Zeitschrift: Schweizerische Bauzeitung
Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105/106 (1935)

Heft: 5

Artikel: Belastungsgrenzen des Hohlzylinders unter Innendruck bei
Berucksichtigung der Plastizitat

Autor: Kohn, Paul

DOl: https://doi.org/10.5169/seals-47384

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-47384
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

2. Februar 1935

SCHWEIZERISCHE BAUZEITUNG 49

INHALT: Belastungsgrenzen des Hohlzylinders unter Innendruck bei Beriick-
sichtigung der Plastizitit. — Bautechnischer Luftschutz. — Wettbewerb fiir eine
reformierte Dorfkirche in Birmenstorf, Kanton Aargau. — Chemisch-technische Grund-
lagen des Gasschutzes. — Mitteilungen : Eidgen. Technische Hochschule. Isolierstoffe
hoher Wirmeleitfihigkeit. Die neue Dockschleuse des Hafens von Saint-Nazaire.

Interessante Verschiebung eines Hauses. Brandwachegebiude in Ziirich. Briicke iiber
den Sambesi bei Sena. Eine Vortragsserie ,Normung und Toleranzsysteme“. — Wett-
bewerbe: Strandbad in Meilen. — Literatur. — Mitteilungen der Vereine. —
Sitzungs- und Vortrags-Kalender.

Band 105

Der S. 1. A. Ist fir den Inhalt des redaktlonellen Teils selner Verelnsorgane nicht verantwortlich.
Nachdruck von Text oder Abbildungen Ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 5

Belastungsgrenzen des Hohlzylinders unter Innendruck bei Beriicksichtigung der Plastizitat.

Von Dr. techn. PAUL KOHN, Prag.

Auf Grund der Huber-Mises-Hencky’schen Fliessbedingung wird die Belastungs-
grenze fiir den offenen und geschlossenen Hohlzylinder aus zihem Material bestimmt
und in Diagrammen dargestellt. Ferner wird das Halbmesserverhiltnis berechnet, fiir
das bei der Entlastung die Fliessgrenze neuerlich iiberschritten wird, und schliesslich
auf die plastischen Deformationen eingegangen. — An Beispielen wird die neue Dimen-
sionierung mit der iiblichen verglichen.

Bei der Dimensionierung der durch einen inneren
Ueberdruck beanspruchten dickwandigen Hohlzylinder war
es bisher {iblich, als Belastungsgrenze jenen Ueberdruck
anzusehen, bei dem gerade der Innenmantel des Hohl-
zylinders aus dem elastischen in den plastischen Zustand
tibergeht. Bei einem zihen Material mit ausgesprochener
Fliessgrenze bringt aber eine weitere Drucksteigerung noch
keine Gefahr mit sich, wie z. B. die Versuche von Kriiger?)
zeigen, da der Hohlzylinder als Ganzes erst zu fliessen
beginnt, wenn sich die plastische Zone bis an den Aussen-
mantel erstreckt. Als dusserste Belastungsgrenze wird man
daher jenen Ueberdruck ansehen miissen, bei welchem der
Aussenmantel des Hohlzylinders bis zur Fliessgrenze be-
ansprucht wird. Da praktisch jedes Gefiss ofters belastet
und daher auch entlastet wird, so tritt, um eine Zerstorung
des Materials hintanzuhalten, als weitere Forderung die Be-
dingung hinzu, dass bei der Entlastung an keiner Stelle des
Hohlzylinders die Fliessgrenze neuerlich aberschritten wird.

A. Nadai2) gibt die allgemeine Losung fiir den Span-
nungszustand des plastischen Rohres mit konstanter axialer
Dehnung an und bestimmt die Integrationskonstanten fir
den Sonderfall, dass die axiale Dehnung null ist. Er setzt
dabei voraus, dass man im ganzen plastischen Gebiet die
elastischen Dehnungen gegeniiber den plastischen ver-
nachlassigen darf. Dies ist jedoch in der Nahe der Grenze
zwischen elastischem und plastischem Gebiet nicht zulassig,
da in ihr selbst elastische Dehnungen vorhanden, die pla-
stischen Dehnungen aber nullsind. In der vorliegenden Arbeit
soll dem vorerwihnten Umstand wenigstens naherungs-
weise Rechnung getragen werden, was nur formal eine
kleine Aenderung der Ausgangsgleichungen mit sich bringt;
anderseits sollen aber die beiden wichtigsten technischen
Belastungsfille, nimlich der an den Enden offene und der
an den Enden geschlossene, durch Innendruck beanspruchte
plastische Hohlzylinder behandelt werden. Es sei gleich
vorweggenommen, dass sich fir den geschlossenen pla-
stischen Hohlzylinder die axiale Dehnung zu null ergibt, und
dass fiir diesen Fall die schon von Nédai fir den Span-
nungszustand angegebenen einfachen Beziehungen gelten.

Fir ein elastisch-plastisches Material gelten fir den
in axialer Richtung unbegrenzt gedachten und axensym-
metrisch belasteten Hohlzylinder die folgenden Deformations-
bedingungen in den Zylinderkoordinaten 7, ¢, z.

o =alor— 5 0p+00) |+ B[or — 0yt 00)| = 5

u

eg=a|o, — (0 + 00|+ Blo, — 5 0 Ao | = -,
&y = aLoz — ;T(o, —+ o,,)] —J;—ﬂ[az o %(a, -+ o,F)} :

Hierin bedeuten o, g, o, die Normalspannungen;
&r, &g, & die Dehnungen in den Richtungen 7, ¢ und z;
u die radiale Verschiebung eines Punktes am Radius 7;
1/a den Elastizitatsmodul, 7 den Querkontraktionskoeffizient
und 1/f den Plastizititsmodul.

) W. Kriger, Forschungsarbeit d. V. D. L, H. 87; 1970.
2) A. Nidai, Der bildsame Zustand der Werkstoffe; Verlag Sprin-

ger, 1927,

Im elastischen Gebiet ist f = o und 0,2 -+ 6,2 + 0.2
— 6, 6, — 0y 0; — 0, 0, <_ 0o%, wenn o, die Spannung an
der Fliessgrenze bedeutet.

Im plastischen Gebiet ist die Fliessbedingung von
Huber-Mises-Hencky erfiillt, also

6,2+ 0,2 + 0. — 6, 0, — O 0— 0 0z = Go® . . (1)
und g ist eine vom Verformungszustand des Hohlzylinders
abhingige Veranderliche.

Fiir das plastische Gebiet ersetzen wir nun niherungs-
weise die Deformationsbedingungen durch:

e =1 [Gr ot % (0p - o2 )] = %, (2a)
Ep =1 [o,,, — % (0 4+ o,)A — %, == i(2b)
o = [oz — 2 (o + am):l , (2¢)

indem wir in den Klammerausdriicken mit a der Aus-

gangsgleichungen, m ({ﬁr Flusstahl m = 13—0) durch 2 er-

setzen und ¢ = o + f einfihren.

Der Fehler, den man durch diesen Ersatz begeht,
ist vernachlassigbar; er ist klein in der Grenzschicht zwi-
schen elastischem und plastischem Gebiet und er wird umso
kleiner, je grésser die Entfernung von der Grenzschicht
ist, weil sich in grosserer Entfernung von ihr o gegen f
vernachlidssigen lasst.

Zur Bestimmung des Spannungs-Dehnungszustandes
sind weiter noch die Gleichgewichtsbedingungen in radialer
und axialer Richtung notwendig. Diese

lauten do,
G (3a)
und
b
fznroza’r:qazn (3b)

a
worin ¢ (s. Abb. 1) den in axialer Richtung
auf die Zylinderbdden wirkenden, vorlaufig
noch beliebig grossen inneren Ueberdruck
bedeuten soll.

Da es sich beim axial unbegrenzten,
durch Innendruck beanspruchten Hohl-
zylinder um einen ebenen axensym-
metrischen Deformationszustand handelt, ist ¢, = konstant
und alle ibrigen in den Gleichungen (1) bis (3) vorkom-
menden Gréssen und daher auch ¢ sind nur Funktionen
der Verinderlichen 7.

Eliminiert man unter Beachtung dieses Umstandes
# und o, aus den Gleichungen (2), so ergibt sich

d(op —oy) ad dr

TMERT oL B
anderseits erhilt man durch Verbindung von Gleichung (1)
und (2c)

4 )2

or—or=2[ar—(5)] - - . ®

Fithrt man die dimensionslose Grosse
L gk o
U3 T T SR el R R (6)

in die Gleichungen (3a), (4) und (5) ein, so lassen sich
die Grossen ), o,, » als Funktionen der Grosse y dar-
stellen. Man erhalt

4 ydy
N SR S ()
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Or sl Rt dy
R )
driit I dy
e U e )
Aus Gleichung (6) folgt ferner
Cp Gy 2
U; = +Ww (r0a)
und aus den Gleichungen (2c¢), (5), (10a) ergibt sich
R
T EL 7 + 1/?_’t1/1 w ; (IOb)

Durch Integration von Gleichung (8) und (9) erhilt man
o, L I+ (11)

r2 = e, I — 3.
Radialspannungen ¢,, die Tangentialspannungen ¢, und
die Axialspannungen o, im plastischen Teil eines Hohl-
Betrachten wir nun den Grenzfall, dass sich dds
plastische Gebiet durch die ganze Wandstirke erstreckt, so
und y = y,, und fir » = 4 ist die Radialspannung gleich
null, also o,,= 0 und y = y,. Diese Randbedingungen in

=— K,
% 2]/3 o L=y A
5 . (12)
Durch die Gleichungen (10), (11) und (12) sind die
zylinders bestimmt, wenn die Radialspannungen an den
Grenzen des plastischen Gebiets bekannt sind.
ist mit den Bezeichnungen der Abb. 1 fir »=a die Radial-
spannung gleich dem inneren Ueberdruck, also o,,= —p
Gleichung (r1) und (12) eingefithrt ergeben
? L e el e V(i)

@ a5 =yl () (13)
b \2 _ Ya I — w,?
und (7> = ]/I £2 (14)

Da bei gegebenem Halbmesserverhiltnis 4/¢ und
gegebener Fliessgrenze oo nur ein ganz bestimmter Druck p
den urspriinglich elastischen Zylinder bis zu seiner Aussen-
wand plastisch macht, so ist noch eine weitere Gleichung
zur Bestimmung von 2, y,, v, erforderlich. Diese Beziehung
ist die noch nicht verwendete Gleichgewichtsbedingung (3b).

Mit den Gleichungen (8), (9), (tob), (12) wird

c; 1 Ko
r dr=—d( 2 By
Go 2

cr

So rz)iT 1{/2
und nach Ausfilhrung der Integration in Gleichung (3b)
mit Beachtung der Randbedingungen ergibt sich

ya
? 7 Woii
Sl e e | ) B —— I
%o %o Sl VI — Yt ( 5)

Aus den Gleichungen (13), (14), (15) lassen sich nun
b/a, ya, e als Funktionen von p/g, und ¢/oo berechnen.
Man erhilt:

(%)2: cosh 1]/? j:]/sin“z 4V§> + (%—%)Z , (16a)
Yaq = {siniz (Z) V3 )cosh< V3>

o (EV3))/omts (2V5) + (£ LT}

{silﬁ/t(—%v:?)j-_cnsh 721/3“>|/sin?/1 11/3 ) L ( %)2} 16 b)

sin 2
aE <—j/3) e (16¢)
Juast (Vs ) + (£~ L)

In diesen und auch den fritheren Gleichungen hat
bei einer Belastung des Hohlzylinders durch einen inneren
Druck nur das obere positive Vorzeichen einen phy-
sikalischen Sinn. Dies geht aus Gleichung (16a) hervor,
denn fir ein positives und wachsendes p muss auch das
Halbmesserverhiltnis 4/a stindig zunehmen.

Fir den Sonderfall, dass der Zylinder an den Enden
offen ist, ist in den Gleichungen (16) ¢ = o zu setzen.

Fiir den Sonderfall, dass der Zylinder an den Enden
geschlossen ist, wird p = ¢ und die Gleichung (16) ver-
einfacht sich auf

Yp =

1734

(%) =e (17)

undiap ===

d
_ JnnenW
: , 6 \%/:* 2
sl
=t 03 i Ot iy
/ | \/\#i |
5 02 |

Q||
S
a

N
S
N
o

Qo]

Abb. 2.

Abb. 3.

Gleichungen (16a) und (17) geben an, bei welchem
Halbmesserverhaltnis 4/ac der innere Ueberdruck p bei
einem Material von der Fliesspannung ¢, den offenen
beziehungsweise geschlossenen Hohlzylinder bis zu seiner
Aussenwand plastisch macht. Bei einem hoheren Ueber-
druck wiirde, wenn keine Verfestigung des Materials ein-
tritt, der Hohlzylinder auseinander fliessen, wahrend bei
einem niedrigeren Ueberdruck die plastische Zone sich
nicht bis an die Aussenwand erstreckt. Im Diagramm
Abb. 2 haben wir Beziehung (16a) (¢4 = o) fiir den offenen
Zylinder und in Diagramm Abb. 3 Beziehung (17) fiir den
geschlossenen Zylinder dargestellt. Formel (17) wurde
schon von Nadai fiir den Sonderfall, dass die axiale pla-
stische Dehnung ¢, = o ist, angegeben. Aus Gleichung (5)
erkennt man, dass wegen vy, =y, = 1, & = o wird. Fir
den geschlossenen plastischen Hohlzylinder unter innerem
Ueberdruck ist daher unter Voraussetzung der eingefiihrten
Niherung die gesamte axiale Dehnung an jeder Stelle null.

Um den Unterschied gegeniiber der iiblichen Be-
rechnungsweise zu zeigen, haben wir in den Diagrammen
Abb. 2 und 3 auch die Abhéngigkeit p/g, von b/a fir jenen
Belastungsfall dargestellt, fir welchen der Innendruck p
gerade die Innenwand des Hohlzylinders plastisch macht.
Diese Beziehung erhilt man aus der Bedingung, dass die
Spannungen an der Innenwand des elastischen Hohl-
zylinders die Huber-Mises-Hencky'schen Fliessbedingung
erfillen.

Man bat also die Spannungen an der Innenwand
des durch die Driicke p und ¢ belasteten elastischen Hohl-
zylinders (s. z. B. Foppl8)) in die Fliessbedingung (1) ein-
zufiihren und erhilt so mit ¢ = o und ¢ = p fiir den offenen
bzw. geschlossenen Hohlzylinder

? et i a\e

*:“,a:‘ bzw. 7:/_7[1—(7)]

v Yoda) Sl

Da es allgemein iblich ist, diinnwandige Hohlzylinder
nach der sogenannten Kesselformel, die sich aus der An-
nahme ableitet, dass die Tangentialspannungen gleichférmig
iber die Wanddicke verteilt sind, zu dimensionieren; so
haben wir auch diese Beziehung
P Bk

G a
in Diagramm Abb. 2 und 3 dargestellt.

Man erkennt aus Abb. 2, dass beim offenen Hobl-
zylinder eine Bemessung nach dieser Formel eigentlich
unzulassig ist, da sie eine hohere Sicherheit vortduscht,
als wirklich vorhanden ist. Beim geschlossenen Hohlzylinder
kann man die Kesselformel, wie Abb. 3 zeigt, zu Recht
anwenden, solange das Halbmesserverbiltnis 6/a kleiner
als 1,4 ist.

Wir untersuchen weiter, wie sich der plastische Hohl-
zylinder nach vollkommener Entlastung verhalt. Da im
entlasteten Zustand die hochsten Beanspruchungen an den
Stellen der grossten plastischen Deformationen, das heisst,

3) A. Foppl, Vorlesungen iiber technische Mechanik, Bd. 3.
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wie spiter gezeigt, an der Innenwand des Hohlzylinders
auftreten, so wollen wir unsere Untersuchung auf jenen
Belastungsfall beschrinken, wo bei der Entlastung an der
Innenwand die Fliesspannung wieder erreicht wird.

Im belasteten plastischen Zustand verursachen der
Innendruck p und ¢ an der Innenwand des Hohlzylinders
tangential und axial Spannungen, die sich aus den Gleich-
ungen (10) mit ¥ = vy, ergeben. Um die Spannungen
an der Innenwand im entlasteten Zustand zu erhalten,
denken wir uns auf die Innenwand des Hohlzylinders den
Zug p und auf die Zylinderbéden den Zug ¢ wirken. Die
durch diese Belastung an der Innenwand hervorgerufenen
Spannungen ergeben sich leicht aus den Beziehungen fir
den Spannungszustand des elastischen Hohlzylinders (s. z. B.
Foppls)). Ueberlagert man nun den plastischen und ela-
stischen Spannungszustand, so heben sich die Belastungen
7 und ¢ an der Innenwand und den Béden auf, und die
an der Innenwand des entlasteten Hohlzylinders zurtck-
bleibenden Spannungen ergeben sich zu

(e

/ISR
(F) e (18)
o,=—p-+} =l tpa+oo]/1—1/)a2—qb+.
VS (F) —1
Erfillen diese Spannungen die Fliessbedingungen (1),
so tritt bei der Entlastung wieder Fliessen an der Innen-
wand ein. Gleichungen (18) in Gleichung (1) eingefiihrt

ergeben
e e
2|(3) -1

— 3 (2 Lwat (E—L))i—vit=0 (x9)

%

op=—p-+p=o, ﬂ/,~=—ﬁ+v%0'owa—P

Fir den offenen Hohlzylinder ist in den Gleichungen
(16a), (16b) und (19) wieder ¢ = o zu setzen; aus diesen
Beziehungen lassen sich dann p/o, und b/a numerisch
bestimmen. Man erhilt p/6, = 0,89 und b/a = 2,2. Bis zu
diesen Werten tritt daher beim offenen plastisch voll aus-

Abb. 4.

geniitzten Hoblzylinder bei der Entlastung kein Ueber-
schreiten der Fliessgrenze ein und daher ist das Diagramm
nur bis zu diesen Werten zu beniitzen. Bei einer hoheren
Belastung ldsst sich der Hohlzylinder plastisch nicht mehr
voll ausniitzen.
Fir den geschlossenen Hohlzylinder
vereinfacht sich Gleichung (19) mit ¢ =
auf p /b\2
';o—g“) i ]/3 Lo
2l
und mit Gleichungen (17) ergibt sich
ploo = 0,92 und bla = 2,22, als Grenz-
werte fir den geschlossenen plastisch voll
ausgeniitzten Hohlzylinder.
Um aus dem Spannungsdehnungsdia-
gramm des Zugstabes (s. Abb. 4) feststel-
len zu konnen, welcher Teil der Span-
nungsdehnungslinie bei der Belastung des Hohlzylinders
ausgenutzt wird, ist es notwendig, auf die Formanderungen
einzugehen.
Im einaxigen Spannungsdehnungsdiagramm ist (vgl.
Gleichung 2)
e =10y

(20)
Der grosste Wert von ¢ ergibt sich aus dem grossten
Wert von ). Durch Integration von Gleichung (7) erhélt man

K (21)

'L) e

: ]/l 4T, ,/,2
Da sich aus Gleichung (12) leicht nachweisen ldsst, dass vy
mit wachsendem » kleiner wird, so ist, wie zu erwarten,
# und damit auch die Dehnung an der Innenwand des
Hohlzylinders am grossten. Setzen wir fiir » = a, 9 = ¥,

und fir r=06, 9=1,; so ergibt sich aus Gleichungen (14)

und (21)
e e b Ll
Dg =1 = (a) (22)

Da die Aussenwand des Hohlzylinders bei einer Belastung
durch den Druck p und ¢ nach Gleichung (16a) gerade
aus dem elastischen in den plastischen Zustand ibergeht,
so miissen die Deformationen der Aussenwand, berechnet
aus dem elastischen Spannungszustand, gleich sein den
Deformationen, gerechnet aus dem plastischen Spannungs-
zustand. Bezeichnen wir die elastischen Deformationen und
Spannungen mit Strich, so muss fir » =6, # = u, und
&2 = &, sein.

Da an der Aussenwand o6,;, = o, = 0, so wird mit
Gleichungen (2b) und (2c)

7:7 O'zb’)

9 —-—I [ = e

b Gmb > zb o 0!7717

und 9 0.5 ——a el et o
b \0Ozb 2 Job zb —0pb

Ferner muss auch fir die elastischen Spannungen die
Fliessbedingung (1) erfillt, also 04,52+ 0.4 — 04,5 020 =
00?2 sein und aus Beziehungen (10) folgt ferner

G,I,bZ%I,Ub und 6,5 = 0y (l;u—;—{—-l/l _'Wb2)-

Aus diesen fanf Gleichungen lisst sich o, 025,
6pb, 024 eliminieren und ¥, berechnen. Man erhalt

o m

% ;‘?:]/(mz-%m_*'li)(f_%“— Py ]/:@]/é)

+—i—<m?—%m—|- 1) e (23)
Mit den Beziehungen (16), (22), (23) ldsst sich nun /¥,
in Abhingigkeit von 6/a berechnen. In Diagramm Abb. 2
haben wir die Grosse o, fir den offenen Hohlzylinder
(¢=o0) dargestellt, wobei wir m=10/3 angenommen haben.
Fir den geschlossenen Hohlzylinder vereinfachen sich
wegen vy, ==y, = I Gleichungen (22) und (23) und man
erhilt direkt

o a 2]/3_ m T
5:(7) T;,,z_ll/”‘?—’”ﬂ”-
Im Diagramm Abb. 3 haben wir die Grosse a/d, fiir den
geschlossenen Hohlzylinder dargestellt, wobei wir wieder
m = 10/3 vorausgesetzt haben.
Da nun /9, fir jedes Halbmesserverhiltnis &/a

gegeben ist, so ldsst sich die grosste Dehnung ¢, im
Spannungsdehnungsdiagramm nach Gleichung (20) aus

% (24)

€= a—-

5
bestimmen.

Von der Spannungsdehnungslinie soll nur der hori-
zontale Teil bis zum Verfestigungsbeginn ausgenutzt wer-
den. Da im Verfestigungsgebiet bei Be- und Entlastung
Hysteresis-Schleifenbildung eintritt, was zu einer Zermiir-
bung des Materials fithrt, so ist bei der Dimensionierung
zu beachten, dass die grosste Dehnung &, im Spannungs-
dehnungsdiagramm nach Gleichung (24) kleiner sein muss,
als die Dehnung ¢, des verwendeten Materials beim Ver-
festigungsbeginn.

Bei den a/9, Kurven fillt auf, dass fiir §/a=1 nicht,
wie zu erwarten wire, ¥, = a sondern ¥, > « ist. Dies
hingt mit der eingangs gemachten Niherung zusammen
und weist darauf hin, dass die berechnete Dehnung ¢, etwas
grosser als ihr Sollwert ist; die Berechnung der Dehnung
enthilt daher schon eine kleine Sicherheit in sich.

An einem Beispiel soll noch die Anwendung des
neuen Berechnungsverfahrens gezeigt und mit der dblichen
Berechnung verglichen werden: Das fiir den Hoblzylinder
verwendete Material sei Flusstahl mit einer Fliessgrenze
0o =2800 kg/cm?, einem Elastizitdtsmodul 1/a=2,1.100kg/cm?
und einer Dehnung bis zum Verfestigungsbeginn von &, =
0,025. Der wirksame Innendruck betrage 1000 kg/cm? und
die gewdhlte Sicherheit 1,4. Unter dieser Voraussetzung
hat die Dimensionierung auf Grund eines Innendruckes
von p = 1400 kg/cm? zu erfolgen, und es wird p/o, = 0,5.
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Far den offenen Hohlzylinder ergibt sich mit diesem
Wert aus Diagramm Abb. 2 6/a = 1,58 und a/d, = o0,31.
Aus Gleichung (24) wird &, = 0,0043 < ¢,, wihrend die
Gbliche Berechnungsweise 6/a = 2,755 ergeben wiirde. Fiir
den geschlossenen Hohlzylinder wird mit p/g, = o,5 aus
Diagramm Abb. 3 b/a = 1,54, a/9, = 0,355 und mit Gleich-
ung (24) wird ¢, = 0,0038 < ¢,, wihrend die iibliche Be-
rechnungsweise 6/a = 2,75 ergibt. Noch augenscheinlicher
wird der Unterschied der beiden Dimensionierungsarten,
wenn p/o, grosser als 1/]/3ist. Fiir diesen Wert ergibt sich
nach der tblichen Berechnungsweise b6/a = co, wihrend
nach der neuen fiir den offenen Hohlzylinder b/a = 1,69
und fiir den geschlossenen 6/a = 1,65 ist.

Zusammenfassend lasst sich folgendes sagen: Die
tibliche Dimensionierung durch Innendruck beanspruchter
Hohlzylinder aus ziahem Material, die voraussetzt, dass die
Belastungsgrenze bei jenem Innendruck liegt, der die Innen-
wand des Hohlzylinders bis an die Fliessgrenze beansprucht,
ergibt bei hohen Innendriicken Wandstiarken, die entweder
zu gross oder tberhaupt nicht ausfahrbar sind. Anderseits
wurde gezeigt, dass man bei einem zihen Material mit
ausgesprochener Fliessgrenze bis zu einem HHalbmesser-
verhiltnis von rd. 2,2 als Belastungsgrenze jenen Innen-
druck ansehen darf, der den ganzen Hohlzylinder bis zu
seiner Aussenwand plastisch macht. Zu beachten ist dabei
ausserdem, dass die grosste Dehnung im Spannungsdia-
gramm kleiner ist als die Dehnung des verwendeten
Materials bis zum Verfestigungsbeginn. Um die Dimen-
sionierung zu vereinfachen, wurden die gefundenen Be-
ziehungen in Diagrammen dargestellt. Schliesslich wurde
auch gezeigt, dass die Kesselformel beim geschlossenen
dinnwandigen Hohlzylinder bis zu einem Halbmesser-
verhaltnis von 1,4 gute Naherungswerte ergibt, wahrend
man sie auch schon beim diinnwandigen offenen Hohl-
zylinder fir die Dimensionierung nicht anwenden sollte.

Bautechnischer Luftschutz.
Von ROB. A. NAEF, Dipl. Ing., Ziirich.

Es soll hier nicht die Notwendigkeit des zivilen Luft-
schutzes untersucht werden. Dies ist ein politisches Problem.
Der Bundesrat hat durch seinen Beschluss vom 29. Sept.
1934 Stellung genommen. Damit eriibrigt sich eine weitere
Diskussion an diesem Orte, hingegen interessieren den
Ingenieur die Anforderungen des zivilen Luftschutzes an
die Bautechnik und die Mbglichkeiten, diese Forderungen
zu erfillen. Im Ausland ist bereits eine umfangreiche Lite-
ratur ber diese Frage erschienen. Schoszberger!) gibt ein
Literaturverzeichnis mit 315 Nummern. Wir zitieren nur
drei der interessantesten Biicher?)2)3).

Der Luftangriff gegen das Hinterland arbeitet in der
Hauptsache mit drei Mitteln: a) Brisanzbomben, b) Brand-
bomben, c) Chemische Kampfstoffe.

Ein absoluter Schutz der Bevélkerung und wichtiger
Objekte gegen diese Kampfmittel ist unmoglich. Es kann
sich nur darum handeln, zu entscheiden, wie weit der
relative Schutz reichen soll. Dariiber gehen die Ansichten
stark auseinander. Die zitierten Autoren verlangen, dass
schon bei den Bebauungsplinen die Forderungen des Luft-
schutzes weitgehend beriicksichtigt werden. Vauthiers) sagt
(pag. 219): Il faut reconstruire les villes sur de nouvelles
bases“. Schoszberger erklirt (pag.206): ,Die Bandstadt
ist die Stadt der Zukunft“. Diese Auffassungen sind abzu-
lehnen. Im gtinstigsten Falle wiirden sich diese Massnahmen
erst nach Jahrzehnten auswirken. Dann werden sich die
Verhiltnisse so stark geandert haben, dass entweder mit
Luftangriffen tiberhaupt nicht mehr zu rechnen ist oder die
Angriffsmittel andere geworden sind. Vauthier schlagt z. B.

') Hans Schossberger, ,Bautechnischer Luftschutz®, Bauweltverlag,
Berlin 1934. (Besprochen auf S. 6o dieser Nummer. Red.)

%) Giuseppe Stellingwerff, ,La Protezione dei Fabbricati dagli attachi
acrei”, Ulrico Hoepli, editore, Milano 1933.

%) Lt.-Cl. Vauthier, ,Le danger aérien et I'avenir du pays“, Editions
Berger-Levrault, Paris 1930.

Hochh#iuser vor. Diese bieten wohl heute dem vertikalen
Bombenabwurf ein kleines Ziel, werden jedoch spiter durch
Beschiessung mit Avions-Canons4) leicht zu treffen sein.
Wir glauben, dass der bautechnische Luftschutz sich
auf Mittel beschrinken soll, die mit moglichst geringem
Kostenaufwand in kurzer Zeit durchgefithrt werden kdnnen.
a) Schuts gegen Brisanzbomben: Natirlich ist auf
diese Weise kein Schutz gegen Volitreffer schwerster
Brisanzbomben zu erreichen. Eine Bombe von 2500 kg
Gewicht, aus 5000 m Hohe abgeworfen, durchdringt nach den
Formeln von Stellingwerff2) 35 m Erde oder 6,0 m Beton
und nach Peres?) 21 m Erde oder 5,0 m Beton?)
Diese Zahlen geben nur die Gréssenordnung an, da einer-
seits die Bombengewichte und Abwurfhéhen mit den Fort-
schritten der Aviatik noch zunehmen konnen, anderseits
die Formeln nur Anndherungen sind. Sie zeigen aber,
dass auch mit den raffiniertesten Mitteln der Befestigungs-
technik ein Schutz gegen Volltreffer sehr schwer ist. Fir
den Gasdruck und die Splitterwirkung in unmittelbarer
Nahe der explodierenden Bombe ergeben sich ebenfalls
so grosse Werte, dass Gebiude dagegen nicht zu schiitzen
sind. Anderseits kann selbstverstandlich nur eine sehr
beschrankte Anzahl schwerster Bomben abgeworfen werden.
Auch ist die Treffsicherheit bei Abwurf aus grosser Hohe
gering, die Streuung wird bei Horizontalflug auf 49/, der
Abwurfhohe geschatzt. Die Wahrscheinlichkeit eines Voll-
treffers auf ein bestimmtes Gebiude ist also sehr gering.
Die grosste Gefahr
fir die Gebaude be-
deutet der Lufistoss,
dernachden Versuchen 5,
der  chemisch-techni-
schen Reichsanstalt in
Berlin?) fir 1000 kg
Sprengstoff in 20 m
EntfernungeinenDruck
von p,, = 50000 kg/m?
und in 1000 m Ent-
fernung einen Druck
von 190 kg/m? ergibt.
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Abb. 1. Luftstoss einer 1000 kg-Bombe
(nach Schoszberger).
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dem Winddruck ver-
glichen werden, da der
Luftstoss nur ausserst
kurze Zeit wirksam ist. Abb. 2 zeigt nach?) den Druck p in
Funktion der Zeit, fir 1000 kg Sprengstoff und d = 500 m.

Die erwiahnten Versuche haben ergeben, dass ein
Luftstoss von 2000 kg/m? die Standfestigkeit der Gebaude

nicht gefahrdet.

Abb. 2. Luftstoss p in Funktion der Zeit
fiir d = 500 m.
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yr—————=t "  durch den Luftstoss lassen
sich fiir einfache Fille
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Abb.3 Wiruntersuchen einen ein-

fachen Balken nach Abb. 3.
Wir setzen (Abb. 2)
P =pmsinat, a = 40 =, fir o < ¢< o,025
p=o fir o,025 <¢
und erhalten nach der Grundgleichung der Dynamik fol-
gende partielle Differentialgleichungen :

2 4y .
maij —{—jEZ%:p,,, sinat, o<t T = 0,025 sec (1)

m 0 04

02 +JE (7}: T

#) Vergl. hieriiber | L’Illustration” vom 17. Nov. 1934, pag. 383.

®) Dr. L. Bendel hat die wichtigsten Formeln in seinen  Merkblittern
fir die baulichen Luftschutzmassnahmen“ (vgl.  SBZ“ Bd. 104, Seite 213)
zusammengestellt, Die obigen Zahlen gelten fiir homogene und unendlich
grosse Ziele,
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