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ERGEBNISSE.

: Obwohl fiir die Feststellung des Ergebnisses keinerlei
Feinmessung und nur eine einzige Zeitablesung notwendig
ist, arbeitet der Apparat bei richtiger Einstellung mit
grosser Genauigkeit. Vergleichsversuche mit den Ergeb-
nissen des Martens'schen Spiegelapparates sind in neben-
stehender 7abelle wiedergegeben. Die Unterschiede sind
gering. Teilweise sind die Angaben bei Martens hoher
erhalten worden, teilweise bei Le Rolland. Zu den dort
angefihrten Messungen kommen dann noch die bei Guss-
eisen, wo Probestibe untersucht wurden, deren Z£-Module
zwischen 6000 und 16000 kg/mm?2 lagen®). Selbst bei
Stoffen wie Blei, die einer £-Modul-Bestimmung nach den
bisherigen Methoden schwer zugénglich sind, ist sie mittelst
des Le Rolland’schen Apparates moglich.

Die im Probestab entstehenden Spannungen und
Durchbiegungen sind unmerklich gering. Es kann daher
angenommen werden, dass der hier gemessene E-Modul
fir Nullast gilt. Dieser Umstand ist sehr wichtig. Bei allen
tbrigen Messmoglichkeiten miissen hohere Spannungen auf-
gewendet werden, um Dehnungen beobachtbaren Ausmasses
hervorzubringen. Da sich der £-Modul im allgemeinen mit
der Spannungshohe é#ndert, so erfordert seine Zahlen-
Angabe auch immer deren Angabe. Da er sich ferner bei
den bisherigen Feststellungsarten nicht aus einer einzigen
Dehnungsmessung, sondern nur aus einem Vergleich meh-
rerer Dehnungsmessungen bei verschiedenen Spannungen
ergibt, so gilt die Messung fiir einen mehr oder weniger
ausgedehnten Spannungsbereich, und was erhalten wird,
ist ein Mittelwert fiir diesen Spannungsbereich, (¢ 4 in
Abb. 1). In Fillen, wo die Verinderlichkeit des Z£-Moduls
mit der Spannung gross ist, wie z. B. bei dem Gusseisen
der Abb. 1, kann dieser Umstand Bedeutung annehmen.
Die mit dieser Verinderlichkeit zusammenhéingende Kriim-
mung der Kurve O A4 ist im wesentlichen auf die bleibenden
Verformungen zuriickzufiihren; bei einer Dehnungsmessung
mittelst Spiegelapparates werden auch diese bleibenden
Verformungen mitgemessen. Von einem ,Elastizitdts“-Modul,
z. B. in der Gegend von a 6 in Abb. 1, kann daher kaum
gesprochen werden. Besser wire, dafir vielleicht ,Ver-
formungs“-Modul zu sagen.

Gegeniiber diesen Unbestimmtheiten und Bedingtheiten
der bisherigen Messung gibt die Messung mittels des Le
Rolland-Sorin’schen Apparates eine klare und unmissver-
standliche, keiner Erginzung oder Einschrinkung bediirf-
tige Aussage. Was mit ihr ermittelt wird, ist eine wirkliche
Werkstoffkonstante, unabhingig von Zufilligkeiten der
Versuchsanstellung. Man erhilt den Elastizitiats-Modul fir
Nullast, frei von der Einwirkung plastischer Verformungs-
Einflisse, und gleich hoch fiir Zug und fir Druck.

Sollte das Bediirfnis bestehen, die Ermittlung auch
fiir stirkere Materialanspannung anstellen zu kodnnen, so
kann der Le Rolland-Sorin'sche Apparat leicht auch dafir
eingerichtet werden. Bei der oben beschriebenen Ausfiih-
rung sind derartige Messungen allerdings nicht moglich.
Bemerkt sei noch; dass die Messungen im Gegensatz zu
anderen Messverfahren frei von jeder Hysteresiswirkung
sind und frei von jeder Einwirkung des Zeitfaktors auf
Belastung und Entlastung.

Mit diesem Apparat ist demnach die Maoglichkeit
gegeben, den E-Modul bei aller Genauigkeit nicht nur
bequem und schnell zu ermitteln, sondern auch in wissen-
schaftlich einwandfreierer Weise als mit jedem friiheren
Verfahren. Es ist zu hoffen, dass er Veranlassung geben
wird, sich fir die Bestimmung dieser grundlegend wich-
tigen Werkstoffkonstante nicht mehr wie bisher bloss auf
die Fille zu beschrinken, in denen es sich um Sonder-
zwecke mehr wissenschaftlicher Art handelt, dass vielmehr
die mit ihm gebotenen Moglichkeiten, die Werkstoffe zu
erkennen und in ihr Wesen einzudringen, breitere An-
wendung finden werden.

%) Vergl. auch Nicolan in  La Fonte“, Paris (1933), Nr.9, S. 332
bis 340.

ZAHLENTAFEL.7)
Vergleich der Ergebnisse bei £-Modul-Bestimmung.

Werkstoff s Rollm.}d Martens
und Sorin

Stah T T i 21 000 20 830
Duraluminium . e g A e 7 640 7 460
AL i e e S e S 7 650 7 600
Bronze 1 12 000 11 990
Bronze 2 12 500 12 9oo
Bronze 3 9 600 9 800

Das Prinzip des Steifigkeitsmessers von
Le Rolland und Sorin.

Wenn zwei sympathische, gleiche, an einer Quer-
verbindung hingende Pendel auf die in dem vorangehenden
Aufsatz beschriebene Weise durch ein das Verbindungs-
stiick haltendes Stabchen gekuppelt werden, so iberlagern
sich den ,natiirlichen“ Pendelschwingungen ,erzwungene*.
Bei vollkommen steifem Kupplungsstibchen hitten not-
wendig beide Schwingungen natiirliche Frequenz; infolge
der Biegsamkeit des Stibchens gehen die Frequenzen in
Wirklichkeit auseinander, doch umso weniger, je steifer
das Stibchen ist. Umso grosser wird also die Dauer der
auftretenden ,Schwebungen®. Dass bei hinreichend steifem
und kurzem Kupplungsstibchen seine Steife und damit
sein Elastizititsmodul der Schwebungsdauer geradezu pro-
portional ist, wird im Folgenden unter Voraussetzung kleiner
Bewegungen und unter Vernachldssigung der an den Blatt-
federn, dem Verbindungsstiick und dem Stdbchen an-
greifenden Trigheitskriafte dargelegt.

1. Die elastische Linie der Blattfeder folgt (Abb. 1)
aus den beiden Differentialgleichungen

d -
ILLI%:M,], dE="way . (T)

&, n = Koordinaten wie eingezeichnet,
yw = Neigungswinkel gegen die 7-Axe,
wm = I, E; = Steife der Blattfeder (; =
Triagheitsmoment des Querschnitts, £, =
Elastizitdtsmodul), A/, = Biegemoment
in der Entfernung 7. Die von der
schwingenden Masse auf die Blattfeder
ibertragenen Kréfte seien auf deren
Endpunkt £ zu der Dyname X, ¥, C
reduziert; das Biegemoment ist

My =X hi—n)—¥x—=8H+C
worin Y niherungsweise durch das Ge-
wicht G der schwingenden Masse er-
setzt werden darf:

XIE:Gae i £ 50 Fai(2)

Durch Integration von (1) erhilt man die Endwerte ® und
x von vy und & (fiir y» = /,) als lineare Verbindungen von
X und C, die man nach diesen Grossen auflésen kann:

Xt B DG, s €D | Tie Sa AR
B Coithin it ND:G(I_E‘T/),
oiio §

P27,

Abb. 1

F=S(h —thnt), S
), m x2=G.

N=Hll thzll"—2(1_‘ chx/

2. Die natiirlichen Schwingungen des elastischen Pendels,
das heisst seine Bewegung bei festem Aufhidngepunkt 4
(Abb. 1) folgt (Abb. 2) aus dem Drallsatz

Xihon YiliOsr€ = miohi® L i ind snbanids)
(» = Entfernung zwischen Federende £ und Massenschwer-

punkt S, m = schwingende Masse, o = Tragheitsradius),
und aus den Bewegungsgleichungen fiir den Schwerpunkt S,

7) Aus Bull, de I’Assoc. Techn. de Fond., Paris (1934), S. 427.
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deren erste die Gl (2) insofern rechtfertigt, als sich S
merklich horizontal bewegt, und deren zweite lautet:

—X=m@E+r0O). . . . . (6

Schreiben wir die Gleichungen (5) und (6) mit den Werten
(2) und (3) aus:

s 2o o
DA rB L
— et (-)—{——%92-—)@:0 8)

Bei praktischen Ausfilhrungen sind die
Losungen x, @ dieser Gleichungen zwei
harmonische Schwingungen von sehr
verschiedenen Frequenzen, deren schnel-
lere rasch abgedampft wird; tbrig bleibt
die langsamere, etwa

@i—10;icosiwit; 2 =160 (o)
Bei dieser Bewegung ist der Schnitt-
punkt 7 der Endtangente mit dem Lot
durch den Aufhingepunkt A4 fest (Abb. 1);
er hat vom Federende £ den durch o
bestimmten Abstand 1. L#sst man das
Pendel aus einer Anfangslage los, bei
der die Endtangente gerade durch den
bezeichneten Punkt F im Abstand 1
geht, so tritt die héherfrequente Schwin-
gung dberhaupt nicht auf, und das
Pendel bewegt sich von vornherein genau gemiss Gl. (9).

3. Die Verbiegung des Kupplungs-Stibchens ist in
jedem Augenblick durch die auf die Blattfedern von ihren
schwingenden Massen ausgeiibten Krifte und Momente
gemidss Gl. (1) bestimmt, worin u; durch die Steife u=7E
des Stabchens zu ersetzen und M, naherungsweise der
Abb. 3 zu entnehmen ist:

M,,= (X1 +X2)(lx +1—77)+C1 +C2~
Durch Integration ergeben sich die Endwerte ¢ und «
(fiir » = /) von ¥ und &:

%‘P:(Xx—*‘Xz) (11 +7Z)+Cx + G,

2 1

Fu=X+X) (h+31)+ G+ G

Da nun gemiss (3) X; und C; sich aus O, und x,, X,
und C; aus den entsprechenden Werten @, und x, fiir
das andere Pendel linear zusammensetzen, so sind auch ¢
und # lineare Verbindungen dieser Grdssen, sogar, wie
nicht anders zu erwarten, der Summengrdssen

Y=~G

Abb, 2

a=0,+6,, 2==2x | x5 (10)
p=02+Ra, u=Hz+Ka, (r1)
NllQ:[(h-}—é)xthxll—(l—ﬁ)]lv
NR:VfﬁT'WHﬁﬂb—Jﬁﬂ* (12)
NH:;H(/* +§Z)xthxll—(1—ml7l)]}:,
it = (2 g
mit p =L (13)

In praktischen Ausfihrungen ist »/, von der Grdssen-
ordnung 1. Die eingangs angedeutete Bedingung iiber
Steife und Linge des Probestibchens fir das Zustande-
kommen von Schwebungen wird folgendermassen zu pra-
zisieren sein:
e,

welche Voraussetzung die Kleinheit der Grossen (12),
gemessen an 1, /; und 1//; nach sich zieht:

[ pietine £ {R et 1) K| <<h, |9|<<<<1/h. (14)
Da z und / o von der selben Gréssenordnung sind, ist
somit gemiss (11)

lp| <<Zlal,

|| <<|2|. (15)

4. Die sympathischen Pendel. Der Schwerpunkt S der
schwingenden Masse 7 etwa des rechten Pendels bewegt
sich gemiss Newton:

R=mp, . (16)

Die Kraft R setzt sich aus dexﬁ Gewicht @ der Masse
und der von der Feder auf dieselbe ausgetibten Kraft von
den Komponenten — X;, — G zusammen (Abb. 3); p, ist
die absolute Schwerpunktsbeschleunigung. Die Bewegung
von S ist besonders einfach relativ zu dem Verbindungs-
stick 4 A (Abb. 4) zu beschreiben, da die Relativ-

222

:“';‘+h (:)1

Abb. 3 Abb. 4

beschleunigung p, demselben merklich parallel gerichtet
ist. Das Verbindungsstiick fiihrt eine horizontale Trans-
lation von der Geschwindigkeit #, verbunden mit einer
Drehung um seinen Mittelpunkt von der Winkelgeschwin-
digkeit ¢ aus. Nach Coriolis ist
pa=pr+pf+pm
pr = Fortfiihrungs-, p. = Coriolisbeschleunigung. Produkte
der kleinen Elongationen, Geschwindigkeiten und Beschleu-
nigungen seien vernachlissigt. Dann fallt p. weg, von py
verbleiben nur die drei in Abb. 4 eingezeichneten Kom-
ponenten, und (16) zerfillt in die beiden Gleichungen
—Xi—Go=m[x+hO, +u+ (L+h ¢] (17)
— Y +G=—mdy Sasd g e e (1 8
(d = halbe Lange des Verbindungsstiicks). GI. (18) recht-
fertigt auch hier die Anniherung (2). Zieht man von (17)
die entsprechende Gleichung fir das linke Pendel ab, so
kommt, in Erinnerung an (3), die Differentialgleichung (7)
heraus, wenn man darin @ und x durch die Differenzen
B=060,— 0y, w=—2x —x (19)
ersetzt. Eine weitere Beziehung gewinnt man aus dem
Drallsatz. Er lautet fir die rechte Masse (Abb. 4 und 2):
— G —GhO, + X, h=m (O, + ). (20)
Die Subtraktion der analogen Gleichung fir das linke
Pendel fiihrt, unter Beriicksichtigung von (3), fir die Dif-
ferenzen (19) auf GI. (8). f und w sind also harmonische
Schwingungen von der ,natiirlichen* Pulsation ® und der
Form (9) (@ durch p, x durch w ersetzt). Indem man zu
(17) und (20) die entsprechenden Gleichungen addiert,
statt sie, wie soeben, abzuziehen, erhilt man mit Bedacht
auf (11) auch fir die Summen o und 2 zwei Differential-
gleichungen :

(x —{—el)z—k#z—{—(h—kss)a —%a:o, (21)
D;_(,/;Bz'*'(f‘{‘%)a +W&
g=2[H4+UL+h10], &=2G0,
es=2[K+0h+"R], &a=—2GR,
& — 2.0 e i— 2 R J
h ist mit /;, und, wie gesagt, auch 1//, mit » praktisch
von der selben Grdssenordnung, sodass, in Anbetracht
von (14) und (4), die Grossenverhiltnisse

|61]<<Iy ‘{'2‘<<B! T83|<<hv l (24)
'54‘<<Dy |£5|<< [/111 |£0‘<<I) J
zu beachten sind. Die Differentialgleichungen (21) und (22)
far 2 und a unterscheiden sich also nur wenig von jenen,

=oh; (22)

(23)
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(7) und (8), far w und B. Auch z und o werden daher _2t= N w _ o+8B e e
aus einer ,schnellen, bald verklingenden, und einer lang- . Sl e SO e O] 30

sameren Schwingung zusammengesetzt sein, diese etwa
von der Form

a=acosw; ), z=1a . (25)
Wie bei festem Pendelanfang kénnen auch hier, bei zittern-
dem Aufhingepunkt, die schnelleren Schwingungen ganz
unterdriickt werden, siehe unten. Wie die ,natiirliche“ Pul-
sation w aus der charakteristischen Gleichung von (7) und (8)

| ey e
i m ' h o m

D+ kB F4h(D+ 6)

&
e e O R e
7O 2

:O,

7)lg
abgekiirzt: awt~+bw2+c=o,

gezogen werden kann, so die ,aufgeprigte“ Pulsation w,
aus der charakteristischen Gleichung von (21) und (22)

B Dile
—op(ta) F 2T o) 2ts
— o0
D+ 1B F4+h(D+G )
—w;285———m+02—, —Coxﬁ(l—i—fs)—i—%
abgekiirzt: @ w1t + by w2+ ¢, = o. (26)

w, ist als Wurzel von (26) eine differenzierbare Funktion der
Koeffizienten ay, b, ¢;: w,=f(ay, b, ¢;), und unterscheidet
sich von w = f(a, b, ¢) nach Taylor in erster Annaherung
durch eine lineare Kombination der Differenzen a; — aq,
by — b, ¢, —c:

0y — o =fo(@1 —a)+fo (b —b)+fc(a—c) (27)
Hierin bedeutet z. B. f, den Wert der partiellen Ableitung
nach @, von f (a1, by, ¢;) fir die Argumente a, 4, ¢. Da
diese Argumente Kombinationen von Gréssen sind, die
sich einzig auf die Pendel beziehen, gilt dies auch von
fay fo, fc. Nun ist (Bemerkung (24)!) bei Vernachlassigung
kleiner Grossen zweiter Ordnung z. B. a,— a eine homogene
lineare Verbindung von ¢ bis &:

o —a=2e¢¢,

wobei die Koeffizienten ¢; wiederum nur von den Pendel-
daten abhingen. Das gleiche gilt von den Differenzen
(by — b) und (¢, —c¢). Hieraus folgt, bei Einsetzen der
Ausdricke fir die ¢ aus (23), (12) und (13) in (27):

w—a)lzﬁ,

(28)
w

worin die Abkiirzung p ausser von den Pendeldaten nur
noch von der Stablinge / abhingt.

5. Erzwungenes Gleichgewicht. Die rechte Pendel-
masse werde durch &ussere Einwirkung, etwa von Hand,
aus ihrer natiirlichen Ruhelage in die Lage O, x; gebracht.
Welches sind bei Gleichgewicht die entsprechenden Lage-
koordinaten des sich selbst iiberlassenen linken Pendels?
Bei Verschwinden der Beschleunigungen folgt aus (17)
und (20): Xy =—Go, C=—Gh (Oy+ ¢), welche
Werte, in (3) eingesetzt, zwei lineare Beziehungen zwischen
%5, @, und ¢, und damit die Ausdriicke liefern:

I
I_ch‘zl,_*—hz‘hx]’

fma I Fzhthz, ¥
th = [ h b
ol +l—1(~,;/, thxll+—chzll—1>l
o 1 xhthxl 1P
Wegen (15) ist somit |0, | <<<|al|, |x|<<<lh|a|=|z]

und daher |60;| <<<7|0,|, |x|<<<|%].

In erster Anndherung bewirkt somit das Festhalten
des einen Pendels in einer kiinstlichen Ruhelage keinerlei
Lagenveranderung des andern Pendels.

6. Die Schwebungen. Da w, von o wenig abweicht,
unterscheiden sich auch 1 und 1, kaum voneinander:

by =2 (29)
Man versetze nun die rechte Pendelmasse derart, dass
(Abb. 4) der Schnittpunkt / der Endtangente mit der
Vertikalen zum Verbindungsstiick durch den Aufhinge-
punkt 4 um 1 vom Endpunkt £ entfernt ist. Von dieser
erzwungenen Ruhelage x; = %, 0; = x¢/4, Oy = 2, =0
ausgehend, (iberlasse man das System zur Zeit {=o durch
Loslassen des festgehaltenen Pendels sich selbst. Nach
(10) und (19) ist

Fir /= o ist also erstens wegen z +~w =2—w =a + (¢
=a—f=o0: a=g =z:=zt}=o, zweitens wegen xp, =
O; =o0: a=pf=1wx[l, 8=w=2x. Nach (g9) ist w=
xp cos wt, ff= w/A eine mogliche Schwingung, und, mit
Riicksicht auf (29), nach (25) auch z=wx, cos w; ¢, a= z/1.
Da diese Schwingungen allen Anfangsbedingungen geniigen,
schildern sie (in erster Anndherung) die unter den be-
zeichneten Umstinden wirklich eintretende Bewegung.
Gemiss (30) ist somit

X :? (cos w; t 4+ cos w t) = Xy cos% tcos @ £,

0 — wy

FeinEtty
Abb. 5 gibt die-
sen Sachverhalt auf
die in der Elektro-
technik  dbliche
Weise wieder. Der
Vektor O4 vom Be-
trag xp/2 rotiere mit
der Drehschnelle
w, um O, der gleich
lange Vektor 4B mit
der Drehschnelle o
um 4. Wenn zur
Zeit t = o die bei-
den Vektoren gleich-
gerichtet in dem
festen Strahl OX liegen, so ist x, die Projektion des
w— o,
2

X .
x2=7°(cos w,  — cos wt) = %, sin

Summenvektors OB vom Betrag xo|cos Y, x; die-

0 —

jenige des Differenzvektors OC vom Betrag x, |sin ¢
auf OX. Da im vorliegenden Fall fiir Kleinheit der rela-
tiven Drehschnelle w — w; des zweiten gegeniiber dem
ersten Vektor gesorgt ist, verdndern die Dreiecke O4B und
0AC, wiahrend ihre gemeinsame Seite O4 (mit w;) um O
rotiert, ihre Gestalt nur langsam: x; und x, sind sozusagen

harmonische Schwingungen von der Kreisfrequenz 3% >
die Amplitude der einen nimmt im selben langsamen Rhyth-
mus ab, in welchem die Amplitude der zweiten anschwillt;
im Augenblick, wo jene (bei Koinzidenz von B mit O)
verschwindet, erreicht diese ihren H&chstwert xp, und um-
gekehrt. Bei einem solchen periodischen Erléschen der
Amplitude einer Schwingung wird als Dauer einer ,Schwe-
bung* die zwischen zwei sukzessiven Nullamplituden ver-
streichende Zeit 7z bezeichnet. 7 ist mit andern Worten
die Zeit, die der gegeniiber dem Vektor O4 mit der rela-
tiven Drehschnelle w — w, rotierende Vektor 4B zu einem
vollen Umlauf (relativ zu O4) zwischen zwei Koinzidenzen
von B mit O bendtigt:

27
©0— 0
Werden also mit zwei Probestibchen aus verschiedenen
Metallen, jedoch von gleichen Dimensionen auf die geschil-
derte Art Schwebungen bewerkstelligt, so verhalten sich
zufolge GIl. (28) die gemessenen Schwebungsdauern wie
die Steifen der Stibchen oder wie deren Elastizitéts-
moduln £ und £':

(=

TR

Die vorstehenden Erérterungen stiitzen sich auf die
schone und griindliche Abhandlung von Le Rolland und
Sorin ,Etude d’'une méthode utilisant le couplage entre
deux systémes oscillants pour la détermination de la résis-
tance mécanique des constructions et la mesure des modules
d’élasticité“1), wo (S. 146 fg) der Fall der aufrechten (statt
hingenden) Pendel durchgerechnet und die allgemeinere
Verwendbarkeit sympathischer Pendel zu Steifigkeitsproben,
etwa von Flugzeugkonstruktionen, dargelegt ist. K. H. G.

') Publications scientifiques et techniques du ministére de I'air,
n° 47, Paris 1934.



	Das Prinzip des Steifigkeitsmessers von Le Rolland und Sorin

