Forsch. Arb. Ing.-Wes. (1926), Heft 276.
2) E. Meissner, Stodola-Festschrift, S. 414, Zürich 1929.
») E. Steuermann, Bauingenieur, Bd. 14 (1938), S. 285.

S

Abb seh

T2 2 h as ist, und mit Biegespannungen ob2, welche das resul-
_ 2h"-tierende Schnittmoment ff3 —-— ob 2 pro Längeneinheit
ergeben (B Biegung)

Axensymmetrie. Es ist a.

aber nicht mit Schubspannungen wegen der
wE (Index 2 bedeutet Ringspannung)

wenn die Quer-Kontraktion v at einer vorläufig noch nicht
bekannten, in Meridianrichtung wirkenden Zugspannung o, (Index

1 bedeutet Meridianspannung) vernachlässigt wird ; denn es
ist ja am Rande (T1)0 (2h<y1)0 cosa0To (Abb. 1), wo T, die
Resultierende von o", pro Längeneinheit des Schnittes bedeutet ; es
ist also o\ an nicht zu flachen Rändern klein. Ferner sei
angenommen, dass* wie am Balken Dehnung klein gegen Durchbiegung

ist, wodurch auch die zweiten Glieder in (1) und (2)
vernachlässigbar sind. Man kann daher schreiben:

_ uat= - E-— (3)
Xf/n

# W (4)
Für die an den Schnittflächen des Streifens wirkenden

Biegemomente mit dem Betrage G„ pro Längeneinheit der Schnittfläche
lässt sich ebenfalls eine Beziehung zur Verformung angeben. Es
besteht die Bedingung, dass die Schnittflächen des Streifens auch
nach der Verformung in Meridianebenen liegen müssen, denn
andernfalls würde der Zusammenhang des Streifens mit dem
übrigen Kegelteil während der Verformung nicht gewahrt bleiben.

Wie Abb. 2 zeigt, bilden die Seitenlinien eines Streifenquerschnittes

den Winkel d y miteinander. Dagegen bilden sie in einem
Schnitt, der um den Biegewinkel & gegen den Querschnitt
verdreht ist und mit diesem die Sehne der Mittellinie gemeinsam
hat, den Winkel dy".

Rtdy
Rt< '

denn die Länge der Sehne ist in beiden Schnitten die gleiche:
Rtdy Rs'dy', und R3 ist der Krümmungshalbmesser der
Mittellinie des Querschnitts, Rs' desgleichen des verdrehten Schnittes.
An Hand von Abb. 1 findet man die geometrische Beziehung

R.' cos & -j- ctg a sm#.
R*1

Hier kann wegen der Kleinheit von & : cos-9- 1, sinfl- &
gesetzt werden. Somit

-^- l+5.ctga
und daraus die Krümmungsänderung des Querschnittes bei seiner
Verdrehung

1 1
(5)

dl

„ ctg«
R3' Rs

in Uebereinstimmung mit der exakten Schalentheorie. Die
Gleichung sagt aus, welche Krümmungsänderung ein Streifenquerschnitt

bei einer Verbiegung 5- erfahren muss, damit der
Zusammenhang zwischen Streifen und übrigem Teil der Schale während

der Verformung gewahrt bleibt. Diese Krümmungsänderung
muss durch die Ringbiegemomente Gt hervorgebracht werden.
Da nun auch die exakte Schalentheorie lineares Anwachsen der
Biegespannungen eines Querschnittes voraussetzt, kann der Streifen

als Balken angesehen werden, der in zwei senkrecht
zueinander stehenden Hauptrichtungen, der Längs- und Breiten-
Richtung, gekrümmt ist und in diesen verbogen wird. Es lässt
sich daher die Balkenbiegelehre anwenden, wobei man in ihrer
Ableitung die Querkontraktion zu berücksichtigen hat.

dyAbb. 2, Herausschneiden
des Streifens
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Bezeichnet C1 das Meridianbiegemoment (Abb. 2), d. h. die
Resultierende der in Meridianrichtungwirkenden Biegespannungen
OBt pro Längeneinheit des Schnittes, so hat man

vG.
JE

ff» — vG,
JE

mit dem Trägheitsmoment

J

ebenfalls pro Längeneinheit.

stärke vorausgesetzt. Auch

1

1

Ri

1

i
(6 a)

(6b)

2h*

Für die Folge sei konstante Wand-
1

~Rl
die Meridiankrümmungs-

da

(7a)

gilt. Mit (2) erhält man

Aenderung infolge der Verbiegung, lässt sich durch 5- ausdrücken.
Es besteht die Beziehung11 d&

B/ —
~R^ — dx

1 da ,1 da + d&
__ _— und —— ~
.ßj dx JBj' dx

die exakte Beziehung
1 1

XV. ' R.
Mit der angenäherten Gleichung (4) wird aus (7 a)

1 1

i?1--ßT M"

d. h. der Streifen erfährt angenähert die gleiche Krümmungsänderung

wie ein gerader Balken. Bekanntlich lässt auch die Biegelehre

schwach gekrümmter Balken diese Näherung zu. Die letzte
Gleichung und (4), (5) in (6) eingeführt, ergibt

2 Eh*

ii) u" (7b)

(7c)

ff,

ff.=
(1 — v*)
2 Eh*

¦ß,
W ctg a

w
ctg a + v u'

(8a)

(8b)
(1 -v1

Da das zweite Glied in (8 a) das Produkt der kleinen Grössen

v, ctg a enthält, wird es ebenfalls vernachlässigt. Die Gleichung
wird also in der Form

2Eh*
ff. (8 c)

3 (1 - v*)
benutzt. Es ist bemerkenswert, dass nach dieser Vernachlässigung

sich das Vorhandensein von Gs nur in dem Faktor 1 — v*

auf ff, auswirkt. Wie man leicht feststellt, stellt (8 c) die
Biegung des geraden Balkens bei verhinderter Querkontraktion dar.

Nachdem die bisherigen Betrachtungen zunächst zu den exakten

Formänderungsbeziehungen geführt haben, an welchen dann
planmässig Vernachlässigungen vorgenommen wurden, sollen
die Vorstellungen der Balkenbiegelehre auch insofern beibehalten
werden, als festgestellt wird, wie der Streifen abgestützt ist. Als
seine Belastung werden die an seinen Schnittflächen wirkenden
Biegemomente G, und die Randbelastung ff0, T0 angesehen. Man
kann dann die an den Schnittflächen wirkenden Kräfte T. als
Auflagekräfte auffassen aus folgender Ueberlegung heraus:

Aus dem Schnitt senkrecht zur
Schalenaxe in Abb. 3 geht hervor,
dass die Schnittkräfte T, eine in die
mittlere Meridian-Ebene des Streifens
fallende Komponente

H Ttdß
haben. Diese Komponente werde pro
Länge dx in die Komponenten W in
Meridianrichtung und V senkrecht
dazu zerlegt. Es ist

W Hdx cos a, V H dx sin a.
Da W einen Zuwachs zur Zugkraft
Ttrdß im Streifenquerschnitt liefert,
hat man

— dßd(T^r) W
und nach Einführen der vorangehenden

Beziehungen

dx \ cos a
(9)

dß

Abb. 3. Zerlegung
der SchniHkrafl T2

Die Komponente V kann als Resultierende eines
Streifenfläche wirkenden Druckes p aufgefasst werden.

— prdßdx Hsiriu.dx
T.

p — B,

auf die
Es wird

(10)

Das Minuszeichen besagt, dass bei einer Zugkraft T, eine Druckkraft

T, auftritt und ein Druck p herrscht, der der Durchbiegung

u entgegenwirkt. Da ausserdem p linear von u abhängt,
kann man eine weitgehende Aehnltchkeit zwischen p und dem

Bettungsdruck eines elastisch gebetteten Balkens feststellens) ;

a) E. Steuermann, 1. c

ferner stimmt (8 c) bis auf den Faktor 1 — v* mit der entsprechenden

Gleichung am elastisch gebetteten Balken überein.
Vernachlässigt man noch die Veränderlichkeit der Streifenbreite

b rdß Rt sinadß (Abb. 3), indem man b (Rt)„
sina0dß setzt, wo Index 0 Randwerte kennzeichnet, so lässt sich
daher die elementare Biegelehre des elastisch gebetteten Balkens
anwenden. Sie liefert die Gleichgewichtsbedingungen

dN
-V (Ha)dx

dGl
dx N. (IIb)

mit N Resultierende der Schubspannungen t pro Längeneinheit
eines Streifenquerschnittes N r 2 h Diese Bedingungen ergeben

d* ff,
— V-

Mit (8 c), (10),
dx*

(3) erhält man
_d?w_ _ 3
dxi (ßj)0sÄ2

welche Differentialgleichung sich unter der Voraussetzung
konstanter Wandstärke nur in dem konstanten Faktor von der des
elastisch gebetteten Balkens unterscheidet. Ihre Lösung lautet

u A1 kx cos(kx -f- fj) -f. Atekx cos(kx + e.) (12a)

mit k */. (1 — v»)
(B,)0Ä

Die Lösung stimmt überein mit jener, die in der Näherungstheorie
durch Vernachlässigung von Gliedern in den exakten
Differentialgleichungen der Schalentheorie erhalten wird. Ausserdem
erhält man die Lösung auch aus der exakten Kegeltheorie durch
Grenzübergang auf spitze Kegel4), ferner stimmt diese Lösung
für o 90 ° mit der exakten Zylindertheorie überein, was als ein
Beweis für die Exaktheit der Ableitung gelten darf und endlich
ist auch die asymptotische Lösung der Ringschale in erster
Näherung mit (12) identisch, wie man folgendermassen zeigen
kann:

Nach Meissner 1. c. lautet die asymptotische Lösung für die
Ringschale

N

R, (J^+sin«)
n Cf + l

Integrationskonstanten, a Abstand des Mittel-Mit A,
punktes des Meridiankreises von der Rotationsaxe,

X* 3 (1 v*) -± v* cry 3 (1
h*

v*) und a)
h* in

Hier den Integranden in eine Taylor-Reihe nach dem vom Rande
aus gemessenen Winkel a0 — a y> entwickelt, ergibt in erster
Näherung das Integral

Wo

Hiermitn-n (1 - v*)
RiV

l(Rt)oh
Führt man hier den Ausdruck (12 a) für k ein und ô Rt y
vom Rande aus gezählte Meridianlänge, so erhält man

kâ.

Für die erste Näherimg können auch in dem ersten Faktor der
asymptotischen Lösung die Randwerte (Ri)l), sin a0 eingeführt
und dieser Faktor in die Integrationskonstante einbezogen werden.

Dann lautet die asymptotische Lösung in erster Näherung
— fc<5

N Ae cos (kâ -f- s).
Da nach (IIa), (10), (3) und wegen T3 2hai:

dN 2hE
dx Rt*

ist, erhält man, wenn wiederum R2 (B,)0 gesetzt wird und
konstante Faktoren und Glieder in die Integrationskonstanten
einbezogen werden, durch Integration den gleichen Ausdruck für u:

— k6
u Ae cos (ko -f- s)

der in der Tat mit dem weiter unten angegebenen Ausdruck
(12b), der durch Einführen von 6 aus der Lösung (12a)
hervorgeht, übereinstimmt.

Diese Identitäten sind ein Beweis für die Allgemeingültigkeit
von (12). Bereits in der Ableitung wurde ja keine spezielle
Meridianform vorausgesetzt. Die anschauliche Erklärung, (12)
bedeute nichts anderes als den Ersatz der vorliegenden Schale durch

'¦) Meissner, 1. c
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die ihren Rand tangierende Kegelschale, erweist sich nun als zu
speziell.

Der erste Teil der Lösung klingt mit zunehmendem, der
zweite mit abnehmendem x ab. Da der Spannungszustand vom
Rande aus nur abklingen kann, gilt bekanntlich der erste Teil
der Lösung an dem Rande, von dem aus x wächst, und der
zweite TeU am anderen Rande, von welchem aus x abnimmt5).
Die Integrationskonstanten A, e bestimmen sich aus den
Randlasten ff0, T0. Meist liegen die beiden Ränder so weit auseinander,

und ist die Grösse fc so gross, dass sich die von jedem Rande
aus abklingenden Spannungen nicht überlagern. Man kann daher
in diesen Fällen den Spannungszustand jedes Randes für sich
ermitteln ohne Rücksicht auf die Bedingungen am anderen Rande.
Es ist hierfür zweckmässig, die von jedem Rande aus positiv
gezählte Meridianlänge ô x0 — x, bezw. ö x — x0 einzuführen

(Abb. 1). Man hat dann
m Ae~ks cos (fed" + s) (12b)

für jeden Rand.
Um Uebereinstimmung mit früheren Ableitungen zu erhalten,

setzen wir die neuen Konstanten C A E, xp e -\—-j— ein:

ks cos j fc 6 + xp — (12 c)
C

u — _E \ 4
welche Beziehung in (3), (8b, c), (9), (10), (IIa) eingeführt
die bekannten Bestimmungsformeln für den Spannungszustand
ergibt, die hier nicht wiederholt werden sollen.

Hiermit ist die Ableitung erreicht. Nun sollen die einzelnen
Vernachlässigungen abgeschätzt werden, welche in (3), (4), (7c),
(8 c) zugelassen worden sind, ferner auch die Vernachlässigung
der Veränderlichkeit der Streifenbreite. Jene Vernachlässigungen
sind gestattet, wenn folgende Bedingungen für die Absolutwerte
erfüllt sind:

v<sx << a2 (13a)
«ctga «ti (13b)
v
R, •«»'
(*)'< <[ u"

R,
u' ctg a <[ <^ W

(13 c)

(13d)

(13e)

Da (1) die spezifische Ringdehnung darstellt, hat man die
Beziehung

1 f u v \(*,_„*.) -(__-£-ctg«).2h E,

mit welcher sich v an Hand von (3), (9) aus u errechnen lässt.
Man erhält

-lud:.
JR

Um zu einer ersten Aussage über Genauigkeitsgrad und
Anwendbarkeit der Näherungstheorie zu gelangen, werden in (13)
für Rt, R2, ctg a wieder die Randwerte eingeführt. Für die
Funktion u, deren Abgeleitete und Integrale, werden die jeweilig

auftretenden Maximalwerte eingesetzt. Um sie zu bestimmen,

ist die Konstante xp festzulegen. Es sind nur die Werte xp

Tt 71 7t
und xp -q— von Interesse. Denn xp —j— entspricht4 2

Fall, dass nur eine Randkraft T,

dem

aber kein Randmoment wirkt,
und ip -=- dem entgegengesetzten Fall; aus diesen beiden Fällen

kann jeder Belastungsfall zusammengesetzt werden"). Siebt
7t

man die schärfsten Bedingungen, die man für ip _— und xp

erhält, aus, so ergibt sich mit v 0,3

h
~R~, ç 1,77

ctg a0 q 1,95
(jea)0

h

(14 a)

(14 b)

Statt des Ungleichheitszeichens ist hier der Faktor ç eingeführt.
100 p bedeuten die zulässigen Fehlerprozente. (14a) ergab sich

7t
—r-. Alle übrigen Bedin-aus (13d), (14b) aus (13e) für xp

gungen (14) ebenso alle für ¦ sind in diesen beiden

enthalten. Schliesslich 1st noch der Einfluss der Veränderlichkeit
der Streifenbreite abzuschätzen. Das kann in der Weise geschehen,

5) Dieses eigentümliche oszillierende Abklingen findet demnach seine
Erklärung darin, dass sich der betrachtete Streifen wie ein elastisch
gebetteter Balken verhält.

°) F. Schultz-Grunow, Ing.-Arch., Bd. IV (1933), S. 645.

dass man die angegebene Ableitung ohne diese Vernachlässigung
durchführt, so zu einer genaueren Differentialgleichung gelangt
und den Unterschied zwischen ihrer Lösung und (12) feststellt.
Die genauere Differentialgleichung ist nur für spezielle Meridianformen

lösbar. Von besonderem Interesse sind der gerade und
der kreisförmige Meridian, da sie in der beanspruchten Randzone
gute Annäherungen an die wirkliche Meridianform darstellen.
Anstatt die bezüglichen Lösungen herzuleiten, kann auch der
Unterschied zwischen (12) und den asymptotischen Lösungen
der exakten Theorie für Kegel- und Ringschale festgestellt werden.

Der Vergleich mit der Kegelschale ist am einfachsten
durchführbar :

Der exakten Kegeltheorie ') entnimmt man die asymptotische,
d. h. die für X > 20 gültige Lösung NR2 Cs Js + C4 Ji mit

+ 2f2"

X-L-
tc]/2X

y~2x sin KV

1/iTär-X

- •/.«) +

tg«»

7s«) +
-V2X.

V*)
h

und x von der Kegelspitze aus gezählte Meridianlänge. Durch
Vernachlässigung der zweiten Glieder der Lösung und mit den
angenäherten Ausdrücken

ô
y* 1/5 v.

y*»
Y* 4K

(x0 Meridianlänge bis Rand) geht diese Lösung über in die
Form (12 b), worauf bereits hingewiesen wurde. Die Vernachlässigung

der zweiten Glieder von <7S, Jé setzt
4 — Vt 1

y^ 2y2 y2^
oder, wenn der Ausdruck für X, ferner für die erste Abschätzung

x x0 (R2)0tga0 eingeführt wird,

¦^»«„«l.S-^JL
voraus. Die Bedingung ist etwas schwächer als (14 b), sagt im
Uebrigen aber das Gleiche aus.

Die beiden angenäherten Ausdrücke sind berechtigt, wenn

Vi~»Va^=
oder umgeformt

4 *, » d0

ist, wo 60 die Breite der beanspruchten Randzone bedeuten soll.
Da aus (12) hervorgeht, dass zwei Werte von u, die den Ab-

voneinander haben, sich wiestand Ja k e* 23,14
0,043 verhalten, die zweite Amplitude also nur 4,3 °/0 der ersten
beträgt, kann

- ycR,j0ir«J0=lr 3,5

gesetzt werden. In die letzte Bedingung eingeführt, hat man

ctg a„ — p 1.1 <«.).
h (15)

wenn für R2 wieder der Randwert eingeführt wird. Es ist wieder
die selbe Bedingung, nur noch etwas schärfer.

Eine Aussage über den Einfluss der Meridiankrümmung auf
die Veränderlichkeit der Streifenbreite erhält man, wenn für die
oben erwähnte asymptotische Lösung der Ringschale die
Bedingung festgestellt wird, unter welcher das zweite Glied in der

Reihenentwicklung von / - d <p vernachlässigt werden konn-
<Pa

R„, a, a lautet, wenn fi gesetzt wird,

sin a

te. Die geometrische Beziehung (s. Meissner, 1. c.) zwischen Rl
a

Rt [/ ii -+- sin a
für den Fall B, < R3, auf den sich die asymptotische Lösung
beschränkt. Die ersten beiden Glieder der Taylor-Entwicklung
nach dem Winkel y «„ — a lauten

jyï<-]/=ï; flC
4s (fi -j- s)

mit s sin an, c cos «„ Es muss sonach
uexp «14fi (,« -f- s)

') F. Dubois: Die Festigkeit der Kegelschale. Diss. Zürich 1917, S.38 ff.
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Abb. 13. Scheiteldurchbiegung, mittlere Lufttemperatur und Seestand 1932 bis 1934. Die Deformationen werden auf die Fundamentkote 1804 bezogen.

sein. Für xp wird der Wert ip0, welcher der Breite â0 der

beanspruchten Randzone entspricht, eingeführt. Es ist xp0 -^-. Mit
Rx

dem oben gefundenen Wert S0 3,5 V(R2)0h und durch Einführen

von p wird
a ]/(R2)0h

ctg a0 1,1 p (-J-sin«0)R. R.

Da nach der oben angegebenen geometrischen Beziehung

a_ _ I (g8)0
R, \ R,

ist, ergibt sich

«i \ V(Ä,)»Ä
(«.)o/ R,

ctg a0 1,1 p (16)

Für vorgegebene Verhältnisse * io' \%iU ctg a0 geben so-

70° gegeben.

mit die Bedingungen (14 a), (15), (16) ein Bild von der Grössenordnung

der in der angenäherten Ableitung vernachlässigten
Glieder und damit auch eine erste Abschätzung von der Genauigkeit

der näherungsweisen Berechnung in 100 p Prozenten. Z. B.

-(*¦). -«"¦(¦*
Es ergibt sich aus (14a) 100 p l0/0,

aus (15)
100 0 3,3%, mmi 0 i z 3 4mm

aus (16)
100 p 3,3 «/„,

d.h. eine Ungenauig-
keit der Rechnung
von 3,3 »/„.

Der Vollständigkeit
halber sei die

zweite Möglichkeit
einer Abschätzung
noch erwähnt, die
darin besteht, dass
man die Lösung (12)
in die von Bauers-
feld-Geckeler
vernachlässigten Glieder

der exakten
Differentialgleichungen
der Schalentheorie
einführt und dann
ihre Grössenordnung
feststellt.

Die Spitallammsperre der Kraftwerke Oberhasli.
Von H. JUILiLARD, beratender Ingenieur, Bern. (Schluss von S. 258.)

f) Temperaturmessungen.
Die Thermometeranlage der Spitallammsperre sollte in erster

Linie über die Temperatur des Betons während der Bauperiode
Auskunft geben. Auf Grund von bei andern Sperrenbauten,
namentlich bei der Arrowrock-Sperre U.S.A. (1915) gemachten
Beobachtungen war die grosse Bedeutung der Erhöhimg der
Betontemperatur zufolge des Abbindens des Zementes bekannt.
Bei der Spitallammsperre bot die genaue Verfolgung der
thermischen Vergänge nicht nur, wie bei andern Mauern,
wissenschaftliches Interesse, sondern sie war eine Notwendigkeit, um
die Ausfüllung der Baufugen zum zweckmässigsten Zeitpunkt
vornehmen zu können.

Die 63 installierten Thermometer sind in einem Sektor von
30 m Breite zwischen dem Sperrenscheitel und der Baufuge 2 a
(Abb. 1) gleichmässig verteilt. Für die Projektierung dieser
Anlage Hessen sich die KWO durch Prof. P. Joye in Freiburg
beraten, der die Montage und die Inbetriebsetzung der einzelnen
Thermometer, sowie die notwendigen Revisionen direkt durch
seinen Spezialisten besorgen liess.

Während der Bauzeit sind zwei Daten besonders interessant.
Einerseits die maximal erreichte Betontemperatur und anderseits
die bis zum Fugenschluss erzielte Abkühlung. Die höchsten
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Abb. 16. Scheiteldurchbiegung (voll : Pendel, gestrichelt : Klinometerstab) und Mauertemperaturen 1932.


	Zur Schalentheorie

