Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105/106 (1935)

Heft: 11

Artikel: Von der Schauinsland-Schwebebahn

Autor: Redaktion

DOI: https://doi.org/10.5169/seals-47486

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

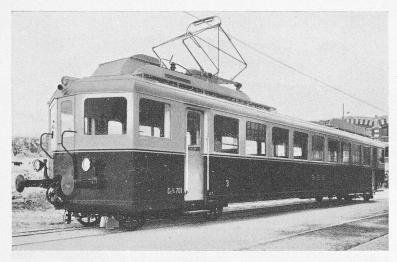
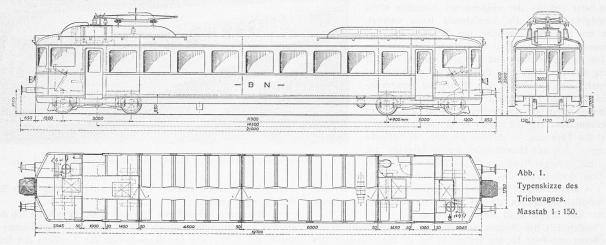



Abb. 2. 200 PS-Leichttriebwagen der BLS, SEB und BN.

Von der Schauinsland-Schwebebahn.

Diese bis jetzt einzige Seilschwebebahn mit frei beweglichen Hängewagen, die seit dem 1. Juli 1930 im Betrieb steht, ist im November 1933 eingehend untersucht und nachgeprüft worden. Das Ergebnis war, dass alle Teile gesund sind und insbesondere die beiden endlosen Zugseile, an die die Wagen festgeklemmt werden, noch keinerlei Abnützung zeigten, ebensowenig die vier in der Mitte der 3,6 km langen Bahn mit den Spanngewichten belasteten Tragseile. Seither hat sich endlich die seit dem Unfall vom 26. November 1932 rückläufige Bewegung der Fahrgästezahl wieder in eine Zunahme verwandelt und es wäre der Bahn zu wünschen, dass sie recht oft ihre volle Leistungsfähigkeit von 330 Fahrgästen in der Stunde und in jeder Richtung ausnützen kann. Diese im Vergleich zur Bahnlänge hohe Leistung wird dadurch erreicht, dass sich gleichzeitig je vier Wagen berg- und talwärts in Bewegung befinden, während die beiden übrigen an den Bahnenden zum Ein- und Ausstieg bereitstehen. Gegenüber dem empfohlenen "Um-

Leichttriebwagen für die Bern-Lötschberg-Simplon-Bahn.

Vor kurzem hat der erste Leichttriebwagen der BLS-Gruppe der bernischen Dekretsbahnen, dem im Verlauf des Jahres noch vier weitere folgen sollen, seine Abnahmefahrten erledigt. Damit wird eine Umstellung des Betriebes ermöglicht, die weniger eine grosse Steigerung der Geschwindigkeit (bis 90 km/h) als vielmehr häufigere Verbindungen und einen wirtschaftlicheren Betrieb ermöglichen soll.

Die Hauptdaten des ersten von den Sécheronwerken Genf in Verbindung mit der Schweiz. Lokomotiv- und Maschinen-Fabrik Winterthur gelieferten Wagens ergeben sich aus Abb. 1. Die Abb. 2 zeigt den betriebsfertigen Wagen, der in seinem untern Teil mit Meissnerblau, oben crêmefarbig gestrichen ist. Nebst 92 ledergepolsterten Sitzplätzen dritter Klasse sind 30 Stehplätze vorhanden. Die über den Fenstern in Längsrichtung angebrachten Gepäckträger geben dem Wageninnern ein luftiges, übersichtliches Aussehen.

Die Motorleistung beträgt 2×200 PS, das Leergewicht des Wagens 34 t. Der für einmännige Bedienung ausgerüstete Wagen besitzt Sicherheitspedal, luftbetätigte Türen und Einstiegtreppen, Fensterwischer, optische Signalgebung, Lautsprecheranlage zur Ansage der Stationen, elektr. Widerstands und Westinghousebremse. Im Gegensatz zu den SBB-Wagen sind leichte Kupplungen vorgesehen, die das Mitfahren von 2 bis 3 leichten Anhängewagen im Vorortverkehr ermöglichen. Die Drehgestelle besitzen innenliegende SKF-Rollenlager.

Zur guten Ausnützung der Grundfläche des Wagens ist die ganze elektrische Apparatur, bestehend aus ölgekühltem Transformator (Abb. 3), Hochspannungssicherung, Stromabnehmer, mechanopneumatischer Schützensteuerung, Drosselspulen und Bremswiderständen, im Dach eingebaut (Abb. 4). Die Gehäuse der beiden in Serie geschalteten Trammotoren sind geschweisst und mit einseitiger Verzahnung versehen, Abb. 5.

steigen in der Luft" zur Unterteilung langer Strecken, scheint mir das höchstens dreimalige Anhalten in den Vierteln und bei der Mittelhaltestelle der Bahn, infolge des höchstens 20 sec dauernden Stillsetzens der Zugseile während des Kuppelns, entschieden angenehmer. Aufgefallen sind mir die ausserordentlich geringen lotrechten Schwankungen des Hängewagens beim Ueberfahren der Stützen, sodass der Genuss der viertelstündigen Fahrt zur Ueberwindung von 750 m Höheunterschied in keiner Weise beeinträchtigt wird.

Die gewisse Beunruhigung, die der schwere Unfall 1932 hervorgerufen hatte, ist längst überwunden, wohl auch dank der getroffenen Sicherungen gegen die Folgen menschlicher Unzuverlässigkeiten, wodurch jetzt die selbe Sicherheit wie bei Pendelbahnen mit ständig festgeklemmten Wagen erreicht ist. Diese Ergänzungen bestehen darin, dass in die Kuppelstellen zwei Kontakte so eingebaut wurden, dass der Kuppelstrom nur dann eingeschaltet werden kann, wenn der Wagen auf den Zentimeter genau eingefahren worden ist. Das Telephon wurde so geschaltet, dass es die vom Schaffner abzugebende letzte Meldung aus dem Wagen nur dann dem Maschinisten vermittelt, wenn beide Zugseile einwandfrei gekuppelt sind; der Notruf jedoch ist bei Bruch des einen Seiles immer über das andere möglich. Endlich ist auf dem Wagendach ein Haken angebracht worden, der das Abrutschen eines allfällig nicht gekuppelten Seiles verhindern soll. Die früheren Betriebsvorschriften sind dahin ergänzt, dass nach der Abgabe des Bereit-Zeichens, das wie früher völlig unabhängig von jedem Mechanismus nach der vom Schaffner überwachten Kupplung von ihm zu geben ist, nach dem Schliessen der Wagentüre vom Schaffner aus dem abfahrtsbereiten Wagen der Maschinist telephonisch anzurufen ist. (Vergl. hierzu den Bericht von Ministerialrat Seeger in "Verkehrstechnik" 1933, Heft 7, Seite 167).

Die auf Seite 318 des 100. Bandes der "SBZ" gestellten fünf Fragen lassen sich folgendermassen beantworten:

 Der Hängewagen war vom Schaffner nicht genau in die Kuppelstelle eingefahren worden. Dadurch wurden zwar beide Zugseile angehoben, jedoch konnte nur das eine von den Klemmbacken erfasst werden, während diejenigen des zweiten gar nicht betätigt wurden. Da aber der Schaffner entgegen der Vorschrift, den Kuppelvorgang nicht mit der nötigen Aufmerksamkeit aus der Mitte der Fahrrinne verfolgte, konnte ihm die Fehlkupplung entgehen. (Die mechanischen Vorgänge sind den dem Bericht Seeger beigegebenen Zeichnungen 1 und 2 in der "Verkehrstechnik", Seite 176, zu entnehmen).

2. Die Automatisierung der Kupplung bestand nur soweit, als nur bei stillgesetzten Zugseilen Kupplungsstrom zur Verfügung stand. Diese Abhängigkeit besteht auch heute noch.

Einmal eingeleitet, vollzog sich das Anheben beider Zugseile, die Bewegung der Kuppelschiene und das Senken des Seileinhebers selbsttätig, auch wenn gar kein Wagen in der Kuppelstelle stand. Wie schon erwähnt, ist dies jetzt zufolge der eingebauten Kontakte nicht mehr möglich. Nicht die Vorrichtung hatte versagt, sondern die unrichtige Stellung des Wagens hat das Festklemmen am zweiten Seil verhindert.

3. Der Schaffner kann und hat auch heute noch die Kupplung aus der Mitte der Fahrrinne zu beobachten; er kuppelt erst, nachdem alle Fahrgäste eingestiegen sind. Aus der Fahrrinne tritt er zur Meldestelle an der Bahnhofswand und gibt dort das "Fertig" Zeichen an den Maschinisten. Hierauf begibt er sich in den Wagen, schliesst die Türe und — das ist die neue, unbedingte Sicherung — ruft den Maschinisten durchs Telephon an, was nur bei richtiger Kupplung beider Seile möglich ist.

4. Das Aufleuchten der Lampen ist völlig unabhängig von allen übrigen Sicherungsanlagen und soll dem Maschinisten lediglich bestätigen, dass der Schaffner die Kupplung beobachtet hat, der Wagen also abfahrtbereit ist.

5. Hinsichtlich der Automatisierung ist die Bemerkung in der Beschreibung von Prof. Dr. Ing. Benoit in No. 29 der Zeitschrift des VDI vom 18. Juli 1931 "die vollzogene Kupplung und Entkupplung wird durch Aufleuchten verschiedenfarbiger Lampen dem Maschinisten angezeigt" nicht dahin zu verstehen, dass dies automatisch geschieht. Es ist das wohl der Fall bezüglich der ohne jede Bedienung erfolgenden vollzogenen Entkupplung, während die vollzogene Kupplung durch den Schaffner, nachdem er sich durch Augenschein darüber vergewissert hat, durch Aufleuchtenlassen entsprechender Lampen am Maschinistenstande angezeigt wird. Selbsttätig war lediglich der Kupplungsvorgang an sich, heute noch ergänzt durch die erwähnten Kontakte in der Kuppelstelle, womit das richtige Einfahren des Wagens zwangläufig gesichert wird. Die "Bereit"-Meldung ist nach wie vor ohne mechanische Beziehung, dagegen der neu vorgeschriebene Telephonruf nur nach erfolgter richtiger Kupplung möglich. Versagt hat tatsächlich kein Teil der mechanischen Ein-

richtungen, sondern der begleitende Schaffner, dem nach Betriebsvorschrift das richtige Einfahren des Hängewagens in die Kuppelstelle und die genaue Ueberwachung des Kuppelns überbunden war.

Diese weitgehende Verantwortlichkeit des Schaffners wurde grundsätzlich aus der Ueberlegung heraus verlangt, dass der Begleiter bei zu weit getriebener Automatisierung zu Oberflächlichkeit verleitet werde. Wusste doch jeder Schaffner, dass er durch Fehlkupplungen das Leben der Fahrgäste und sein eigenes gefährde. Die alte Erfahrung, dass der ständige Umgang mit einer Sache gegen die damit verbundenen Gefahren abstumpft, hat sich leider auch hier wieder bewahrheitet. Die jetzigen Verbesserungen treffen nun aber wohl das richtige Verhältnis, da es selbst bei ungenauer Beobachtung des Kuppelvorganges ausgeschlossen ist, dass der Wagen in Bewegung gesetzt wird. Damit ist die gleiche Sicherheit wie bei Pendelbahnen erreicht. Alle übrigen Anlagen haben ihre Zweckmässigkeit und Zuverlässigkeit

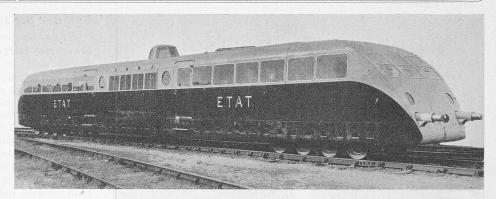


Abb. 2. Schnelltriebwagen der französischen Staatsbahn (Bugatti).

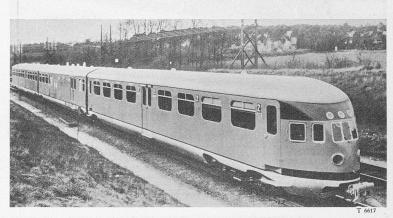


Abb. 1. Dieselelektrischer Motorzug der holländischen Staatsbahnen (SKF Rollenlager).

erwiesen und es ist seit der Wiederinbetriebsetzung keine Störung mehr vorgekommen.

Wen eine Reise durch Freiburg führt, dem kann ich den Abstecher auf den Schauinsland sowohl wegen der technischen Eigenschaft der Bahn, wie der Besonderheit der Aussicht auf Schwarzwald und Vogesen — wenn man dazu das richtige Wetter erwischt — nur empfehlen. Den Herren Oberbaurat Schieble der Freiburger Strassenbahn, die die Oberleitung der Schauinslandbahn übernommen hat, Betriebsleiter Heinslus und Obermaschinist Müller möchte ich an dieser Stelle für ihre erschöpfenden Auskünfte bestens danken, ebenso Herrn Prof. Dr. G. Benoit in Karlsruhe, der mich auf einige notwendige Ergänzungen der ersten Fassung dieses Berichtes aufmerksam machte.

Wir entnehmen dieser Beantwortung unserer in Bd. 100, Seite 318 gestellten Fragen gerne, dass seither verschiedene "Ergänzungen" die Sicherheit vervollständigt haben. Dass Ergänzungen und Verbesserungen sich als wünschbar und möglich erwiesen, war aber aus der Beschreibung von Prof. Dr. Benoit — auf die wir uns

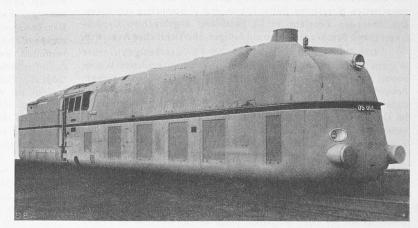


Abb. 5. 2 C 2 · Stromlinienlokomotive der Deutschen Reichsbahn (Borsig, Berlin). Der schwarze Streifen ist aufgemalt und nicht etwa ein Schlitz in der Verkleidung.

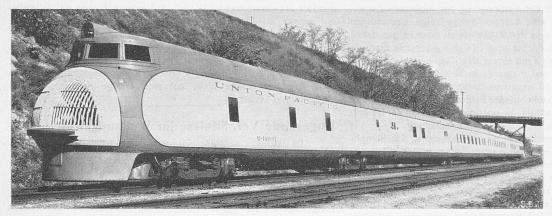


Abb. 3. Dieselelektrischer Zug der Union Pacific Railroad (Pullman Car & Mfg. Co., SKF Rollenlager).

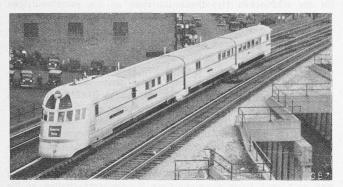


Abb. 4. Dieselelektrischer Dreiwagenzug "Burlington Zephyr" (Budd Mfg. Co.).

gestützt haben - nicht zu erkennen; jedenfalls hat jene Darstellung die zwangläufigen und automatischen Sicherungen als vollkommen und darum die alleinige Schuld des Wagenführers als nicht verständlich erscheinen lassen. Redaktion.

Schnelltriebwagen und -Züge.

Von jeher waren die Eisenbahngesellschaften bestrebt, die Geschwindigkeiten ihrer Schnellzüge weiter zu steigern. Bei den in den Jahren 1904 bis 1905 auf der Strecke Berlin-Zossen unternommenen Versuchen erreichten sechsachsige elektr. Triebwagen bereits 210 km/h, und ermöglichten Versuche über den Luftwiderstand, die Ausbildung der Geleiseanlagen, des Laufwerkes und des Antriebes. Erst der Verkehrsrückgang und der Wettbewerb mit Auto und Flugzeug vermochte aber diese Probleme nach dem Kriege neu zu beleben und führte zum Entwurf von kleineren Zugskompositionen mit Personen-, Gepäck- und Postabteilen, z. T. Schlafabteilen und Buffets. Die Erfahrungen mit dem Dieselmotor in Kleintriebwagen und Lokomotiven legten es nahe, ihn als Primärmotor weitgehend zu verwenden. Die Aufstellung der Motoren erfolgt z. T. in den Drehgestellen, um den Wagenkasten von Erschütterungen frei zu halten und eine leichte Montage zu erreichen, z. T. im Wagenkasten, um dessen Ueberwachung zu erleichtern, ihn vor Schmutz zu schützen und den Lauf der Fahrzeuge zu verbessern. Die Verbesserung der Laufeigenschaften lässt fast an allen Typen noch sehr zu wünschen übrig. Einige Bestrebungen in diesem Sinne wurden hier (Bd. 105, Nr. 9, S. 104) erwähnt, theoretische und messtechnische Studien sind im Gang. 1)

Tabelle 1						
Тур	Plaizzahl	Gewicht	Leistung	max. Gesch.	Baustofi	Antrieb
Bugatti	76 + G	28 to.	4×200 PS	173	Al + Stahl	Benzin-mech.
Flying Yankee	60 + G + P	85	600	175	Stahl	Diesel-elektr.
Pliegender Holländer	192	75	820	140	Al + Stahl	Diesel-elektr.
Union Pacific	116+P+G	85	600	175	Aluminium	Diesel-elektr.
Comet NYNH & H	160	115	800	145	Aluminium	Diesel-elektr.
Charentaise	75+G	10	90	90	Aluminium	Diesel-mech.
Micheline	36 + G	6,5	200	105	Stahl + Al	Diesel-mech.
Renault	66 + G	26	200	120	Stahl + Al	Diesel-mech.
Renault Doppelwagan	100 + G	44	2×250	140	Stahl + Al	Diesel-mech.
G	= Gepäck	abteil,	P = Postabte	eil		

^{1) &}quot;SBZ" Bd. 105, Nr. 25, S. 291*, Bd. 106, Nr. 2, S. 22*.

Die Mehrzahl der in den letzten Jahren gebauten Wagen haben zweiund dreiachsige Drehgestelle mit parallelen Achsen und Pendelwiegen, obschon nach den Versuchen von Dr. Raab (Diss. Techn. Hochschule Aachen) Pendelwiegen zu Resonanzschwingungen führen, und die neuesten Beobachtungen von Dr. Lutteroth (Diss. techn. Hochschule Hannover) zeigen, wie empfindlich solche Achsanordnungen auf eine ungleiche Last-

übertragung sind, die im praktischen Betrieb nicht zu vermeiden ist. Die Uebertragung des Motordrehmomentes erfolgt rein mechanisch unter Zwischenschaltung eines Getriebes, 2) mit Flüssigkeitsgetrieben 3) oder elektrisch (BBC, Gebus).

Um kleine Motorleistungen und damit wirtschaftliche Fahrzeuge zu erhalten, wurden für die Aufbauten, Motoren, die Tragkonstruktion, Ausrüstungsteile und Drehgestelle weitgehend Leichtmetalle verwendet. Während der Wagen nach Abb. 1 nur einzelne Teile aus Leichtmetall aufweist, besitzt der in Abb. 2 abgebildete Wagen einen Leichtmetallaufbau System Viscaya, und der in Abb. 3 gezeigte Zug ist vollständig aus Aluminium gebaut. Die verwendeten Legierungen sind dem Peraluman verwandt und nicht thermisch vergütet. Es wird dadurch insbesondere der Bau und Unterhalt solcher Wagen erleichtert. Die Konstruktionen setzen sich aus gepressten Profilen und Blechen mit einem Minimum an Nietverbindungen zusammen. Versuche, geschweisste Leichtmetallbauarten zu entwickeln, sind im Gang. Drehgestellrahmen, Achskisten, Puffer und Kupplungsteile werden gegossen oder geschmiedet. Mit den Leichtmetallbauarten sind aber auch völlig aus Stahl geschweisste Fahrzeuge im Wettbewerb; Abb. 4 zeigt eine Ausführung.

Zur Luftwiderstand · Verminderung wurden aerodynamisch richtige Formen angestrebt, wie dies die erwähnten Bilder erkennen lassen. 4) Diese Formen sind noch sehr verschieden, je nachdem die Wagen als Ein- oder Zweirichtungsfahrzeuge gebaut sind, von propagandistischen und baulichen Erwägungen abgesehen. - Die Verwendung von Rollenlagern ist sehr verbreitet.

Um die Fahrzeuge vor Ueberlastungen und Ueberbeanspruchung zu schützen, sind sie im allgemeinen als Selbstfahrer ausgebildet und besitzen keine oder nur Notkupplungen, um im Störungsfall die Wagen abschleppen zu können. Das Fassungsvermögen dieser Züge ist daher beschränkt. Die Hauptdaten einiger Ausführungen sind in der Tabelle 1 zusammengestellt. Viele der gebauten Wagen sind als Doppelfahrzeuge nachbestellt oder bereits geliefert worden, sodass das mittlere Fassungsvermögen 150 bis 200 Personen nebst Post und Gepäck beträgt. Auch die Motorleistungen sind entsprechend von 400 auf 1200 PS gestiegen und damit in den Bereich gelangt, wo die Stephenson'sche Dampflokomotive wieder in den Wettbewerb treten kann, umsomehr als die Brennstoffrage für viele Länder von grosser volkswirtschaftlicher Bedeutung ist. Oft beschränkte man sich darauf, bestehende Lokomotiven mit einer geeigneten ärodynamischen Verkleidung zu versehen, wie Abb. 5 zeigt. Die Verwendung von Kohlenstaubfeuerung, Hochdruckdampf und Dampfturbinenantrieb wird neu geprüft. 5) In den BBC-Nachrichten 1935 findet sich sogar ein Vorschlag, den Veloxkessel in der Traktion zu verwenden. R. Liechty.

Die Wellennatur der Materie.

Ein von der Physikalischen Gesellschaft Zürich veranstalteter Vortrag von Dr. V. Weisskopf von der E. T. H. galt den heutiger. Vorstellungen vom Wesen der Materie. Unsere Kenntnisse über die feinere Struktur der Stoffe stammen aus den letzten Jahrzehnten.

^{2) &}quot;SBZ" Bd. 104, Nr. 2, S. 13* (System SLM).
3) "SBZ" Bd. 105, Nr. 18, S. 212* (Trilokgetriebe).
4) Vergl. "SBZ" Bd. 102, Nr. 24, S. 287* (Diesel-elektrische Schnellbahn-Züge) und S. 297* (Ueber den Luftwiderstand von Fahrzeugen).
9) Stromlinienlokomotiven der DRB von Witte. Z. des Vereins mitteleuropäischer Eisenbahnverwaltungen 1935, Nr. 11.