Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105/106 (1935)

Heft: 7

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die Methode der Grundkoordinaten. — Ergebnisse des Ideenwettbewerbes für ein neues Kantonsspital in Zürich. — Baugewerbe, Architekten und Ingenieurberuf in der ständischen Verfassung Oesterreichs. — Beruf und Standesorganisation der Technik in Deutschland. — Zwei neue grosse Brücken in Jugoslavien. — Kleinseilbahn für Wintersportbetrieb. — Mitteilungen: Oxydfreie Kontakte. Untersuchungen am Löffler-Kessel. Die Korrosionswechselfestigkeit von Stahl. Armierte

Hohlkörperdecken mit Korksteinen und tragende Korksteinwände. Stahlrohrgerüst für eine Turmausbesserung. Die 19. Schweizer Mustermesse Basel. Untersuchung über die Grösse der Durchflusskoeffizienten von Venturidüsen. — Gefahren der Architektur-Propaganda. — Nekrologe: Fritz Blass. Karl Gabriel. Jos. Chuard. — Literatur. — Mitteilungen der Vereine. — Sitzungs- und Vortrags-Kalender.

Band 105

Der S. I. A. Ist für den Inhalt des redaktionellen Teils selner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 7

Die Methode der Grundkoordinaten.

Von Dr. sc. techn. GUSTAV E. KRUCK, Ing. Zürich.

Abriss einer Deformationsmethode zur Berechnung ebener, biegungsfester Rahmenwerke mit geraden oder gekrümmten Stäben.

Die gebräuchliche analytische Kräftemethode zur Berechnung statisch unbestimmter Systeme gewinnt die Bestimmungsgleichungen der Ueberzähligen durch Betrachtung der Formänderungen am statisch bestimmten Hauptsystem. Umgekehrt erhalten wir in der Deformationsmethode die Bestimmungsgrössen der Formänderung aus Gleichungen statischen Inhaltes.

In weitaus den meisten Fällen fragen wir in erster Linie nach der Beanspruchung des Bauwerkes und nicht nach seiner Verformung. In diesem Sinne ist die Berechnung nach der Deformationsmethode ein Umweg. Bei vielfach statisch unbestimmten Systemen, wie sie namentlich durch die Eisenbetonbauweise bedingt werden, ist aber oft die Zahl der zu bestimmenden Unbekannten nach der Deformationsmethode erheblich geringer als nach der Kräftemethode. In der Methode der Grundkoordinaten kommen als weitere Vorteile die einfache Aufstellung der Bestimmungsgleichungen der Unbekannten und die rasche Berechnung der Koeffizienten und Lastglieder hinzu. Diese Methode ist eine Weiterentwicklung der Deformationsmethode, die Dr. Ing. L. Mann in seinem Buche "Theorie der Rahmenwerke auf neuer Grundlage" (Berlin 1927, Verlag von Julius Springer) dargestellt hat. Mann nennt die Bestimmungsgrössen der Formänderung Grundkoordinaten; diesen Namen habe ich übernommen und zur Bezeichnung der Methode gewählt.

1. Grundbegriffe.

Wir denken uns im Rahmenwerke alle Knoten herausgeschnitten und ersetzen die dabei frei werdenden inneren Spannungen durch die Anschlussmomente M, die Zugkräfte H und die Querkräfte Q. Das zwischen zwei Knoten herausgeschnittene Bauglied nennen wir einen Stab. Anschlussmomente, die gegen den Uhrzeigersinn auf den Stab und im Uhrzeigersinn auf den Knoten einwirken, bezeichnen wir als positiv; ebenso die Querkräfte, die den Stab gegen den Uhrzeigersinn zu drehen trachten (Abb. 1).

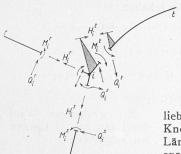
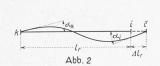



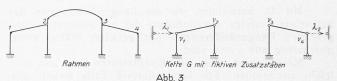
Abb. 1

Wir betrachten einen beliebigen Stab r zwischen den Knoten i und k (Abb. 2). Die Länge der Stabsehne ik im spannungslosen Zustande sei l_r . Durch die Angabe der Verdrehung der Stabendquer-

schnitte inbezug auf die Stabsehne und die Angabe der Sehnenverlängerung ist die Verzerrung des Stabes eindeutig festgelegt. Wir nennen die Grössen α_i , α_k und Δl_r Stabkoordinaten. Entsprechend dem Sinn der Einspannkräfte bezeichnen wir die Verdrehungen α positiv im Sinn gegen den Uhrzeiger und Δl positiv als Verlängerung.

Diese Stabkoordinaten bilden ein System geometrisch voneinander abhängiger Grössen. Die voneinander unabhängigen Verdrehungen und Verschiebungen, welche die Verformung des Rahmenwerkes eindeutig festlegen, nennen wir nach Mann Grundkoordinaten. Sie sind die Bestimmungsgrössen der Deformationsmethode entsprechend den Ueberzähligen in der Kräftemethode.

Den Anschluss von Stäben an starre Widerlager nennen wir feste Knoten; wo nur Stäbe zusammenstossen, sind freie Knoten. Die Anzahl der freien Knoten betrage n; g davon seien Gelenkknoten, wo alle Stäbe gelenkig angeschlossen sind. Bewegliche Auflager ersetzen wir durch gelenkig angeschlossene fiktive Auflagerstäbe.


Als erste Gruppe der Grundkoordinaten wählen wir die Knotendrehwinkel v_i , i = 1 + n - g, der freien Knoten, positiv im Sinne des Uhrzeigers gemessen.

Die voneinander unabhängigen Knotenpunktsverlagerungen λ_m , $m=1 \div p$, bilden die zweite Gruppe der Grund-Koordinaten. In der Ebene sind zur Festlegung der Verschiebung eines Knotens 2λ nötig, so dass die Zahl der Grundkoordinaten im Ganzen 3n-g beträgt.

Dies gilt nur für den Fall, dass wir die Längenänderungen der Stäbe als unbekannt voraussetzen. In Rahmenwerken sind die Längenänderungen der geraden Stäbe infolge der Normalkräfte so gering, dass sie entweder nicht berücksichtigt zu werden brauchen, oder durch Näherungswerte ersetzt werden können. Auch die Längenänderungen infolge der Temperatureinflüsse setzt man üblicherweise = $\varepsilon \, \Delta t^0 \, l \, (\varepsilon = \text{Ausdehnungskoeffizient}, \, \Delta t^0 = \text{Temperaturunterschied}, \, l = \text{Stablänge}), ohne die infolge der Verzerung des Rahmens entstehenden Normalkräfte zu berücksichtigen. Analog hat Mohr bei der Bestimmung der Nebenspannungen in Fachwerken mit steifen Knoten die Längenänderungen der Stäbe durch Näherungswerte ersetzt, indem er sie im Fachwerk mit gelenkigen Knoten bestimmte.$

Die vereinfachende Annahme, in geraden Stäben den Einfluss der Normalkräfte auf die Formänderung nicht zu berücksichtigen, führt in der Kräftemethode nur zu einer einfacheren Berechnung der Koeffizienten, mit welchen die Ueberzähligen in ihren Bestimmungsgleichungen multipliziert sind. Berücksichtigen wir in der Deformationsmethode die Längenänderungen der geraden Stäbe nur genähert, so vermindert dies die Zahl der Unbekannten wesentlich.

Die unbekannten Knotenpunktsverlagerungen λ erkennt man am schnellsten aus der Beweglichkeit der kinemati-

schen Kette G, die dadurch entsteht, dass im Rahmenwerk alle steifen Knoten durch Gelenke ersetzt werden. Als Glieder der Kette sind nur die geraden Stäbe zu verwenden, deren Längenänderungen wir näherungsweise als bekannt voraussetzen. Anschaulich können wir die Knotenpunktsverlagerungen λ in Richtung von fiktiven Zusatzstäben annehmen, die wir der oben beschriebenen Kette G hinzufügen müssen, um aus ihr ein unbewegliches Stabwerk zu erhalten. Die Zahl der unbekannten Knotenpunktsverlagerungen bezeichnen wir mit p. Für das neunfach statisch unbestimmte Rahmenwerk in Abb. 3 haben wir in der Deformationsmethode sechs unbekannte Grundkoordinaten, vier Knotendrehwinkel und zwei Knotenpunktsverlagerungen zu bestimmen, wenn wir die Längenänderungen der geraden Stäbe genähert als bekannt voraussetzen.