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Nr. 5

Belastungsgrenzen des Hohlzylinders unter Innendruck bei Beriicksichtigung der Plastizitat.

Von Dr. techn. PAUL KOHN, Prag.

Auf Grund der Huber-Mises-Hencky’schen Fliessbedingung wird die Belastungs-
grenze fiir den offenen und geschlossenen Hohlzylinder aus zihem Material bestimmt
und in Diagrammen dargestellt. Ferner wird das Halbmesserverhiltnis berechnet, fiir
das bei der Entlastung die Fliessgrenze neuerlich iiberschritten wird, und schliesslich
auf die plastischen Deformationen eingegangen. — An Beispielen wird die neue Dimen-
sionierung mit der iiblichen verglichen.

Bei der Dimensionierung der durch einen inneren
Ueberdruck beanspruchten dickwandigen Hohlzylinder war
es bisher {iblich, als Belastungsgrenze jenen Ueberdruck
anzusehen, bei dem gerade der Innenmantel des Hohl-
zylinders aus dem elastischen in den plastischen Zustand
tibergeht. Bei einem zihen Material mit ausgesprochener
Fliessgrenze bringt aber eine weitere Drucksteigerung noch
keine Gefahr mit sich, wie z. B. die Versuche von Kriiger?)
zeigen, da der Hohlzylinder als Ganzes erst zu fliessen
beginnt, wenn sich die plastische Zone bis an den Aussen-
mantel erstreckt. Als dusserste Belastungsgrenze wird man
daher jenen Ueberdruck ansehen miissen, bei welchem der
Aussenmantel des Hohlzylinders bis zur Fliessgrenze be-
ansprucht wird. Da praktisch jedes Gefiss ofters belastet
und daher auch entlastet wird, so tritt, um eine Zerstorung
des Materials hintanzuhalten, als weitere Forderung die Be-
dingung hinzu, dass bei der Entlastung an keiner Stelle des
Hohlzylinders die Fliessgrenze neuerlich aberschritten wird.

A. Nadai2) gibt die allgemeine Losung fiir den Span-
nungszustand des plastischen Rohres mit konstanter axialer
Dehnung an und bestimmt die Integrationskonstanten fir
den Sonderfall, dass die axiale Dehnung null ist. Er setzt
dabei voraus, dass man im ganzen plastischen Gebiet die
elastischen Dehnungen gegeniiber den plastischen ver-
nachlassigen darf. Dies ist jedoch in der Nahe der Grenze
zwischen elastischem und plastischem Gebiet nicht zulassig,
da in ihr selbst elastische Dehnungen vorhanden, die pla-
stischen Dehnungen aber nullsind. In der vorliegenden Arbeit
soll dem vorerwihnten Umstand wenigstens naherungs-
weise Rechnung getragen werden, was nur formal eine
kleine Aenderung der Ausgangsgleichungen mit sich bringt;
anderseits sollen aber die beiden wichtigsten technischen
Belastungsfille, nimlich der an den Enden offene und der
an den Enden geschlossene, durch Innendruck beanspruchte
plastische Hohlzylinder behandelt werden. Es sei gleich
vorweggenommen, dass sich fir den geschlossenen pla-
stischen Hohlzylinder die axiale Dehnung zu null ergibt, und
dass fiir diesen Fall die schon von Nédai fir den Span-
nungszustand angegebenen einfachen Beziehungen gelten.

Fir ein elastisch-plastisches Material gelten fir den
in axialer Richtung unbegrenzt gedachten und axensym-
metrisch belasteten Hohlzylinder die folgenden Deformations-
bedingungen in den Zylinderkoordinaten 7, ¢, z.
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Hierin bedeuten o, g, o, die Normalspannungen;
&r, &g, & die Dehnungen in den Richtungen 7, ¢ und z;
u die radiale Verschiebung eines Punktes am Radius 7;
1/a den Elastizitatsmodul, 7 den Querkontraktionskoeffizient
und 1/f den Plastizititsmodul.

) W. Kriger, Forschungsarbeit d. V. D. L, H. 87; 1970.
2) A. Nidai, Der bildsame Zustand der Werkstoffe; Verlag Sprin-

ger, 1927,

Im elastischen Gebiet ist f = o und 0,2 -+ 6,2 + 0.2
— 6, 6, — 0y 0; — 0, 0, <_ 0o%, wenn o, die Spannung an
der Fliessgrenze bedeutet.

Im plastischen Gebiet ist die Fliessbedingung von
Huber-Mises-Hencky erfiillt, also

6,2+ 0,2 + 0. — 6, 0, — O 0— 0 0z = Go® . . (1)
und g ist eine vom Verformungszustand des Hohlzylinders
abhingige Veranderliche.

Fiir das plastische Gebiet ersetzen wir nun niherungs-
weise die Deformationsbedingungen durch:

e =1 [Gr ot % (0p - o2 )] = %, (2a)
Ep =1 [o,,, — % (0 4+ o,)A — %, == i(2b)
o = [oz — 2 (o + am):l , (2¢)

indem wir in den Klammerausdriicken mit a der Aus-

gangsgleichungen, m ({ﬁr Flusstahl m = 13—0) durch 2 er-

setzen und ¢ = o + f einfihren.

Der Fehler, den man durch diesen Ersatz begeht,
ist vernachlassigbar; er ist klein in der Grenzschicht zwi-
schen elastischem und plastischem Gebiet und er wird umso
kleiner, je grésser die Entfernung von der Grenzschicht
ist, weil sich in grosserer Entfernung von ihr o gegen f
vernachlidssigen lasst.

Zur Bestimmung des Spannungs-Dehnungszustandes
sind weiter noch die Gleichgewichtsbedingungen in radialer
und axialer Richtung notwendig. Diese
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a
worin ¢ (s. Abb. 1) den in axialer Richtung
auf die Zylinderbdden wirkenden, vorlaufig
noch beliebig grossen inneren Ueberdruck
bedeuten soll.

Da es sich beim axial unbegrenzten,
durch Innendruck beanspruchten Hohl-
zylinder um einen ebenen axensym-
metrischen Deformationszustand handelt, ist ¢, = konstant
und alle ibrigen in den Gleichungen (1) bis (3) vorkom-
menden Gréssen und daher auch ¢ sind nur Funktionen
der Verinderlichen 7.

Eliminiert man unter Beachtung dieses Umstandes
# und o, aus den Gleichungen (2), so ergibt sich
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anderseits erhilt man durch Verbindung von Gleichung (1)
und (2c)
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Fithrt man die dimensionslose Grosse
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in die Gleichungen (3a), (4) und (5) ein, so lassen sich
die Grossen ), o,, » als Funktionen der Grosse y dar-
stellen. Man erhalt
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