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Nr. 24

Zur Schalentheorie.
Von Dr. sc. techn. F. SCHULTZ-GRUNOW, Gottingen.

Durch die Entwicklung der Ndherungstheorie fiir axensymme-
trische Schalen mit nicht zu flachen Réndern unter axensymme-
trischer Randbelastung ohne axiale Komponente durch Bauers-
feld-Geckeler ') und Meissner?) wurde die schon lange als not-
wendig empfundene einfache Festigkeitsberechnung der am hiu-
figsten vorkommenden schalenférmigen Konstrukticnselemente
ermoglicht. Fir die praktische Anwendung liegt ein Nachteil
der Theorie aber in ihrer Ableitung aus den Ergebnissen der
exakten Schalentheorie, scdass ihr Verstidndnis ungleich hohere
Kenntnisse erfordert als die eigentliche Festigkeitsberechnung,
die nicht schwieriger ist, als die Berechnung einfacher Platten.
Diesem Mangel begegnet eine von Steuermann?) angegebene
Ableitung, die die Ndherungstheorie auf die elementare Balken-
biegelehre zuriickfiihrt. Hier soll dargelegt werden, wie diese
Ableitung aus den exakten Beziehungen hervorgeht, um einen
Einblick in den N#herungsgrad der Ableitung und in ihren Zu-
sammenhang mit der exakten Theorie zu geben; denn erst dann
erfiillt die angenédherte Ableitung ihren Zweck als Vorstufe fiir
das Verstédndnis der umfassenderen exakten Ableitung. Dariiber
hinaus wird ein besserer Einblick in den rdumlichen Spannungs-
zustand einer Schale verschafft, als ihn die formale Ableitung
der exakten Theorie zu geben vermag, ferner ergeben sich Aus-
sagen liber die Grenzen des Anwendungsbereiches der Niherungs-
theorie.

Abb. 1 zeigt den Meridianschnitt einer axensymmetrischen
Schale, die durch Randkréfte ohne axiale Komponente und Mo-
mente mit den Betrdgen T,, G, pro Ldngeneinheit des Randes
belastet ist. Wie in der exakten Theorie werde kleine Wand-
stdrke 2h vorausgesetzt. Die Verformung des Meridians sei ge-
kennzeichnet durch den Biegewinkel 4, die Durchbiegung u senk-
recht zum Meridian und die Verschiebung v in Richtung der
Meridiantangente. Die senkrecht zur Schalenaxe stehende Kom-
ponente w von u und v ist die Veranderung des Ringhalbmes-
sers r infolge der Verformung:

W= — u sine 4 v cosu
Daher die spezifische Ringdehnung
1 v
7__:_;3_2_;_ EoCEC L@
mit R, — ﬁ = 2. Hauptkriimmungsradius. Ferner gilt
(44
v
&= " 2
§ — w/} R, (2)
()" = Ableitung nach der Meridianldnge x. Der zweite Teilbetrag
von 4 lautet {}1;:%, da 4, der Winkel ist, den der Kriim-
1

mungshalbmesser R, eines festgehaltenen Meridianpunktes bei
dessen Verschiebung v beschreibt. Der erste Teilbetrag ist 94 = w’
aus gleichen Griinden wie am geraden Balken.

Durch zwei benachbarte Meridianebenen werde nun ein Strei-
fen aus der Schale herausgeschnitten (Abb. 2) und so belastet,
dass er die gleiche Verformung erfihrt wie im Verband der
Schale. Um dies zu erreichen, wird man auch die Schnittflichen
des Streifens belasten miissen mit Zugspannungen g,, deren Re-
sultierende pro Léngeneinheit der Schnittfliche die Schnittkraft

1) J. Geckeler, Forsch. Arb. Ing.-Wes. (1926), Heft 276.

?) E. Meissner, Stodola-Festschrift, S. 414, Ziirich 1929.
%) E. Stewermann, Bauingenieur, Bd. 14 (1933), S. 285.

Abb. 1 Meridianschnitt

T, = 2ho, ist, und mit Biegespannungen ¢gs, welche das resul-

tierende Schnittmoment G, — = 62 pro Léngeneinheit er-
geben (B = Biegung), aber nicht mit Schubspannungen wegen der
Axensymmetrie. Es ist g, = E % (Index 2 bedeutet Ringspan-

nung), wenn die Quer-Kontraktion » ¢, einer vorldufig noch nicht
bekannten, in Meridianrichtung wirkenden Zugspannung g, (In-
dex 1 bedeutet Meridianspannung) vernachlissigt wird; denn es
ist ja am Rande (T,), = (2hg,), = cose, T, (Abb. 1), wo T, die
Resultierende von ¢, pro Lidngeneinheit des Schnittes bedeutet; es
ist also g, an nicht zu flachen Réndern klein. Ferner sei ange-
nommen, dass’ wie am Balken Dehnung klein gegen Durchbie-
gung ist, wodurch auch die zweiten Glieder in (1) und (2) ver-
nachlédssighar sind. Man kann daher schreiben:

u
Oy = — E -R:, [ Dp S0 0 o an D (3)
et Al e L T )
Fiir die an den Schnittflichen des Streifens wirkenden Biege-
momente mit dem Betrage G, pro Léngeneinheit der Schnittfliche
lasst sich ebenfalls eine Beziehung zur Verformung angeben. Es
besteht die Bedingung, dass die Schnittfldichen des Streifens auch
nach der Verformung in Meridianebenen liegen miissen, denn
andernfalls wiirde der Zusammenhang des Streifens mit dem
iibrigen Kegelteil wédhrend der Verformung nicht gewahrt blei-
ben. Wie Abb. 2 zeigt, bilden die Seitenlinien eines Streifenquer-
schnittes den Winkel d y miteinander. Dagegen bilden sie in einem
Schnitt, der um den Biegewinkel 4 gegen den Querschnitt ver-
dreht ist und mit diesem die Sehne der Mittellinie gemeinsam
hat, den Winkel dy':
R,dy
i
denn die Lénge der Sehne ist in beiden Schnitten die gleiche:
R,dy = R,’dy’, und R, ist der Kriimmungshalbmesser der Mit-
tellinie des Querschnitts, B,’ desgleichen des verdrehten Schnittes.
An Hand von Abb. 1 findet man die geometrische Beziehung

dy =

% = cos 4 ctg « sind.
Hier kann wegen der Kleinheit von 4:cos$ — 1, sin$ — & ge-
setzt werden. Somit
%"— =11 Jdctga
und daraus die Kriimmungsénderung des Querschnittes bei seiner
Verdrehung
1 1 ctga

Ry R, R, (5)
in Uebereinstimmung mit der exakten Schalentheorie. Die Glei-
chung sagt aus, welche Kriimmungsinderung ein Streifenquer-
schnitt bei einer Verbiegung ¢ erfahren muss, damit der Zusam-
menhang zwischen Streifen und {ibrigem Teil der Schale wih-
rend der Verformung gewahrt bleibt. Diese Krilmmungsénderung
muss durch die Ringbiegemomente G, hervorgebracht werden.
Da nun auch die exakte Schalentheorie lineares Anwachsen der
Biegespannungen eines Querschnittes voraussetzt, kann der Strei-
fen als Balken angesehen werden, der in zwei senkrecht zu-
einander stehenden Hauptrichtungen, der Lings- und Breiten-
Richtung, gekriimmt ist und in diesen verbogen wird. Es lisst
sich daher die Balkenbiegelehre anwenden, wobei man in ihrer
Ableitung die Querkontraktion zu beriicksichtigen hat.

q

Abb. 2. Herausschneiden
des Streifens
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Bezeichnet G, das Meridianbiegemoment (Abb. 2), d.h. die
Resultierende der in Meridianrichtung wirkenden Biegespannungen
op, pro Liangeneinheit des Schnittes, so hat man

G, —vG, 1! 1
. 6a
JE R R, (820
G, —vG, 1 1
Rt Al ﬁ:(R_Q,__:) . (61)
mit dem Trigheitsmoment
2h3
J— y
3
ebenfalls pro Léngeneinheit. Fiir die Folge sei konstante Wand-
1k 1
stdrke vorausgesetzt. Auch 5 TR’ die Meridiankriimmungs-
1 1

Aenderung infolge der Verbiegung, ldasst sich durch { ausdriicken.
Es besteht die Beziehung

1 1 ay
R—x' = 731_ = S L (7a)
1 do 1 de +d% . < =
da B da und e g gilt. Mit (2) erhdlt man

1 1
die exakte Beziehung

il 1 DINE e (Th)
TR e 5% :
Mit der angendherten Gleichung (4) wird aus (7a):
1 il
'R,_' = R_1 =u'", (7c)

d. h. der Streifen erfdhrt angendhert die gleiche Kriimmungsin-
derung wie ein gerader Balken. Bekanntlich ldsst auch die Biege-
lehre schwach gekriimmter Balken diese Ndherung zu. Die letzte
Gleichung und (4), (5) in (6) eingefiihrt, ergibt

2E h? »
G, = N [u + N w ctgu] (8a)
2 E h? w ;
G=3a—m I B, il b l b

Da das zweite Glied in (8a) das Produkt der kleinen Grossen
», ctg « enthélt, wird es ebenfalls vernachlissigt. Die Gleichung

wird also in der Form
L 2Eh? -
=3a s
benutzt. Es ist bemerkenswert, dass nach dieser Vernachlissi-
gung sich das Vorhandensein von G, nur in dem Faktor 1 —
auf G, auswirkt. Wie man leicht feststellt, stellt (8c) die Bie-
gung des geraden Balkens bei verhinderter Querkontraktion dar.
Nachdem die bisherigen Betrachtungen zunéchst zu den exak-
ten Forménderungsbeziehungen gefiihrt haben, an welchen dann
planmissig Vernachldssigungen vorgenommen wurden, sollen
die Vorstellungen der Balkenbiegelehre auch insofern beibehalten
werden, als festgestellt wird, wie der Streifen abgestiitzt ist. Als
seine Belastung werden die an seinen Schnittflichen wirkenden
Biegemomente @G, und die Randbelastung G,, T, angesehen. Man
kann dann die an den Schnittflichen wirkenden Krifte T, als
Auflagekrifte auffassen aus folgender Ueberlegung heraus:
Aus dem Schnitt senkrecht zur
Schalenaxe in Abb. 3 geht hervor,
dass die Schnittkrifte T, eine in die
mittlere Meridian-Ebene des Streifens
fallende Komponente
H =T,dp
haben. Diese Komponente werde pro
Linge dz in die Komponenten W in
Meridianrichtung und V senkrecht

(8¢)

dazu zerlegt. Es ist
W —Hdxcose, V—=Hdxsin «.
Da W einen Zuwachs zur Zugkraft I
T,rdp im Streifenquerschnitt liefert, 1<d,3 e
hat man e Al
—dagd (T,r) =W ; A

und nach Einfiihren der vorangehen-
den Beziehungen
L(,T1T ):i_Tn oy e 09
dx \ cos « -

Die Komponente V kann als Resultierende eines auf die
Streifenfliche wirkenden Druckes p aufgefasst werden. Es wird

— prdfdx — Hsingdx
T A9 ENETN T TR (0 H )

R2
Das Minuszeichen besagt, dass bei einer Zugkraft 7, eine Druck-
kraft 7, auftritt und ein Druck p herrscht, der der Durchbie-
gung w entgegenwirkt. Da ausserdem p linear von w abhéngt,
kann man eine weitgehende Aehnlichkeit zwischen p und dem
Bettungsdruck eines elastisch gebetteten Balkens feststellen®) ;

3y E. Steuermann, 1. c.

Abb. 3. Zerlegung
der Schnittkraft T,

p=—

ferner stimmt (8c) his auf den Faktor 1 — »? mit der entspre-
chenden Gleichung am elastisch gebetteten Balken iiberein.

Vernachlidssigt man noch die Verdnderlichkeit der Streifen-
breite b —=rdp = R, sinaed (Abb.3), indem man == {05 D)
sine,d g setzt, wo Index 0 Randwerte kennzeichnet, so ldsst sich
daher die elementare Biegelehre des elastisch gebetteten Balkens
anwenden. Sie liefert die Gleichgewichtsbedingungen

adnN
—dfw—=*p (11a)
aaq,
=N.
aa (11Db)

mit N — Resultierende der Schubspannungen 7z pro Lidngeneinheit
eines Streifenquerschnittes (N —72h). Diese Bedingungen ergeben

a G,
dx P
Mit (8c), (10), (3) erhdlt man
j"_u_:_g—_l_r'-’ u
d xt (R,),2h? 4

welche Differentialgleichung sich unter der Voraussetzung kon-
stanter Wandstédrke nur in dem konstanten Faktor von der des
elastisch gebetteten Balkens unterscheidet. Ihre Ldsung lautet
w—Ae ¥ cos(kz + &) + 4,e%% cos (kx + &) (12a)
mit k= e ey e
V¥ C B
Die Lésung stimmt iiberein mit jener, die in der Ndherungstheorie
durch Vernachlédssigung von Gliedern in den exakten Differen-
tialgleichungen der Schalentheorie erhalten wird. Ausserdem er-
hilt man die Losung auch aus der exakten Kegeltheorie durch
Grenziibergang auf spitze Kegel?), ferner stimmt diese Losung
fiir @ — 90° mit der exakten Zylindertheorie iiberein, was als ein
Beweis fiir die Exaktheit der Ableitung gelten darf und endlich
ist auch die asymptotische Losung der Ringschale in erster
Nidherung mit (12) identisch, wie man folgendermassen zeigen
kann:
Nach Meissner 1. c. lautet die asymptotische Losung fiir die
Ringschale

= ]; R
s e ] cos (VL o 4+ s)
4 2 !
a - X
REV(—EI— + sin (;) sin «

Mit 4, ¢ — Integrationskonstanten, a — Abstand des Mittel-
punktes des Meridiankreises von der Rotationsaxe,

N =

a

R R? R,
22 =3 (1 —»?) hl? — 12 wn3 A —1?) h“-‘ und @ == 1/17-’2&(.
Ay
Hier den Integranden in eine Taylor-Reihe nach dem vom Rande
aus gemessenen Winkel ¢, — « — v entwickelt, ergibt in erster
Niherung das Integral

O R‘Ai W .
(RE )l)
L 4

I By

7 w = ]/(Rxﬁ .

Fiihrt man hier den Ausdruck (12a) fiir k ein und d = R, v =
vom Rande aus gezidhlte Meridianldnge, so erhédlt man

l/% w=kd.

Fiir die erste Niherung kénnen auch in dem ersten Faktor der
asymptotischen Losung die Randwerte (R,),, sin ¢, eingefiihrt
und dieser Faktor in die Integrationskonstante einbezogen wer-
den. Dann lautet die asymptotische Losung in erster Néherung

Hiermit % (1 — »2)

— ko
N=A4e cos (kd 4 &) .

Da nach (11a), (10), (3) und wegen T, —= 2h a,:
dN 2hE
de T RF ¢
ist, erhdlt man, wenn wiederum R, = (R,), gesetzt wird und

konstante Faktoren und Glieder in die Integrationskonstanten
einbezogen werden, durch Integration den gleichen Ausdruck fiir w:

— ko
u=24e cos (ko + ¢),
der in der Tat mit dem weiter unten angegebenen Ausdruck
(12b), der durch Einfiithren von 4 aus der Losung (12a) her-
vorgeht, iibereinstimmdt.

Diese Identititen sind ein Beweis fiir die Allgemeingiiltigkeit
von (12). Bereits in der Ableitung wurde ja keine spezielle Me-
ridianform vorausgesetzt. Die anschauliche Erkldrung, (12) be-
deute nichts anderes als den Ersatz der vorliegenden Schale durch

1) Meissner, 1. ¢
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die ihren Rand tanglerende Kegelschale erweist sich nun als zu
speziell.

Der erste Teil der Losung klingt mit zunehmendem, der
zweite mit abnehmendem z ab. Da der Spannungszustand vom
Rande aus nur abklingen kann, gilt bekanntlich der erste Teil
der Losung an dem Rande, von dem aus « wéachst, und der
zweite Teil am anderen Rande, von welchem aus z abnimmt?).
Die Integrationskonstanten A4, ¢ bestimmen sich aus den Rand-
lasten G, T,. Meist liegen die beiden Rénder so weit auseinan-
der, und ist die Grosse k so gross, dass sich die von jedem Rande
aus abklingenden Spannungen nicht iiberlagern. Man kann daher
in diesen Féllen den Spannungszustand jedes Randes fiir sich
ermitteln ohne Riicksicht auf die Bedingungen am anderen Rande.
Es ist hierfiir zweckméissig, die von jedem Rande aus positiv
gezdhlte Meridianldnge ¢ = x, — «, bezw. J — x — 2, einzufiih-
ren (Abb.1). Man hat dann

w=Ae *°cos(kd } ¢) . (12h)
fiir jeden Rand.

Um Uebereinstimmung mit fritheren Ableitungen zu erhalten,

setzen wir die neuen Konstanten C — A F, v — & - —Z— ein:

PR S ko 4 w_i), (12 ¢)

2 ( :
welche Beziehung in (3), (8b,c), (9), (10), (11a) eingefiihrt
die bekannten Bestimmungsformeln fiir den Spannungszustand
ergibt, die hier nicht wiederholt werden sollen.

Hiermit ist die Ableitung erreicht. Nun sollen die einzelnen
Vernachlédssigungen abgeschétzt werden, welche in (3), (4), (7c),
(8c) zugelassen worden sind, ferner auch die Vernachldssigung
der Verédnderlichkeit der Streifenbreite. Jene Vernachlidssigungen
sind gestattet, wenn folgende Bedingungen fiir die Absolutwerte
erfiillt sind:

vo, << 6. . (13a)
vetgae < u . (13b)
—;T<< % s (13¢)
B\
v " 1
(RI) << u (13d)
1;_'10' ctga << w (13e)

Da (1) die spezifische fiingdehnung darstellt, hat man die Be-
ziehung

1 u v
513 (Ty — »T)) = — (R2 _E ctga)E,
mit welcher sich v an Hand von (3), (9) aus u errechnen lésst.
Man erhilt

X

A

Dt

2

wdx.

[

Um zu einer ersten Aussage iiber Genauigkeitsgrad und An-
wendbarkeit der Néherungstheorie zu gelangen, werden in (13)
fir R,, R,, ctg « wieder die Randwerte eingefiihrt. Fiir die
Funktion u, deren Abgeleitete und Integrale, werden die jewei-
lig auftretenden Maximalwerte eingesetzt. Um sie zu bestim-
men, ist die Konstante 1y festzulegen. Es sind nur die Werte ¢ —

% und @ = —;— von Interesse. Denn ¢ = % entspricht dem
Fall, dass nur eine Randkraft 7', aber kein Randmoment wirkt,
und ¢ = % dem entgegengesetzten Fall; aus diesen beiden Fil-
len kann jeder Belastungsfall zusammengesetzt werden®). Siebt
man die schirfsten Bedingungen, die man fiir v — _z-- und y =
-_g_ erhilt, aus, so ergibt sich mit » — 0,3

h

— = o1,77 . 14

R, 0 (14a)

R,
ctg o, — 01,95 % (14 )

Statt des Ungleichheitszeichens ist hier der Faktor ¢ eingefiihrt.
1009 bedeuten die zuldssigen Fehlerprozente. (14a) ergab sich

aus (13d), (14b) aus (13e) fiir y — %. Alle iibrigen Bedin-

gungen (14) , ebenso alle fiir i) — ; sind in diesen beiden ent-

halten. Schliesslich ist noch der Einfluss der Verinderlichkeit
der Streifenbreite abzuschiétzen. Das kann in der Weise geschehen,
°) Dieses eigentiimliche oszillierende Abklingen findet demnach seine
Erklirung darin, dass sich der betrachtete Streifen wie ein elastisch ge-
betteter Balken verhiilt.
%) F. Schultz-Grunow, Ing.-Arch., Bd. IV (1933), S. 545.

dass man die angegebene Ableitung ohne diese Vernachldssigung
durchfiihrt, so zu einer genaueren Differentialgleichung gelangt
und den Unterschied zwischen ihrer Losung und (12) feststellt.
Die genauere Differentialgleichung ist nur fiir spezielle Meridian-
formen Ilésbar. Von besonderem Interesse sind der gerade und
der kreisformige Meridian, da sie in der beanspruchten Randzone
gute Anndherungen an die wirkliche Meridianform darstellen.
Anstatt die bezliglichen Ldsungen herzuleiten, kann auch der
Unterschied zwischen (12) und den asymptotischen Losungen
der exakten Theorie fiir Kegel- und Ringschale festgestellt wer-
den. Der Vergleich mit der Kegelschale ist am einfachsten durch-
fithrbar:

Der exakten Kegeltheorie 7) entnimmt man die asymptotische,
d. h. die fiir X > 20 gﬁltige Losung NR, = C,J, - C,J, mit

Jy=dy= ] V £ [COS (V2X — g 7) -+

7]/2X sin
4 -1 cos . — 2=
— 2T o vie
2]z ]/2X sin (J2X — %) + !
X—a)3d—») g“°

und z — von der Kegelspitze aus gezahlte Meridianlédnge. Durch
Vernachlédssigung der zweiten Glieder der Losung und mit den
angendherten Ausdriicken
— — d
Vm = ]/xo — Yo —
Vo
Y7 — 41/00—0
(z, = Meridianlédnge bis Rand) geht diese Losung iiber in die
Form (12b), worauf bereits hingewiesen wurde. Die Vernachlissi-
gung der zweiten Glieder von J,, J, setzt
4 — / 1
1 4
i 2z Vzx
oder, wenn der Ausdruck fiir X, ferner fiir die erste Abschit-
zung x — x, = (R,), tg «, eingefiihrt wird,
R,
ctg? oy << 1,8 Lh)—
voraus. Die Bedingung ist etwas schwicher als (14b), sagt im
Uebrigen aber das Gleiche aus.
Die beiden angenéherten Ausdriicke sind berechtigt, wenn

Y — >1b

oder umgeformt

42, >> 4,
ist, wo ¢, die Breite der beanspruchten Randzone bedeuten soll.
Da aus (12) hervorgeht, dass zwei Werte von u, die den ADb-

stand 44 = % voneinander haben, sich wie i = ‘lw =

e” 23,14
0,043 verhalten, die zweite Amplitude also nur 4,3 %/, der ersten
betrédgt, kann
8, — % =35 &),k
gesetzt werden. In die letzte Bedingung eingefiihrt, hat man

G

ctgay—0.11 . (15)

wenn filir R, wieder der Randwert eingefiihrt wird. Es ist wieder
die selbe Bedingung, nur noch etwas schirfer.

Eine Aussage iiber den Einfluss der Meridiankriimmung auf
die Verédnderlichkeit der Streifenbreite erhdlt man, wenn fiir die
oben erwédhnte asymptotische Losung der Ringschale die Be-
dingung festgestellt wird, unter welcher das zweite Glied in der

. . R
Reihenentwicklung von f ‘/_R‘_ d ¢ vernachlidssigt werden konn-

Po
te. Die geometrische Beziehung (s. Meissner, 1. c.) zwischen R,

R,, a, « lautet, wenn -%— = u gesetzt wird,
1

R sine
R, | u+sine

fiir den Fall B, < R,, auf den sich die asymptotische Losung
beschrénkt. Die ersten beiden Glieder der Taylor-Entwicklung
nach dem Winkel y — ¢, — « lauten

m —_— ittt
R, A S ue
_/I/E—d’r = V?l + s [1 T s (u+s) V'j] ik

Po

mit s — sin ¢;, ¢ = cos ¢,. Es muss sonach
“cy
P e — ik
G rs) <<

7) F. Dubois: Die Festigkeit der Kegelschale. Diss. Ziirich 1917, S. 28 ff.
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Abb. 13. Scheiteldurchbiegung, mittlere Lufttemperatur und Seestand 1932 bis 1934. Die Deformationen werden auf die Fundamentkote 1804 bezogen.

sein. Fir y wird der Wert y,, welcher der Breite d, dery bean-  T)je Spitallammsperre der Kraftwerke Oberhasli.

spruchten Randzone entspricht, eingefiihrt. Es ist Yo = 1(?’_" Mit Von H. JUILLARD, beratender Ingenieur, Bern. (Schluss von S. 258.)
1
dem oben gefundenen Wert J, — 3,5 ]/(Rg)oh und durch Einfiih-

ren von ¢ wird

f) Temperaturmessungen.
Die Thermometeranlage der Spitallammsperre sollte in erster
Linie iiber die Temperatur des Betons wihrend der Bauperiode

) —sedlll, =
a J(R,),h ctg @ =11 (_a_ Sin “) Auskunft geben. Auf Grund von bei andern Sperrenbauten,
R, R, ’ ' 1 : namentlich bei der Arrowrock-Sperre U.S.A. (1915) gemachten
Da nach der oben angegebenen geometrischen Beziehung Beobachtungen war die grosse Bedeutung der Erhohung der
- (R.) Betontemperatur zufolge des Abbindens des Zementes bekannt.
G — ( R"’ Lk 1) sin «, Bei der Spitallammsperre bot die genaue Verfolgung der ther-
‘. 3 . ! 1 mischen Vergénge nicht nur, wie bei andern Mauern, wissen-
15t Cretbt sich o schaftliches Interesse, sondern sie war eine Notwendigkeit, um
(1 e ) V&) ctgw, —11p . . . (16) die Ausfillung der Baufugen zum zweckmissigsten Zeitpunkt

(R,), R, 5 e vornehmen zu konnen.

Die 63 installierten Thermometer sind in einem Sektor von
30 m Breite zwischen dem Sperrenscheitel und der Baufuge 2a
(Abb. 1) gleichméssig verteilt. Fiir die Projektierung dieser An-
lage liessen sich die KWO durch Prof. P. Joye in Freiburg be-
raten, der die Montage und die Inbetriebsetzung der einzelnen
Thermometer, sowie die notwendigen Revisionen direkt durch
seinen Spezialisten besorgen liess.

B,
B,

R
Fiir vorgegebene Verhéltnisse (T") S ( ) , ctg «, geben so-
0 o
mit die Bedingungen (14a), (15), (16) ein Bild von der Grossen-
ordnung der in der angen#herten Ableitung vernachldssigten
Glieder und damit auch eine erste Abschitzung von der Genauig-
keit der ndherungsweisen Berechnung in 100 ¢ Prozenten. Z. B.

sei ( By ) — 100, ( B, ) — 2, &, — T0° gegeben. s Wé‘..hren(.i der l?auzeit si'nd zwei Daten besonders interessar.lt.
h J, R, /, Einerseits die maximal erreichte Betontemperatur und anderseits
Es ergibt sich aus (14a) 100 ¢ =179, die bis zum Fugenschluss erzielte Abkiihlung. Die hochsten
aus (15)
100 o = 3,39/, L O L o L R Sl T L = S
aus (16) T T v T e seprombor
100 ¢ = 3,37/, , m 7,ML¢Q_,,.; T3 | Auqust - 1.Okfober

d.h. eine Ungenauig-
keit der Rechnung
von 3,3 °/,.

Der Vollstdndig-
keit halber sei die
zweite Moglichkeit
einer Abschédtzung - - )
noch erwédhnt, die =" : E —
darin besteht, dass - I -
man die Losung (12)
in die von Bauers-
feld-Geckeler  ver-
nachlédssigten Glie-
der der exakten Dif- X = a
ferentialgleichungen =" ‘ e e e o i e
der Schalentheorie = : ==
einfithrt und dann
ihre Grossenordnung
feststellt. Abb. 15. Scheiteldurchbiegung (voll: Pendel, gestrichelt: Klinometerstab) und Mauertemperaturen 1932.
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