Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105/106 (1935)

Heft: 7

Artikel: Die Bestimmung des günstigsten Zusammenhanges zwischen

Leitapparat und Laufrad von Kaplan-Turbinen

Autor: Gerber, Hans

DOI: https://doi.org/10.5169/seals-47473

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die Bestimmung des günstigsten Zusammenhanges zwischen Leitapparat und Laufrad von Kaplan-Turbinen. — Tragfähigkeit von Nagelverbindungen im Holzbau. — Wettbewerb für Saal- und Schulhausbauten in Zofingen. — Ungesunde Tragfähigkeit von Nagelverbindungen Zustände im Wohnungsbau. - Zur Aufstellung des "Waldmann-Denkmals" in Zürich, Alte Hauptwache und neuer Kasinoplatz Bern. - Mitteilungen: Eidgen. Techn.

Hochschule. Conférence Internationale des Grands Réseaux Electriques. Existenzfragen der schweizerischen Maschinenindustrie. Eine hölzerne Dreigelenkbogen-Brücke von 55 m Spannweite. Zu den Eisenbetonbestimmungen in den Schweizerischen Normen 1935. Eine Neuerung im Bau von Frachtdampfern. - Nekrologe: Caspar Zwicky. Mitteilungen der Vereine: Schweizer. Ingenieur- und Architekten-Verein.

fällt

eindeutig

der punkt K2 mit dem Gipfel der Propellerkurve zusammen, da die Kaplankurve dort horizontal verläuft. Bei Ueberlast und Teillast liegen die Berührungspunkte K_1 und K_3 , wie Abb. 3 zeigt, etwas rechts, bezw. links vom Gipfel. Jedenfalls erhält man zu jeder Wassermenge den höchst erreichbaren Wirkungsgrad, wenn man der Kaplan-Kurve folgt. Dann gehört zu jeder Laufradstellung eine ganz bestimmte Leitapparatöffnung. Diese

Band 106

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

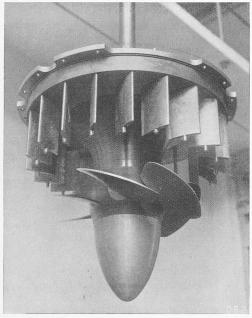
Nr. 7

Berührungs-

bestimmbare

Relation zwischen Laufrad und Leitapparat wird als der günstigste Zusammenhang bezeichnet. Er gilt streng genommen bei konstanter Drehzahl nur für

das dazugehörige kon-



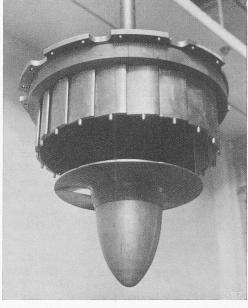


Abb. 2. Leitapparat und Laufrad geschlossen.

Abb. 1. Kaplan-Turbine, Leitapparat und Laufrad offen.

Die Bestimmung des günstigsten Zusammenhanges zwischen Leitapparat und Laufrad von Kaplan-Turbinen.

Von Dipl.-Ing. HANS GERBER, i. Fa. Escher-Wyss Masch-Fabr., Zürich.

Es wird gezeigt, wie durch Umrechnung aus den Modellversuchen und Vornahme von einfachen Leistungsmessungen an der Grossausführung die günstigste Zusammenhangskurve zwischen Leitapparat und Laufrad einer Kaplan-Turbine bestimmt werden kann, ohne zeitraubende und teure Wassermessungen.

Die Kaplan-Turbine ist heute die am besten geeignete Wasserkraftmaschine für die wirtschaftliche Ausnützung von kleinen und kleinsten Gefällen. Während sie zuerst infolge ihrer als kompliziert angesehenen Regulierung nur bei grösseren Anlagen gewählt wurde, findet sie je länger je mehr auch Anwendung bei kleineren Anlagen von Fabriken, Sägereien und Gemeinden. Ihr Vorteil gegenüber den früher gebrauchten Francis-Turbinen liegt hauptsächlich in der guten Ausnützung von Teillastwassermengen, wie sie bei der oft unregelmässigen Wasserführung kleiner Bäche und Flüsse auftreten können. So wird für den Leerlauf benötigt: Von der Propeller-Turbine 30 bis 40 %, vom Francis-Schnelläufer 15 bis 25 %, von der Kaplan-Turbine 8 bis 12 % der Vollastwassermenge. Bei der Kaplan-Turbine wird eben nicht nur die Leitradöffnung der jeweils benö-tigten oder anfallenden Wassermenge angepasst, sondern es können zudem die Flügel des Laufrades verstellt werden, wie dies die Abb. 1 und 2 veranschaulichen.

Jede Stellung der Laufschaufeln ergibt bei reiner Leitradregulierung eine sogenannte Propellerkurve mit ihrem bekannt spitzen Wirkungsgradgipfel. Beidseitig des hohen Maximums fällt die Kurve steil ab. Der bei der Kaplan-Turbine möglichen Variation der Laufradstellung entspricht eine Verschiebung des Maximums; die Umhüllende aller Propellerkurven zwischen Vollast und Leerlauf, d. h. zwischen offenem und geschlossenem Laufrad heisst Kaplankurve.

Abb. 3 zeigt für drei verschiedene Laufradstellungen der gleichen Kaplan-Turbine die Propellerkurven, sowie die jede Propellerkurve bei einer bestimmten Leistung berührende Kaplankurve. Im Scheitel der Kaplankurve stante Gefälle. Um mit dem gleichen Zusammenhang immer das selbe Optimum zu erreichen, müsste theoretischerweise auch die Drehzahl mit der Wurzel aus dem Gefälle verändert werden; dieser Weg fällt jedoch praktisch ausser Betracht. Es wird deshalb der günstigste Zusammenhang jeweils für das mittlere oder am häufigsten auftretende Gefälle angenommen. Bei nicht zu grossen Gefällsschwankungen sind die daraus entstehenden Wirkungsgraddifferenzen gegenüber dem theoretisch möglichen Optimum

praktisch bedeutungslos.

Selbstverständlich hat man auch schon den Gedanken aufgegriffen, bei grösseren Gefällsschwankungen mehrere feste oder kontinuierlich veränderliche Zusammenhangs-Kurven zu verwenden. Die damit erzielbare geringe Mehrausbeute würde jedoch kaum die Komplizierung der Regulierung rechtfertigen. Ueberdies lehrt die Erfahrung, dass in erster Linie durch genaue Betriebsführung, beispielsweise durch günstigste Lastverteilung auf verschiedene Gruppen, in vielen Fällen die wirksamste Produktionsstei-

gerung erreicht werden kann.

Zu jeder Kaplan-Turbine wird von Anfang an eine Kurvenscheibe für den Zusammenhang zwischen Leitapparat und Laufrad benötigt. Die Form dieser Scheibe muss vorerst, in Ermangelung anderweitiger Angaben, aus passenden Modellversuchen und Erfahrungswerten ähnlicher Anlagen berechnet werden. Die definitive Form er-

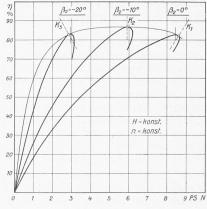


Abb. 3. Propellerkurven und Umhüllende einer Kaplanturbine bei drei verschiedenen Laufradstellungen β_2 . Drehzahl n und Gefälle H konstant.

gibt sich jeweils in einwandfreier Weise aus den Resultaten der an der Maschine durchgeführten Abnahmeversuche.

Um die Wirkungsgradkurve einer Kaplan-Turbine eindeutig bestimmen zu können, müssen mindestens bei vier Laufradstellungen und je vier Leitapparatöffnungen die Wirkungsgrade gemessen werden, d. h. es braucht insgesamt mindestens 16 vollständige Versuchspunkte. Als Folge der grossen Schluckwassermengen der Kaplan-Turbinen ist man auch bei kleinen Gruppen fast ausnahmslos gezwungen, die Wassermessungen mit hydrometrischen Flügeln vorzunehmen. Die Durchführung und hauptsächlich die Auswertungen der Flügelmessungen erfordern jedoch viel Zeit und verursachen oft ganz unverhältnismässig hohe Kosten. Andere, billiger oder rascher arbeitende Methoden, beispielsweise die Salzmethoden, sind für die grossen Wassermengen noch nicht über das Vorversuchsstadium hinaus entwickelt. Aus diesen Gründen hätte man oft schon von Wirkungsgradmessungen Umgang genommen, wenn sich nicht die Frage nach dem besprochenen günstigsten Zusammenhang zwischen Laufrad und Leitapparat gestellt hätte. Denn auf die bestmögliche Ausnützung der Wassermengen will der Besitzer begreiflicherweise nicht gerne verzichten.

Es stellt sich deshalb das Problem, wie in einer Kaplan-Turbinenanlage der günstigste Zusammenhang zwischen Leitapparat und Laufrad festgestellt werden kann, ohne dass Wirkungsgradversuche, d. h. Wassermessungen vorgenommen werden müssen.

Die einfachste Methode (I) ist die der direkten Umrechnung mit Hilfe der Dimensionen der Modell- und der Ausführungs-Turbine. Es bedeuten D Laufraddurchmesser, B_0 Leitapparat-Breite, ε_0 Leitschaufelzahl, a_0 Leitschaufelöffnung, Index M Modell, Index A Ausführung. Da die Laufradstellung β_2 gewöhnlich in Graden angegeben wird, braucht sie nicht umgerechnet zu werden.

In erster Annäherung müssen sich die Leitapparat-Durchflussquerschnitte verhalten wie die Quadrate der Laufraddurchmesser:

$$\frac{D^2 A}{D^2 M} = \frac{(z_0 B_0 a_0) A}{(z_0 B_0 a_0) M}$$

Daraus ergibt sich der Umrechnungsfaktor K, der Methode I:

$$a_{0_A} = a_{0_M} K_{\rm I} = a_{0_M} \left[\frac{D_A^2 (z_0 B_0)_M}{D_{M^2} (z_0 B_0)_A} \right]$$

Sind die Leitapparatbreiten modellähnlich, so reduziert sich der Ausdruck K_1 auf

$$K_{\rm I} = \frac{D_A Z_{0M}}{D_M Z_{0M}}.$$

Stimmt auch die Leitschaufelzahl überein, erhält man die einfache Form

$$K_{\rm I} = \frac{D_A}{D_M}$$
.

Beim heutigen Stand der Modellturbinentheorie wird in den meisten Fällen die Leitapparatbreite B_0 modellähnlich ausgeführt sein. Anders ist es mit den Leitschaufelzahlen Z_0 , die in Abhängigkeit von der Turbinengrösse abgestuft werden.

In der Praxis hat sich nun gezeigt, dass selbst bei völlig modellähnlicher Ausführung diese einfachste Methode der Umrechnung oft durchaus nicht stimmt. Durch an und für sich geringfügige Aenderungen in der Zu- und Wegströmung des Wassers, durch Saugrohreinflüsse und nicht zuletzt durch die Wirkungsgrad-Aufwertung können für ein und dieselbe Laufradstellung ganz erhebliche Verschiebungen in den Leitapparatöffnungen auftreten, und zwar ergeben sich in den meisten Fällen nach dieser Methode I für die Grossausführung relativ zu grosse Leitapparatöffnungen.

Eine andere Methode (II) setzt die Kaplanleistung N_K ins Verhältnis zur Maximalleistung. Aus den Modellversuchen kennt man für verschiedene konstante Laufradstellungen β_2 den Verlauf der Leistungskurven N über der Leitapparatöffnung a_0 . Bei jeder dieser Kurven kann, wie Abb. 4 für eine einzelne zeigt, für eine bestimmte Drehzahl

jeweils die Leistung N_K entsprechend dem Berührungspunkt der Propellerkurve mit der Kaplanhüllkurve ermittelt werden. Ferner kann aus jeder Kurve die mit der betreffenden Laufradstellung erreichbare Maximalleistung $N_{\rm max}$ gelesen werden. Für jede Laufradstellung kann damit das Verhältnis der Leistung des Kaplanpunktes zur Maximalleistung gebildet werden:

$$K_{\Pi_M} = \frac{N_{K_M}}{N_{\max_M}}$$

Für eine bestimmte Modellturbine erhält man schliesslich die Kurve

$$K_{\text{II}_M} = f(\beta_2)$$
, siehe Abb. 5.

Dabei werden sich für verschiedene Drehzahlen meistens verschiedene Kurven ergeben.

Für die Uebertragung auf die Grossausführung soll jetzt die Annahme gemacht werden:

$$K_{II_A} = K_{II_M}$$

Dann hat man in der Anlage nur die Leistungskurven der Turbine in Funktion der Leitapparatöffnungen aufzunehmen und auf konstantes Gefälle umzurechnen. Aus der Kurve K_{Π_M} in Abb. 5 für die entsprechende Modelldrehzahl kann für jede der gemessenen Laufradstellungen β_2 der zugehörige Wert K_{Π_M} herausgelesen werden. Den Wert N_{\max_A} entnimmt man der zu β_2 gehörigen Leistungskurve. Daraus berechnet sich die Leistung ihres Kaplanpunktes:

$$N_{K_A} = K_{II_M} N_{\max_A}$$

Aus der Leistungskurve kann die dem Kaplanpunkte $N_{\rm A}$ entsprechende, β_2 zugeordnete Leitapparatöffnung $a_{0\,K}$ herausgelesen werden.

Bei der Anwendung dieser Methode zeigen sich oft Schwierigkeiten: Bestimmte Laufradtypen weisen in einzelnen oder allen Stellungen keine ausgesprochenen Leistungsmaxima auf, sondern die Leistungskurve steigt bis zu voll offenem Leitapparat ständig an. Eine genaue Umrechnung wird in diesen Fällen verunmöglicht. Es kommt auch vor, dass die Propellerkurven der Grossturbine durch geänderte Saugrohrformen oder ähnliche Einflüsse spitzer oder gewölbter werden, sodass bei gleichem β_2 der Faktor K_{II} sich ändert. Der Vorteil der Methode liegt in ihrer Einfachheit und rein rechnerischen Durchführbarkeit.

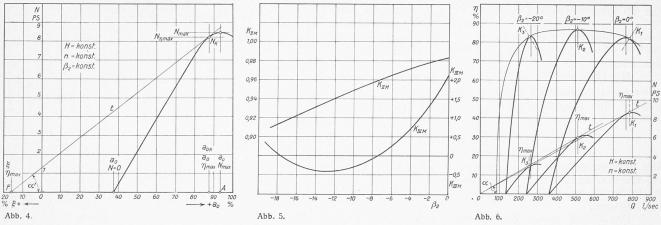
Aus dem Vorstehenden geht hervor, dass die zwei bis jetzt angewandten Methoden nicht in jeder Hinsicht befriedigende Resultate liefern. Auf der Suche nach einer zuverlässigeren Umrechnungsmethode kann man von folgender Ueberlegung ausgehen:

Trägt man für eine bestimmte Laufradstellung β_2 die Leistungen N über der Wassermenge Q auf (Abb. 6), so berechnet sich für jeden Punkt der Kurve der Wirkungsgrad η zu:

$$\eta = \left(\frac{75}{H}\right)\frac{N}{Q} = K\frac{N}{Q} = K \operatorname{tg}(\alpha)$$

 α ist der Winkel zwischen dem Strahl aus dem Nullpunkt O des Koordinatensystems nach dem betrachteten Leistungspunkt und der Abszissenaxe (Abb. 6). Der Wirkungsgrad steigt mit wachsendem Winkel α und erreicht bei gegebenem β_2 sein Maximum, wenn der Richtstrahl aus dem Nullpunkt zur Tangente an die Leistungskurve wird. Man erhält also den maximalen Wirkungsgrad jeweils im Berührungspunkt der Tangente taus dem Nullpunkt Oan die Leistungskurve.

Auf Grund dieser Tatsachen ergibt sich eine weitere Möglichkeit für die Bestimmung der gesuchten Zusammenhangskurve, sogar ohne Verwendung von Modellversuchen. Man hat nämlich auch bei Kaplan-Turbinen schon versucht, eine Art "Venturimeter-Eichung" durchzuführen. An bestimmten Stellen der Einlaufspirale, oder in der Nähe des Stützschaufelringes sind die Wassergeschwindigkeiten erheblich grösser als vor dem Einlaufrechen oder gar im praktisch stillstehenden Oberwasser. Dementsprechend muss zwischen zwei solchen Stellen auch eine gewisse Druck-Differenz Δp feststellbar sein. Bei abgestellter Turbine ver-



Legende zu Abb. 4: Leistungskurve einer Kaplanturbine für eine bestimmte Laufradstellung β_2 . Drehzahl n und Gefälle H konstant; N_k Leistung im Berührungspunkt mit der Kaplanhüllkurve; a_0K zugehörige Leitapparatöffnung; N_{max} , a_0N_{max} Punkt für Maximalleistung; $N_{\eta_{\text{max}}}$, $a_0\eta_{\text{max}}$ Punkt für besten Wirkungsgrad; t Tangente im Punkte $N_{\eta_{\text{max}}}$ (in dieser Abb. identisch mit N_k !); F Fusspunkt der Tangente t; ξ Strecke \overline{OF} ; a_0N_{max} Strecke \overline{OA} . — Abb. 5: Verlauf der Umrechnungsfaktoren K_{II} und K_{III} über der Laufradstellung β_2 . — Abb. 6: Wirkungsgrad- und Leistungskurven über der Wassermenge für eine Kaplanturbine und drei ihrer Laufradstellungen β_2 . Drehzahl n und Gefälle H konstant. — η_{max} Punkte besten Wirkungsgrades; K_1 , K_2 , K_3 Berührungspunkte mit der Kaplanhüllkurve. Bei der mittleren Laufradstellung fallen die Punkte für η_{max} und K_2 zusammen.

schwindet $\varDelta p$ und wächst mit zunehmender Durchflussmenge Q; der Ansatz

$$Q = K \sqrt{\Delta p}$$

ist die allgemeine Form der Venturimetergleichung.

Durch Versuche können nun für mehrere Laufradstellungen die Kurven aufgenommen werden:

$$N = f(\sqrt{\Delta p})$$

Die Tangenten aus dem Koordinaten-Nullpunkt an diese Kurven müssen für jede Laufradstellung den Punkt besten Wirkungsgrades ergeben, sofern der Koeffizient K über den ganzen Wassermengenbereich konstant bleibt. Bei Vollast und Teillast müssten an der so zu jedem β_2 ermittelten Leitapparatöffnung noch gewisse Korrekturen gemacht werden, da, wie oben dargelegt und in Abb. 6 für $\beta_2=0^0$ deutlich, das Maximum der Wirkungsgradkurve nicht mit dem Kaplanpunkt zusammenfällt. Die gesuchte Zusammenhangskurve zwischen Leitapparat und Laufrad wäre damit bestimmt.

Diese Methode steht oder fällt mit der Frage, ob der "Venturimeter-Koeffizient" K wirklich konstant bleibt, was nun in der Praxis leider selten der Fall sein dürfte. Beispielsweise wurde anlässlich der Abnahme-Versuche an den Kaplan-Turbinen des Limmatwerkes Wettingen mit den Flügelmessungen gleichzeitig eine solche "Venturimeter-Eichung" vorgenommen 1). Es wurde die Druckdifferenz gemessen zwischen dem runden Eintrittsquerschnitt der Blechspirale (gleichzeitig als Manometeranschluss für die Gefällsberechnung) und dem Oberwasserbassin. Selbst unter diesen günstigen Verhältnissen war der Venturimeter-Koeffizient K keineswegs konstant, sondern wies bei einer bestimmten Wassermenge ein klares Minimum auf; gegen Vollast stieg er langsam, gegen Teillast jedoch steil an. Damit ist auch für diese Bestimmungsmöglichkeit die Genauigkeit in Frage gestellt, es sei denn, das "Venturimeter" werde geeicht, was ja eben vermieden werden soll.

Aus den vorstehenden Betrachtungen zu dem Ausdrucke

$$\eta = \left(\frac{75}{H}\right)\frac{N}{Q} = K \operatorname{tg}(\alpha)$$

ergibt sich nun aber die Möglichkeit einer weiteren Umrechnungsmethode aus den Modellversuchen:

Die Wassermenge Q ist, Gefälle und Drehzahl als konstant vorausgesetzt, eine stetige Funktion der Leitapparatöffnung a_0 , und zwar kann, wenigstens für kleine Teile der zu einer Laufradstellung gehörigen Kurve, die Beziehung zwischen Q und a_0 als linear angenommen wer-

den: $Q = c (a_0 + \xi)$, wobei c und ξ gewisse Konstanten sind. η wird dann gleichzeitig mit

$$\operatorname{tg}\,a' = \frac{N}{a_{\mathrm{o}} + \xi}$$

ein Maximum. Das heisst: Nimmt man bei einem bestimmten β_2 statt N=f(Q) die Kurve $N=f(a_0)$ auf (Abb. 4), und zieht daran von dem im Abstand ξ vom Koordinatennullpunkt auf der Abszissenaxe gelegenen Punkt F aus die Tangente, so entspricht dem Berührungspunkt η_{\max} . Ist umgekehrt der η_{\max} entsprechende Kurvenpunkt bekannt, so liefert die Tangente in diesem Punkt den Fusspunkt F. In Abb. 4 stimmt der Punkt besten Wirkungsgrades mit dem Kaplanpunkt N_K überein; ist dies nicht der Fall, wie bei Vollast und Teillast, so fallen die Fusspunkte der Tangenten in den Punkten N_{\max} und N_K nicht genau zusammen.

Der Tangens des Winkels α' ist auch in dieser Darstellungsart ein Mass für den Wirkungsgrad, wenn auch nur ein relatives und nur für die zugehörige Laufradstellung gültig. Tritt eine Aufwertung ein, so wird der Winkel der Tangente an die Leistungskurve entsprechend grösser, aber die relative Lage des Fusspunktes F gegenüber den N=0 und $N=N_{\max}$ entsprechenden Punkten O und A der Abszissenaxe (Abb. 4) bleibt erhalten: Das Verhältnis $K_{\text{III}}=\frac{OA}{OF}$ ist konstant:

$$K_{\mathrm{III}_{A}} = K_{\mathrm{III}_{M}}$$

Damit ist die Methode III, die wir als graphische Tangentenmethode A bezeichnen möchten, im Prinzip festgelegt: Aus den Modellversuchen kennt man die Leistungskurven N über den Leitapparatöffnungen a_0 für mehrere Laufradstellungen β_2 ; Gefälle und Drehzahl sind als konstant vorausgesetzt. Aus diesen Leistungskurven sind bekannt die Punkte für Maximalleistung N_{\max} mit $a_{0N_{\max}}$, für besten Wirkungsgrad $N_{\eta_{\max}}$ mit $a_{0\eta_{\max}}$, für die Kaplanhüllkurve N_K mit a_{0K} (Abb. 4). In den Kaplanpunkten N_K selbst (statt in den Punkten $N_{\eta_{\max}}$) können in den meisten Fällen mit befriedigender Genauigkeit die Tangenten t an die Leistungskurven gezogen werden. Die Fusspunkte F schneiden auf der a_0 -Achse die Strecke $OF = \xi$ heraus. Ferner ist bekannt $OA = a_{0N_{\max}}$. Es wird, wie gesagt, vorausgesetzt, dass bei der Uebertragung auf die Grossausführung

$$K_{\rm III} = \frac{a_0 N_{\rm max}}{\xi}$$

sich nicht ändere. Der Wert ξ und damit auch $K_{\rm III}$ kann positiv oder negativ ausfallen. Aus den Modellversuchen kann (Abb. 5) die Kurve aufgestellt werden:

$$K_{\mathrm{III}_{M}} = f(\beta_{2})$$

An der Grossausführung hat man, wie bei Methode II, nur noch die Leistungskurven für verschiedene Laufradstellungen aufzunehmen und zwar so weit, bis $N_{\rm max}$ und damit speziell das zugehörige $a_{0N_{\rm max}}$ einwandfrei festgelegt werden können.

Mit Hilfe der Kurve $K_{\Pi\Pi_M}=f(\beta_2)$ kann für jede der gemessenen Laufradstellungen der Wert ξ , d. h. der Fusspunkt F der Tangente t an die Leistungskurve berechnet werden mit

$$\xi_A = \frac{a_0 \, N_{\text{max}_A}}{K_{\text{III}_M}}.$$

Der Berührungspunkt der Tangente t ist der gesuchte Punkt N_K der Kaplanhüllkurve. Damit ist wieder die zu der betreffenden Laufradstellung β_2 gehörige Leitapparatöffnung a_{0k} bestimmt.

Der Vorteil dieser Methode ist ihre in den meisten Fällen erstaunliche Genauigkeit, die durchwegs über derjenigen von Methode II liegt. Ein Nachteil ist der, dass sie graphische Konstruktionen erfordert. Ferner treten, wie bei Methode II, die gleichen Schwierigkeiten auf, wenn kein einwandfreies $N_{\rm max}$ (und damit $a_{0N_{\rm max}}$) bestimmt werden kann, d. h. wenn die Leistung fortwährend steigt bis zu volloffenem Leitapparat.

Aus diesem Grunde wurde endlich die folgende Methode IV, die graphische Tangentenmethode B, entwickelt, bei welcher die Bestimmung des Maximalleistungspunktes umgangen werden kann. Es werden, wie bei III, die Fusspunkte F der Tangenten an die Leistungskurven bestimmt. Statt jedoch den Wert ξ in Beziehung zu $a_{0N_{\max}}$ zu bringen, wird direkt die Kurve aufgestellt

$$\xi_M = f(\beta_2).$$

Wie bei Methode I die Leitapparatöffnung a_{0K} mit den Dimensionen und Leitschaufelzahlen Z_0 umgerechnet wurde, soll in diesem Fall der Wert ξ umgerechnet werden mit dem allgemeinen Ausdruck

$$\xi_A = \xi_M K_{\text{IV}} = \xi_M \left[\frac{D_A^2 (z_0 R_0)_M}{D_M^2 (z_0 B_0)_A} \right]$$

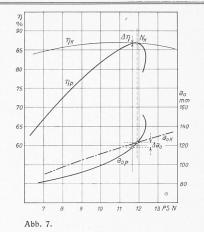
Damit stimmt der Umrechnungsfaktor der Methode IV für ξ mit demjenigen von Methode I für a_{0K} zahlenmässig überein, d. h.

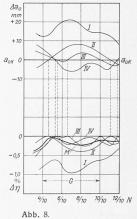
$$K_{IV} = K_{I}$$
.

Die indirekte Anwendung dieses Umrechnungsfaktors $K_{\rm IV}$ durch den Umweg über ξ und die Tangente vermeidet jedoch die grossen Fehlermöglichkeiten, die bei der direkten Umrechnung von a_{0K} entstehen können. Ein Vorteil dieser Methode ist, dass sie die Schwierigkeiten der Methoden II und III bezüglich der Bestimmung der Maximalleistungen $N_{\rm max}$ und der zugehörigen $a_{0N_{\rm max}}$ vermeidet. Nachteilig ist wieder, dass sie graphische Konstruktionen erfordert.

Die vorstehend beschriebenen vier Methoden wurden bei einer grösseren Anzahl Kaplan-Turbinen aller Grössen und Gefälle, bei welchen sowohl Modell- wie Abnahme-Versuche vorliegen, nachgeprüft. Darunter befinden sich vier-, fünf- und sechsschauflige Räder; bei manchen waren die Versuchsturbinen bis ins kleinste Detail modellähnlich, bei andern nur die Hauptdimensionen, sowie die Laufschaufelform und teilweise das Saugrohr. Alle Wassermessungen wurden mit hydrometrischen Flügeln durchgeführt. Der für die Kaplanhüllkurve notwendige günstigste Zusammenhang zwischen Laufrad und Leitapparat war sowohl für die Modell- wie für die Ausführungsturbine bekannt. Wendet man auf die Modellkurven die vier Umrechnungs-Methoden an, so ergeben sich vier abgeleitete Zusammenhangskurven, die mit der direkt gemessenen, günstigsten Kurve verglichen werden können.

Jede Methode wird zu einem gegebenen β_2 eine etwas andere Leitradöffnung ergeben, die um Δa_0 von der günstigsten Leitradöffnung a_{0K} abweicht. Der Abweichung Δa_0 entsprechend, erniedrigt sich der optimale Wirkungsgrad um einen auf der betreffenden Propellerkurve abzugreifenden Betrag $\Delta \eta$ (Abb. 7).





Legende zu Abb. 7: Bestimmung der Wirkungsgradeinbusse $\varDelta\eta$ bei einem bestimmten berechneten $\varDelta a_0$; η_K Kaplankurve; η_P Propellerkurve; $a_0 \kappa$ Leitradöffnungen zur Kaplankurve; $\varDelta a_0 \Gamma$ Leitradöffnungen zur Propellerkurve; $\varDelta a_0$ Differenz zwischen berechnetem und tatsächlich günstigstem $a_0 \kappa$; $\varDelta a_0 = (a_0$ Rechnung $-a_0 \kappa$).

Legende zu Abb. 8: Ergebnisse aus der Anwendung der vier beschriebenen Methoden auf eine ausgeführte und gemessene Kaplanturbine. — $\varDelta a_0$ Differenz zwischen berechnetem und tatsächlich günstigstem $a_{0.K}$, $\varDelta a_0 = (a_0 \text{ Rechnung } - a_{0.K})$; $\varDelta \eta$ Wirkungsgradeinbusse, berechnet aus $\varDelta a_0$ nach Abb. γ ; $+ \varDelta a_0$: a_0 -Rechnung grösser als $a_{0.K}$; $- \varDelta a_0$: a_0 -Rechnung kleiner als $a_{0.K}$; I, II, III, IV Bezeichnung der Methoden nach Text; M Mittel aus Methoden II, III und IV; G Normaler Garantiebereich einer Kaplanturbine.

Die Abb. 8 stellt den Verlauf der Δa_0 und der $\Delta \eta$ über dem ganzen Garantiebereich einer Kaplan-Turbine dar. Aus dem Vergleich dieser Kurven können folgende Schlüsse gezogen werden:

Methode I, die direkte Umrechnung, ist die ungenaueste Methode; sie kommt folglich praktisch nicht in Betracht. Auch im vorliegenden Fall fällt sie weg. Mit guter Genauigkeit arbeiten die beiden Methoden II und IV; dieser als der weniger streuenden ist der Vorzug zu geben. Die maximalen Wirkungsgrad-Einbussen $\Delta \eta$ betragen im Einzelfall nicht mehr als etwa 0,4~%; die durch die beiden Methoden verursachten Abweichungen Δa_0 in den Leitapparatöffnungen fallen meistens entgegengesetzt aus.

Die wertvollste der entwickelten Methoden ist unstreitig Nr. III; sie weicht in keinem der untersuchten Fälle um mehr als 0,3 % vom günstigsten Wert ab. Der Mittelwert aus vier Anwendungsbeispielen ergab für diese Methode sogar eine maximale Abweichung von nur 0,2 %.

Lässt man die als unbrauchbar zu bezeichnende Methode I beiseite, so ergibt sich, wie die folgende, nach Abb. 8 aufgestellte Tabelle zeigt, als Mittelwert der drei andern eine recht gute Uebereinstimmung mit der direkt gemessenen günstigsten Zusammenhangskurve der betrachteten Kaplan-Turbine.

Bei einer Last von	wird die Leitapparatöffnung a_0K (Mittel von II, III, IV)	Dabei ergibt sich eine Wirkungsgradeinbusse Aŋ in º/o
12/10	zu klein	0,10
10/10	zu gross	0,05
8/10	zu gross	0,18
6/10	zu klein	0,03
4/10	zu gross	0,22

Auf Grund der vorstehenden Ausführungen lässt sich die Frage nach dem günstigsten Zusammenhang zwischen Leitapparat und Laufrad von Kaplan-Turbinen in folgenden Feststellungen zusammenfassend beantworten:

1. Der gesuchte günstigste Zusammenhang ergibt sich naturgemäss am genauesten bei Durchführung von vollständigen Abnahmeversuchen. Zu diesem Zwecke müssen jedoch mindestens 16 Wassermessungen, meist mit hydrometrischen Flügeln, vorgenommen werden.

2. Bei kleineren Anlagen müssen Wassermessungen häufig nur durchgeführt werden, um diesen Zusammenhang festzustellen. Der Aufwand an Zeit und Kosten steht oft in keinem Verhältnis zur Grösse der Anlage oder zur

Wichtigkeit der Versuche.

3. Unter der Voraussetzung, dass passende Modell-Versuche vorliegen, besteht die Möglichkeit, mit Hilfe von einfachen Leistungsmessungen in der Anlage den gesuchten relativen Zusammenhang mit praktisch genügender Genauigkeit zu bestimmen. Der Mittelwert der vorstehend beschriebenen Methoden II, III und IV kommt der tatsächlichen Kurve sehr nahe; die Abweichungen liegen auf alle Fälle weit innerhalb der für Abnahmeversuche meist eingeräumten Messtoleranz von ± 2 %.

4. Werden unter diesen Gesichtspunkten die Leistungskurven der Modell- und Ausführungsturbine in genügend weitem Bereich aufgenommen, so kann für den vorgesehenen Zweck ohne weiteres auf Wirkungsgradmes-

sungen verzichtet werden.

Tragfähigkeit von Nagelverbindungen im Holzbau.

Von Dr. Ing. habil. WILHELM STOY, Holzminden.

[Im Hinblick auf die im Wurfe liegende Neufassung der schweizerischen Holznormen dürfte diese Zusammenfassung der Versuchsresultate des bekannten deutschen Fachmannes unsere Leser besonders interessieren. Red.]

Ueber die Tragfähigkeit von Nagelverbindungen im Holzbau liegen zur Zeit neben einer Reihe Einzelveröffentlichungen des Verfassers, die bis in das Jahr 1930 zurückgehen (siehe Schrifttumverzeichnis in der nachstehend unter 3. angeführten Veröffentlichung), drei grössere Arbeiten vor, deren Endergebnisse hier kritisch miteinander verglichen werden sollen.

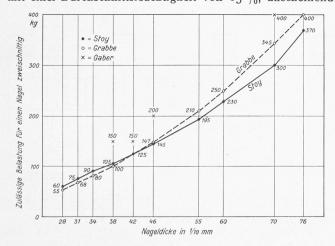
1. Gaber: "Statische und dynamische Versuche mit Nagelverbindungen". Versuchsanstalt für Holz, Stein und Eisen. Prüfraum Gaber. Techn. Hochschule Karlsruhe 1935.

2. Grabbe: "Die Festigkeit der zweischnittig genagelten Holzverbindungen bei gleicher und ungleicher Holzstärke". Dissertation Techn. Hochschule Braunschweig 1935.

3. Stoy: "Tragfähigkeit von Nagelverbindungen im Holzbau", Mitteilungen des Fachausschusses für Holzfragen beim Verein deutscher Ingenieure und deutschen Forst-

verein, Heft 11. VDI Verlag, Berlin 1935. Gaber hat zu seinen Versuchen Bohlen aus einheimischer Tanne oder Fichte verwandt und zwar als abgehobelte Schreinerware. Die Normaldruckfestigkeit betrug 350 bis 490 kg/cm² bei 15 bis 11 % Feuchtigkeit. Das Holz lagerte nach der Anfuhr in einem geheizten Arbeitsraum und war bei den Versuchen etwa zimmertrocken. Die verwandten Nägel hatten einen Durchmesser von 3,8, 4,2, 4,6 und 7 mm in üblicher Handelsqualität (anscheinend aus Thomasflusstahldraht).

Grabbe hat zu seinen Versuchen Fichtenholz verwandt mit einer Durchschnittsfeuchtigkeit von 15%, anscheinend



aber ungehobelt. Er führt in seiner Arbeit einen neuen Begriff ein: "Anfangsfestigkeit" = Festigkeit des Versuchskörpers bis zu einer mit blossem Auge feststellbaren Verschiebung. Als "Bruchfestigkeit" bezeichnet er die Last bei 10 mm Verschiebung; er schreibt dazu: "Bei den Körpern, die sich noch weiter beanspruchen liessen, war dieses im Vergleich zur Steigung der Festigkeit bis zu 10 mm Verschiebung so unwesentlich, dass der Bruch bei 10 mm Verschiebung angenommen werden kann". Grabbe hat aus den Ergebnissen seiner Versuche den weiteren Schluss gezogen: "Die Anfangsfestigkeit ist = 1/3 der Bruchfestigkeit bei 10 mm Verschiebung" und eine Formel für die Tragfähigkeit von zweischnittigen Nägeln aufgestellt, in der er die zulässige Lochleibungsspannung des Holzes mit 80 kg/cm² und die zulässige Biegungsbeanspruchung der Nägel mit 5000 kg/cm² einführt.

Aehnliche Versuche sind von mir in der unter 3. genannten Schrift zweischnittig und einschnittig durchgeführt worden. Da aber in Wirklichkeit derartiges "Laboratoriumsholz" mit einem so geringen Feuchtigkeitsgrad kaum verarbeitet wird, auch Bretter und Bohlen mit einem höheren Feuchtigkeitsgehalt von 25 bis 30 %, wie sie aus der Säge kommen, sich besser nageln lassen, ohne dass man ein Spalten am Ende der Bretter befürchten müsste, habe ich in den letzten Jahren vorwiegend meine Versuche mit derartigem Holz durchgeführt, die Probekörper frisch zusammen genagelt, das Holz austrocknen lassen (zimmertrocken) und dann die Versuchskörper abgedrückt. Dabei zeigte sich, dass bei Holz von über 40 mm Dicke unter der Gebrauchslast = 1/3 der Höchstlast die Ver-

schiebung das nach Din 1052 bis jetzt zulässige Mass von Vergleich der zulässigen Belastungen für einen Nagel zweischnittig, bei entsprechender Brettdicke, nach Stoy, Grabbe und Gaber.

Nagel- bezeichnung	Holz mm	Schlankheits- grad λ	Stoy	Grabbe kg	Gaber kg
			kg		
28/70	20	7,14	60	55 (28/65)1)	_
31/70	20	6,45	74,5	69 (31/65)	_
31/80	24	7,74	74.5	66.3	_
		Mittel	75	68	
34/75	20	5,89	88	85,2	_
34/90	24	7,06	90	80,9	_
34/90	26	7,64	88,5	79,9	_
		Mittel	90	80	
38/90	24	6,32	109	104	
38/90	26	6,84	109	101,5	150
38/100	30	7,89	103	99,6	
		Mittel	105	100	
42/100	26	6,19	131	127,6	
42/100	30	7,14	126	123,5	
42/115	35	8,34	117,5	121,5	150
42/115	40	9,52	117,5	I 2 2	
		Mittel	125	125	
46/115	30	6,52	152	150,8	
46/115	35	7,61	145	146,5	
46/130	40	8,69	147,2	145	200
46/145	50	10,87	138	149,5	
		Mittel	145	147	
55/1452)	35	6,36	193	217	-
55/145	40	7,27	198	210,5	-
55/145	50	9,10	192,5	208,5(55/160)	_
55/160	60	10,9	198	214	
		Mittel	195	210	
60/1602)	50	8,33	240	247	_
60/180	60	10,	252	250	_
60/180	70	11,66	210	259	-
		Mittel	230	250	
70/210	60	8,58	336	336,5	
70/210	70	10,—	294	340	400
70/210	80	11,43	280	350	
		Mittel	300	345	
76/240	70	9,21	373	397	_
76/240	80	10,52	365	405	-
		Mittel	370	400	

¹⁾ Sofern die Nagellängen bei Grabbe von denen bei Stoy abweichen, ist dies besonders in Klammern angegeben.

²⁾ Schon reichlich dick für die Brettstärke.