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Belastungsgrenzen des Hohlzylinders unter Innendruck bei Berücksichtigung der Plastizität.
Von Dr. teohn. PAUL KOHN, Prag.

Auf Grund der Huber-Mises-Hencky'schen Fliessbedingung wird die Belastungsgrenze

für den offenen und geschlossenen Hohlzylinder aus zähem Material bestimmt

und in Diagrammen dargestellt. Ferner wird das Halbmesserverhältnis berechnet, für
das bei der Entlastung die Fliessgrenze neuerlich überschritten wird, und schliesslich

auf die plastischen Deformationen eingegangen. — An Beispielen wird die neue

Dimensionierung mit der üblichen verglichen.

Bei der Dimensionierung der durch einen inneren
Ueberdruck beanspruchten dickwandigen Hohlzylinder war
es bisher üblich, als Belastungsgrenze jenen Ueberdruck
anzusehen, bei dem gerade der Innenmantel des

Hohlzylinders aus dem elastischen in den plastischen Zustand
übergeht. Bei einem zähen Material mit ausgesprochener
Fliessgrenze bringt aber eine weitere Drucksteigerung noch
keine Gefahr mit sich, wie z. B. die Versuche von Krüger1)

zeigen, da der Hohlzylinder als Ganzes erst zu fliessen

beginnt, wenn sich die plastische Zone bis an den Aussen-
mantel erstreckt. Als äusserste Belastungsgrenze wird man
daher jenen Ueberdruck ansehen müssen, bei welchem der
Aussenmantel des Hohlzylinders bis zur Fliessgrenze
beansprucht wird. Da praktisch jedes Gefäss öfters belastet
und daher auch entlastet wird, so tritt, um eine Zerstörung
des Materials hintanzuhalten, als weitere Forderung die
Bedingung hinzu, dass bei der Entlastung an keiner Stelle des

Hohlzylihders die Fliessgrenze neuerlich überschritten wird.
A. Nädai8) gibt die allgemeine Lösung für den

Spannungszustand des plastischen Rohres mit konstanter axialer
Dehnung an und bestimmt die Integrationskonstanten für
den Sonderfall, dass die axiale Dehnung null ist. Er setzt
dabei voraus, dass man im ganzen plastischen Gebiet die
elastischen Dehnungen gegenüber den plastischen
vernachlässigen darf. Dies ist jedoch in der Nähe der Grenze
zwischen elastischem und plastischem Gebiet nicht zulässig,
da in ihr selbst elastische Dehnungen vorhanden, die
plastischen Dehnungen aber null sind. In der vorliegenden Arbeit
soll dem vorerwähnten Umstand wenigstens näherungsweise

Rechnung getragen werden, was nur formal eine
kleine Aenderung der Ausgangsgleichungen mit sich bringt;
anderseits sollen aber die beiden wichtigsten technischen
Belastungsfälle, nämlich der an den Enden offene und der
an den Enden geschlossene, durch Innendruck beanspruchte
plastische Hohlzylinder behandelt werden. Es sei gleich
vorweggenommen, dass sich für den geschlossenen
plastischen Hohlzylinder die axiale Dehnung zu null ergibt, und
dass für diesen Fall die schon von Nädai für den
Spannungszustand angegebenen einfachen Beziehungen gelten.

Für ein elastisch-plastisches Material gelten für den
in axialer Richtung unbegrenzt gedachten und axensym-
metrisch belasteten Hohlzylinder die folgenden Deformationsbedingungen

in den Zylinderkoordinaten r, <p, z.
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und i/ß den Plastizitätsmodul.

') W. Krüger, Forschungsarbeit d. V. D. I., H. 87 ; 1910.

*) A. Nädai, Der bildsame Zustand der Werkstoffe; Verlag Springer,

1927.

Im elastischen Gebiet ist ß o und ar% -(- a^ -f- o2*

— arav — ar oz — av az <^a08, wenn au die Spannung an
der Fliessgrenze bedeutet.

Im plastischen Gebiet ist die Fliessbedingung von
Huber-Mises-Hencky erfüllt, also

+ ova + oz Or Oa Or Oz o<p az <Joa (I)
und ß ist eine vom Verformungszustand des Hohlzylinders
abhängige Veränderliche.

Für das plastische Gebiet ersetzen wir nun näherungsweise

die Deformationsbedingungen durch:
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ersetzen und # a -\- ß einführen.
Der Fehler, den man durch diesen Ersatz begeht,

ist vernachlässigbar; er ist klein in der Grenzschicht
zwischen elastischem und plastischem Gebiet und er wird umso
kleiner, je grösser die Entfernung von der Grenzschicht
ist, weil sich in grösserer Entfernung von ihr a gegen ß
vernachlässigen lässt.

Zur Bestimmung des Spannungs-Dehnungszustandes
sind weiter noch die Gleichgewichtsbedingungen in radialer
und axialer Richtung notwendig. Diese
lauten

und

dar
dr
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(3 b)

worin q (s. Abb. 1) den in axialer Richtung
auf die Zylinderböden wirkenden, vorläufig
noch beliebig grossen inneren Ueberdruck
bedeuten soll.

Da es sich beim axial unbegrenzten,
durch Innendruck beanspruchten Hohl- Abb. 1.

zylinder um einen ebenen axensym-
metrischen Deformationszustand handelt, ist ez konstant
und alle übrigen in den Gleichungen (1) bis (3) vorkommenden

Grössen und daher auch d sind nur Funktionen
der Veränderlichen r.

Eliminiert man unter Beachtung dieses Umstandes

« und az aus den Gleichungen (2), so ergibt sich
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Aus Gleichung (6) folgt ferner
2 (1 — y8)y

^-+17?V' V3

und aus den Gleichungen (2 c), (5), (10 a) ergibt sich
o .-4-JL. 1p*

• (8)

(9)

(10 a)

(10 b)

Durch Integration von Gleichung (8) und (9) erhält man

¦v ¦Ku («)

V
tps (12)

Durch die Gleichungen (10), (n) und (12) sind die
Radialspannungen or, die Tangentialspannungen av und
die Axialspannungen az im plastischen Teil eines
Hohlzylinders bestimmt, wenn die Radialspannungen an den
Grenzen des plastischen Gebiets bekannt sind.

Betrachten wir nun den Grenzfall, dass sich das
plastische Gebiet durch die ganze Wandstärke erstreckt, so
ist mit den Bezeichnungen der Abb. 1 für r=a die
Radialspannung gleich dem inneren Ueberdruck, also ara — p
und xp xpa, und für r b ist die Radialspannung gleich
null, also arb= o und y> yj0. Diese Randbedingungen in
Gleichung (n) und (12) eingeführt ergeben

P_ _ 1 (1 + y«.) (' — v>i>)

ov, "' ül/7 (t— y«)'li+V*)

und

m (13)

«V
¦ V»

(14)

Da bei gegebenem Halbmesser Verhältnis bja und
gegebener Fliessgrenze a0 nur ein ganz bestimmter Druck p
den ursprünglich elastischen Zylinder bis zu seiner Aussen-
wand plastisch macht, so ist noch eine weitere Gleichung
zur Bestimmung von p, yja, y>b erforderlich. Diese Beziehung
ist die noch nicht verwendete Gleichgewichtsbedingung (3b).

Mit den Gleichungen (8), (9), (tob), (12) wird

und nach Ausführung der Integration in Gleichung (3 b)
mit Beachtung der Randbedingungen ergibt sich

+ V»

r*
(15)

Aus den Gleichungen (13), (14), (15) lassen sich nun
bja, y)a, Wb als Funktionen von pja0 und q/a0 berechnen.
Man erhält:
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In diesen und auch den früheren Gleichungen hat
bei einer Belastung des Hohlzylinders durch einen inneren
Druck nur das obere positive Vorzeichen einen
physikalischen Sinn. Dies geht aus Gleichung (16 a) hervor,
denn für ein positives und wachsendes p muss auch das
Halbmesserverhältnis bja ständig zunehmen.

Für den Sonderfall» dass der Zylinder an den Enden
offen ist, iät in den Gleichungen (16) q o zu setzen.

Für den Sonderfall, dass der Zylinder an den Enden
geschlossen isj, «wird p — q und die Gleichung (16)
vereinfacht sich auf
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Abb. 2. Abb. 3.

Gleichungen (16 a) und (17) geben an, bei welchem
Halbmesserverhältnis bja der innere Ueberdruck p bei
einem Material von der Fliesspannung a0 den offenen
beziehungsweise geschlossenen Hohlzylinder bis zu seiner
Aussenwand plastisch macht. Bei einem höheren Ueberdruck

würde, wenn keine Verfestigung des Materials
eintritt, der Hohlzylinder auseinander fliessen, während bei
einem niedrigeren Ueberdruck die plastische Zone sich
nicht bis an die Aussenwand erstreckt. Im Diagramm
Abb. 2 haben wir Beziehung (16 a) (q o) für den offenen
Zylinder und in Diagramm Abb. 3 Beziehung (17) für den
geschlossenen Zylinder dargestellt. Formel (17) wurde
schon von Nädai für den Sonderfall, dass die axiale
plastische Dehnung sz o ist, angegeben. Aus Gleichung (5)
erkennt man, dass wegen ipa y>b 1, sz o wird. Für
den geschlossenen plastischen Hohlzylinder unter innerem
Ueberdruck ist daher unter Voraussetzung der eingeführten
Näherung die gesamte axiale Dehnung an jeder Stelle null.

Um den Unterschied gegenüber der üblichen
Berechnungsweise zu zeigen, haben wir in den Diagrammen
Abb. 2 und 3 auch die Abhängigkeit pjo0 von bja für jenen
Belastungsfall dargestellt, für welchen der Innendruck p
gerade die Innenwand des Hohlzylinders plastisch macht.
Diese Beziehung erhält man aus der Bedingung, dass die
Spannungen an der Innenwand des elastischen
Hohlzylinders die Huber-Mises-Hencky'schen Fliessbedingung
erfüllen.

Man hat also die Spannungen an der Innenwand
des durch die Drücke p und q belasteten elastischen
Hohlzylinders (s. z. B. Föppl8)) in die Fliessbedingung (1)
einzuführen und erhält so mit q o und q =p für den offenen
bzw. geschlossenen Hohlzylinder

1/3(4)
bzw.

+ 1 n -m-
Da es allgemein üblich ist, dünnwandige Hohlzylinder

nach der sogenannten Kesselformel, die sich aus der
Annahme ableitet, dass die Tangentialspannungen gleichförmig
über die Wanddicke verteilt sind, zu dimensionieren; sei
haben wir auch diese Beziehung

in Diagramm Abb. 2 und 3 dargestellt.
Man erkennt aus Abb. 2, dass beim offenen

Hohlzylinder eine Bemessung nach dieser Formel eigentlich
unzulässig ist, da sie eine höhere Sicherheit vortäuscht,
als wirklich vorhanden ist. Beim geschlossenen Hoblzylinder
kann man die Kesselformel, wie Abb. 3 zeigt, zu Recht
anwenden, solange das Halbmesse*verbältnis bja kleiner
als 1,4 ist.

Wir untersuchen weiter, wie sich der plastische
Hohlzylinder nach vollkommener Entlastung verhält. Da im
entlasteten Zustand die höchsten Beanspruchungen an den
Stellen der grössten plastischen Deformationen, das heisst>

a) A. Föppl, Vorlesungen über technische Mechanik, Bd. 3.
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wie später gezeigt, an der Innenwand des Hohlzylinders
auftreten, so wollen wir unsere Untersuchung auf jenen
Belastungsfall beschränken, wo bei der Entlastung an der
Innenwand die Fliesspannung wieder erreicht wird.

Im belasteten plastischen Zustand verursachen der
Innendruck p und q an der Innenwand des Hohlzylinders
tangential und axial Spannungen, die sich aus den Gleichungen

(10) mit ip xpa ergeben. Um die Spannungen
an der Innenwand im entlasteten Zustand zu erhalten,
denken wir uns auf die Innenwand des Hohlzylinders den
Zug p und auf die Zylinderböden den Zug q wirken. Die
durch diese Belastung an der Innenwand hervorgerufenen
Spannungen ergeben sich leicht aus den Beziehungen für
den Spannungszustand des elastischen Hohlzylinders (s. z. B.
Föppl3)). Ueberlagert man nun den plastischen und
elastischen Spannungszustand, so heben sich die Belastungen
p und q an der Innenwand und den Böden auf, und die
an der Innenwand des entlasteten Hohlzylinders
zurückbleibenden Spannungen ergeben sich zu

/b\*
-p o, Oq p-\-TF=OaH>a—P

V3

+ 1

Tz
H>a Oo V< vv — 1m

(18)

Erfüllen diese Spannungen die Fliessbedingungen (1),
so tritt bei der Entlastung" wieder Fliessen an der Innenwand

ein. Gleichungen (18) in Gleichung (1) eingeführt
ergeben

\<W \a) '\<Tt "dl

Für den offenen Hohlzylinder ist in den Gleichungen
(16a), (16b) und (19) wieder j=o zu setzen; aus diesen
Beziehungen lassen sich dann pjaa und bja numerisch
bestimmen. Man erhält pja0 0,89 und bja 2,2. Bis zu
diesen Werten tritt daher beim offenen plastisch voll
ausgenützten Hohlzylinder bg| der Entlastung kein Ueber-
schreiten der Fliessgrenze ein und daher ist das Diagramm
nur bis zu diesen Werten zu benützen. Bei einer höheren
Belastung lässt sich der Hohlzylinder plastisch nicht mehr
voll ausnützen.

Für den geschlossenen Hohlzylinder
vereinfacht sich Gleichung (19) mit q=p
auf „Z./'AVä "0\a/ -i/—

nu)-1]
und mit Gleichungen (17) ergibt sich
p/oo 0,92 und b\a 2,22, als Grenzwerte

für den geschlossenen plastisch voll
ausgenützten Hohlzylinder.

Um aus dem Spannungsdehnungsdia-
gramm des Zugstabes (s. Abb. 4) feststellen

zu können, welcher Teil der Span-
nungsdehnungslinie bei der Belastung des Hohlzylinders
ausgenutzt wird, ist es notwendig, auf ege Formänderungen
einzugehen.

Im einaxigen Spannungsdebnungsdiagramm ist (vgl.
Gleichung 2)

e ¦& a0 (20)

Der grösste Wert von e ergibt sich aus dem grössten
Wert von &. Durch Integration von Gleichung (7) erhält man

K

Abb. 4

#
]/i — yA

(21)

Da sich aus Gleichung (12) leicht nachweisen lässt, dass y>

mit wachsendem r kleiner wird, so ist, wie zu erwarten,
ß und damit auch die Dehnung an der Innenwand des
Hohlzylinders am grössten. Setzen wir für r a, fi Da

und fite r=b, ¦&=&b', so ergibt sich aus Gleichungen (14)
und (21)S *-*£(t)' ¦••¦•(-)
Da die Aussenwand des Hohlzylinders bei einer Belastung
durch den Druck p und q nach Gleichung (16 a) gerade
aus dem elastischen in den plastischen Zustand übergeht,
so müssen die Deformationen der Aussenwand, berechnet
aus dem elastischen Spannungszustand, gleich sein den
Deformationen, gerechnet aus dem plastischen Spannungszustand.

Bezeichnen wir die elastischen Deformationen und
Spannungen mit Strich, so muss für r b, u «&' und
Ezb Ezb sein.

Da an der Aussenwand oro arb o, so wird mit
Gleichungen (2 b) und (2 c)

#& \o<pb — — oZbj et \ovb — — ozb'j

und ¦&!, lazb avb\ a \azb — — avb')
Ferner muss auch für dEj elastischen Spannungen die
Fliessbedingung (1) erfüllt,also avb'1-
o02 sein und aus Beziehungen (10) folgt ferner

avb -^yJlund azb a0|rp + |/i — yjbA.

Aus diesen fünf Gleichungen lässt sich ov b, ozb,

o<pb, oZb eliminieren und #& berechnen. Man erhält

ozb'2 — avb oZb

V w*1
5

+ j(»*a — -jm~\~1)- (23)

Mit den Beziehungen (16), (22), (23) lässt sich nun aji)„
in Abhängigkeit von bja berechnen. In Diagramm Abb. 2
haben wir die Grösse a/#a für den offenen Hohlzylinder
(^=0) dargestellt, wobei wir »«=10/3 angenommen haben.
Für den geschlossenen Hohlzylinder vereinfachen sich
wegen y>a y>b 1 Gleichungen (22) und (23) und man
erhält direkt

'<z\2]jj
¦0-a \t) tV m -f-1.¦»a \ b ] 2

Im Diagramm Abb. 3 haben wir die Grösse ot/#a für den
geschlossenen Hohlzylinder dargestellt, wobei wir wieder
m 10/3 vorausgesetzt haben.

Da nun aj&a für jedes Halbmesserverhältnis bja
gegeben ist, so lässt sich die grösste Dehnung ea im
Spannungsdehnungsdiagramm nach Gleichung (20) aus

ea a-T" (24)

bestimmen.
Von der Spannungsdehnungslinie soll nur der

horizontale Teil bis zum Verfestigungsbeginn ausgenutzt werden.

Da im Verfestigungsgebiet bei Be- und Entlastung
Hysteresis-Schleifenbildung eintritt, was zu einer Zeimür-
bung des Materials führt, so ist bei der Dimensionierung
zu beachten, dass die grösste Dehnung ea im
Spannungsdehnungsdiagramm nach Gleichung (24) kleiner sein muss,
als die Dehnung f0 des verwendeten Materials beim
Verfestigungsbeginn.

Bei den a/#fl Kurven fällt auf, dass für bja=i nicht,
wie zu erwarten wäre, #„ a sondern #a ]> <* ist. Dies
hängt mit der eingangs gemachten Näherung zusammen
und weist darauf hin, dass die berechnete Dehnung sa etwas
grösser als ihr Sollwert ist; die Berechnung der Dehnung
enthält daher schon eine kleine Sicherheit in sich.

An einem Beispiel soll noch die Anwendung des
neuen Berechnungsverfahrens gezeigt und mit der üblichen
Berechnung verglichen werden: Das für den Hohlzylinder
verwendete Material sei Flusstahl mit einer Fliessgrenze
Co 2800 kg/cm8, einem Elastizitätsmodul i/a 2,i.io6kg/cm*
und einer Dehnung bis zum Verfestigungsbeginn von ev

0,025. Der wirksame Innendruck betrage 1000 kg/cm8 und
die gewählte Sicherheit 1,4. Unter dieser Voraussetzung
hat die Dimensionierung auf Grund eines Innendruckes
von p 1400 kg/cm1 zu erfolgen, und es wird pjoo 0,5.
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Für den offenen Hohlzylinder ergibt sich mit diesem
Wert aus Diagramm Abb. 2 bja 1,58 und a/&a 0,31.
Aus Gleichung (24) wird sa 0,0043 < e0, während die
übliche Berechnungsweise bja 2,755 ergeben würde. Für
den geschlossenen Hohlzylinder wird mit p/a0 0,5 aus
Diagramm Abb. 3 bja — 1,54, a/#a 0,355 und mit Gleichung

(24) wird sa 0,0038 <C sv, während die übliche
Berechnungsweise bja 2,75 ergibt. Noch augenscheinlicher
wird der Unterschied der beiden Dimensionierungsarten,
wenn pjo0 grösser als ljyjist. Für diesen Wert ergibt sich
nach der üblichen Berechnungsweise bja 00, während
nach der neuen für den offenen Hohlzylinder b\a 1,69
und für den geschlossenen bja 1,65 ist.

Zusammenfassend lässt sich folgendes sagen: Die
übliche Dimensionierung durch Innendruck beanspruchter
Hohlzylinder aus zähem Material, die voraussetzt, dass die
Belastungsgrenze bei jenem Innendruck liegt, der die Innenwand

des Hohlzylinders bis an die Fliessgrenze beansprucht,
ergibt bei hohen Innendrücken Wandstärken, die entweder
zu gross oder überhaupt nicht ausführbar sind. Anderseits
wurde gezeigt, dass man bei einem zähen Material mit
ausgesprochener Fliessgrenze bis zu einem Halbmesserverhältnis

von rd. 2,2 als Belastungsgrenze jenen Innendruck

ansehen darf, der den ganzen Hohlzylinder bis zu
seiner Aussenwand plastisch macht. Zu beachten ist dabei
ausserdem, dass die grösste Dehnung im Spannungsdiagramm

kleiner ist als die Dehnung des verwendeten
Materials bis zum Verfestigungsbeginn. Um die
Dimensionierung zu vereinfachen, wurden die gefundenen
Beziehungen in Diagrammen dargestellt. Schliesslich wurde
auch gezeigt, dass die Kesselformel beim geschlossenen
dünnwandigen Hohlzylinder bis zu einem Halbmesserverhältnis

von 1,4 gute Näherungswerte ergibt, während
man sie auch schon beim dünnwandigen offenen
Hohlzylinder für die Dimensionierung nicht anwenden sollte.

Bautechnischer Luftschutz.
Von ROB. A. NAEF, Dipl. Ing., Zürich.

Es soll hier nicht die Notwendigkeit des zivilen
Luftschutzes untersucht werden. Dies ist ein politisches Problem.
Der Bundesrat hat durch seinen Beschluss vom 29. Sept.
1934 Stellung genommen. Damit erübrigt sich eine weitere
Diskussion an diesem Orte, hingegen interessieren den
Ingenieur die Anforderungen des zivilen Luftschutzes an
die Bautechnik und die Möglichkeiten, diese Forderungen
zu erfüllen. Im Ausland ist bereits eine umfangreiche
Literatur über diese Frage erschienen. Schoszberger1) gibt ein
Literaturverzeichnis mit 315 Nummern. Wir zitieren nur
drei der interessantesten Bücher1)*)8).

Der Luftangriff gegen das Hinterland arbeitet in der
Hauptsache mit drei Mitteln: a) Brisanzbomben, b)
Brandbomben, c) Chemische Kampfstoffe.

Ein absoluter Schutz der Bevölkerung und wichtiger
Objekte gegen diese Kampfmittel ist unmöglich. Es kann
sich nur darum handeln, zu entscheiden, wie weit der
relative Schutz reichen soll. Darüber gehen die Ansichten
stark auseinander. Die zitierten Autoren verlangen, dass
schon bei den Bebauungsplänen die Forderungen des
Luftschutzes weitgehend berücksichtigt werden. Vauthier») sagt
(pag. 219): „fi faut reconstruire les villes sur de nouvelles
bases". Schoszberger erklärt (pag. 206): „Die Bandstadt
ist die Stadt der Zukunft". Diese Auffassungen sind
abzulehnen. Im günstigsten Falle würden sich diese Massnahmen
erst nach Jahrzehnten auswirken. Dann werden sich die
Verhältnisse so stark geändert haben, dass entweder mit
Luftangriffen überhaupt nicht mehr zu rechnen ist oder die
Angriffsmittel andere geworden sind. Vauthier schlägt z. B.

l) Hans Schoszberger, .Bautechnischer Luftschutz", Bauweltverlag,
Berlin 1934. (Besprochen auf S. 60 dieser Nummer. Red.)

*) Giuseppe Stelltngwerff, 1(La Protesione dei Fabbricati dagli attschi
aerei", Ulrico Hoepli, editore, Milano 1933.

») Lt.-CI. Vauthier, „Le danger afirien et l'avenir du pays", Editiona
Berger-Levrault, Paris 1930.

Hochhäuser vor. Diese bieten wohl heute dem vertikalen
Bombenabwurf ein kleines Ziel, werden jedoch später durch
Beschiessung mit Avions-Canons *) leicht zu treffen sein.

Wir glauben, dass der bautechnische Luftschutz sich
auf Mittel beschränken soll, die mit möglichst geringem
Kostenaufwand in kurzer Zeit durchgeführt werden können,

a) Schutz gegen Brisanzbomben: Natürlich ist auf
diese Weise kein Schutz gegen Volltreffer schwerster
Brisanzbomben zu erreichen. Eine Bombe von 2500 kg
Gewicht, aus 5000 m Höhe abgeworfen, durchdringt nach den
Formeln von Stellingwerffa) 35 m Erde oder 6,0 m Beton
und nach Peres») 21 m Erde oder 5,0 m Beton5)
Diese Zahlen geben nur die Grössenordnung an, da einerseits

die Bombengewichte und Abwurfhöhen mit den
Fortschritten der Aviatik noch zunehmen können, anderseits
die Formeln nur Annäherungen sind. Sie zeigen aber,
dass auch mit den raffiniertesten Mitteln der Befestigungstechnik

ein Schutz gegen Volltreffer sehr schwer ist. Für
den Gasdruck und die Splitterwirkung in unmittelbarer
Nähe der explodierenden Bombe ergeben sich ebenfalls
so grosse Werte, dass Gebäude dagegen nicht zu schützen
sind. Anderseits kann selbstverständlich nur eine sehr
beschränkte Anzahl schwerster Bomben abgeworfen werden.
Auch ist die Treffsicherheit bei Abwurf aus grosser Höhe
gering, die Streuung wird bei Horizontalflug auf 4 °/o der
Abwurfhöhe geschätzt. Die Wahrscheinlichkeit eines
Volltreffers auf ein bestimmtes Gebäude ist also sehr gering.

Die grösste Gefahr
für die Gebäude
bedeutet der Luftstoss,
der nach den Versuchen
der chemisch-technischen

Reichsanstalt in
Berlin1) für 1000 kg
Sprengstoff in 20 m
Entfernung einen Druck
von p„ 50 000 kg/m2
und in 1000 m
Entfernung einen Druck
von 190 kg/m2 ergibt.
Abb. 1 zeigt
Funktion der
nung d vom
sionsherd.

Dieser Druck kann
nicht unmittelbar mit
dem Winddruck
verglichen werden, da der
Luftstoss nur äusserst
kurze Zeit wirksam ist.
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Abb. 1. Luftstoss einer
(nach Schoszberger).
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Abb. 2. Luftstoss p in Funktion der Zeit
für d 500 m.

Abb. 2 zeigt nach1) den Druck p in
Funktion der Zeit, für 1000 kg Sprengstoff und d 500 m.

Die erwähnten Versuche haben ergeben, dass ein
Luftstoss von 2000 kg/m8 die Standfestigkeit der Gebäude

nicht gefährdet.
Die Beanspruchungen

durch den Luftstoss lassen
sich für einfache Fälle

j auch theoretisch erfassen.
Wiruntersuchen einen
einfachen Balken nach Abb. 3.

Wir setzen (Abb. 2)

p pm sin a t, a 40 n, für o <C / <C 0,025
p o für 0,025 5: '

und erhalten nach der Grundgleichung der Dynamik
folgende partielle Differentialgleichungen:

pmsmat, o<t<T=o,oz$ sec (1)

Abb. 3

fßv _ <9*v

dt*

m d'y
dt* T<t (2)

*) Vergl. hierüber „1/Hlustration" vom 17. Nov. 1934, pag. 383.
6) Dr. L. Bendel hat die wichtigsten Formeln in seinen „Merkblättern

fBr die baulichen Luftsohutzmassnahmen" (vgl. „SBZ" Bd. 104, Seite 213)
zusammengestellt. Die obigen Zahlen gelten für homogene und unendlich
grosse Ziele.
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