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ERGEBNISSE.

Obwohl für die Feststellung des Ergebnisses keinerlei
Feinmessung und nur eine einzige Zeitablesung notwendig
ist, arbeitet der Apparat bei richtiger Einstellung mit
grosser Genauigkeit. Vergleichsversuche mit den Ergebnissen

des Martens'schen Spiegelapparates sind in
nebenstehender Tabelle wiedergegeben. Die Unterschiede sind
gering. Teilweise sind die Angaben bei Martens höher
erhalten worden, teilweise bei Le Rolland. Zu den dort
angeführten Messungen kommen dann noch die bei
Gusseisen, wo Probestäbe untersucht wurden, deren ZT-Module
zwischen 6000 und 16000 kg/mm2 lagen6). Selbst bei
Stoffen wie Blei, die einer ZT-Modul-Bestimmung nach den
bisherigen Methoden schwer zugänglich sind, ist sie mittelst
des Le Rolland'schen Apparates möglich.

Die im Probestab entstehenden Spannungen und
Durchbiegungen sind unmerklich gering. Es kann daher
angenommen werden, dass der hier gemessene ZT-Modul
für Nullast gilt. Dieser Umstand ist sehr wichtig. Bei allen
übrigen Messmöglichkeiten müssen höhere Spannungen
aufgewendet werden, um Dehnungen beobachtbaren Ausmasses
hervorzubringen. Da sich der ZT-Modul im allgemeinen mit
der Spannungshöhe ändert, so erfordert seine Zahlen-
Angabe auch immer deren Angabe. Da er sich ferner bei
den bisherigen Feststellungsarten nicht aus einer einzigen
Dehnungsmessung, sondern nur aus einem Vergleich
mehrerer Dehnungsmessungen bei verschiedenen Spannungen
ergibt, so gilt die Messung für einen mehr oder weniger
ausgedehnten Spannungsbereicb, und was erhalten wird,
ist ein Mittelwert für diesen Spannungsbereicb, (a b in
Abb. 1). In Fällen, wo die Veränderlichkeit des ZT-Moduls
mit der Spannung gross ist, wie z. B. bei dem Gusseisen
der Abb. 1, kann dieser Umstand Bedeutung annehmen.
Die mit dieser Veränderlichkeit zusammenhängende Krümmung

der Kurve O A ist im wesentlichen auf die bleibenden
Verformungen zurückzuführen; bei einer Dehnungsmessung
mittelst Spiegelapparates werden auch diese bleibenden
Verformungen mitgemessen. Von einem „Elastizitäts"-Modul,
z. B. in der Gegend von a b in Abb. 1, kann daher kaum
gesprochen werden. Besser wäre, dafür vielleicht »Ver-
formungs"-Modul zu sagen.

Gegenüber diesen Unbestimmtheiten und Bedingtheiten
der bisherigen Messung gibt die Messung mittels des Le
Rolland-Sorin'schen Apparates eine klare und unmissver-
ständliche, keiner Ergänzung oder Einschränkung bedürftige

Aussage. Was mit ihr ermittelt wird, ist eine wirkliche
Werkstoffkonstante, unabhängig von Zufälligkeiten der
Versuchsanstellung. Man erhält den Elastizitäts-Modul für
Nullast, frei von der Einwirkung plastischer Verformungs-
Einflüsse, und gleich hoch für Zug und für Druck.

Sollte das Bedürfnis bestehen, die Ermittlung auch
für stärkere Materialanspannung anstellen zu können, so
kann der Le Rolland-Sorin'sche Apparat leicht auch dafür
eingerichtet werden. Bei der oben beschriebenen Ausführung

sind derartige Messungen allerdings nicht möglich.
Bemerkt sei noch, dass die Messungen im Gegensatz zu
anderen Messverfahren frei von jeder Hysteresiswirkung
sind und frei von jeder Einwirkung des Zeitfaktors auf
Belastung und Entlastung.

Mit diesem Apparat ist demnach die Möglichkeit
gegeben, den ZT-Modul bei aller Genauigkeit nicht nur
bequem und schnell zu ermitteln, sondern auch in
wissenschaftlich einwandfreierer Weise als mit jedem früheren
Verfahren. Es ist zu hoffen, dass er Veranlassung geben
wird, sich für die Bestimmung dieser grundlegend wichtigen

Werkstoffkonstante nicht mehr wie bisher bloss auf
die Fälle zu beschränken, in denen es sich um Sonderzwecke

mehr wissenschaftlicher Art handelt, dass vielmehr
die mit ihm gebotenen Möglichkeiten, die Werkstoffe zu
erkennen und in ihr Wesen einzudringen, breitere
Anwendung finden werden.

°) Vergl. auch Nicolau in „La Fönte", Paria (1933), Nr. 9, S. 332
bia 340.

ZAHLENTAFEL.')
Vergleich der Ergebnisse bei ZT-Modul-Bestimmung.

Werkstoff

Stahl
Duraluminium
AI

Bronze 1

Bronze 2

Bronze 3

Le Rolland
und Sorin

21 000
7640
7650

12 000
12 500

9 600

Martens

20830
7460
7 600

11 990
12 900

9 800

Das Prinzip des Steifigkeitsmessers von
Le Rolland und Sorin.

Wenn zwei sympathische, gleiche, an einer
Querverbindung hängende Pendel auf die in dem vorangehenden
Aufsatz beschriebene Weise durch ein das Verbindungsstück

haltendes Stäbchen gekuppelt werden, so überlagern
sich den „natürlichen" Pendelschwingungen „erzwungene".
Bei vollkommen steifem Kupplungsstäbchen hätten
notwendig beide Schwingungen natürliche Frequenz; infolge
der Biegsamkeit des Stäbchens gehen die Frequenzen in
Wirklichkeit auseinander, doch umso weniger, je steifer
das Stäbchen ist. Umso grösser wird also die Dauer der
auftretenden „Schwebungen". Dass bei hinreichend steifem
und kurzem Kupplungsstäbchen seine Steife und damit
sein Elastizitätsmodul der Schwebungsdauer geradezu
proportional ist, wird im Folgenden unter Voraussetzung kleiner
Bewegungen und unter Vernachlässigung der an den
Blattfedern, dem Verbindungsstück und dem Stäbchen
angreifenden Trägheitskräfte dargelegt.

1. Die elastische Linie der Blattfeder folgt (Abb. 1)
aus den beiden Differentialgleichungen

A

IM.
dx//

drj
Mn, dt; lp drj (I)

f, i] Koordinaten wie eingezeichnet,
ip Neigungswinkel gegen die jj-Axe,
IM, Ii Ei Steife der Blattfeder 'Ix
Trägheitsmoment des Querschnitts, Ex
Elastizitätsmodul), Mv Biegemoment
in der Entfernung rj. Die von der
schwingenden Masse auf die Blattfeder
übertragenen Kräfte seien auf deren
Endpunkt E zu der Dyname X, Y, C

reduziert; das Biegemoment ist
M„ X(h -n)- Y(x — ts) + C,

worin Y näherungsweise durch das
Gewicht G der schwingenden Masse
ersetzt werden darf:

X^G (2)
Durch Integration von (1) erhält man die Endwerte 0 und
x von y> und f (für rj — /,) als lineare Verbindungen von
X und C, die man nach diesen Grössen auflösen kann:

X=Bx — DO, C —Dx + FQ. (3)

NB Gxthxli, ND g(i rA-r1 ' \ chx/;

F — (x li — th x h),

Abb.1

N=xli thxh— 2(1 d^—t), Wix*—G.\ Ch lt ii J

(4)

2. Die natürlichen Schwingungen des elastischen Pendels,
das heisst seine Bewegung bei festem Aufhängepunkt A
(Abb. 1) folgt (Abb. 2) aus dem Drallsatz

Xh — YhQ — C mo*G (5)

(h Entfernung zwischen Federende E und Massenschwerpunkt

S, m schwingende Masse, q Trägheitsradius),
und aus den Bewegungsgleichungen für den Schwerpunkt 5,

T) Aus Bull, de l'Assoo. Techn. de Fond., Paris (1934), S. 427.
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deren erste die Gl. (2) insofern rechtfertigt, als sich S
merklich horizontal bewegt, und deren zweite lautet:

— X m (x-\- h&) (6)
Schreiben wir die Gleichungen (5) und (6) mit den Werten
(2) und (3) aus:

9 n
(7)

B D0 —— 0 O
m

D + hB 0 F+h(D + G) 0 o. (8)m q° m q*
Bei praktischen Ausführungen sind die
Lösungen x, 0 dieser Gleichungen zwei
harmonische Schwingungen von sehr
verschiedenen Frequenzen, deren schnellere

rasch abgedämpft wird; übrig bleibt
die langsamere, etwa

0 0O cos cot, x X 0. (9)
Bei dieser Bewegung ist der Schnittpunkt

F der Endtangente mit dem Lot
durch den Aufhängepunkt A fest (Abb. 1);
er hat vom Federende E den durch co

bestimmten Abstand L Lässt man das
Pendel aus einer Anfangslage los, bei
der die Endtangente gerade durch den
bezeichneten Punkt F im Abstand A

geht, so tritt die höherfrequente Schwingung

überhaupt nicht auf, und das
Pendel bewegt sich von vornherein genau gemäss Gl. (9).

3. Die Verbiegung des Kupplungs-Stäbchens ist in
jedem Augenblick durch die auf die Blattfedern von ihren
schwingenden Massen ausgeübten Kräfte und Momente
gemäss Gl. (1) bestimmt, worin /ix durch die Steife fi IE
des Stäbchens zu ersetzen und Mv näherungsweise der
Abb. 3 zu entnehmen ist:

Mv (X1+Xt) (/,+/-
Durch Integration ergeben sich
(für rj l) von tp und £:

!L-cp (Xi + x.y (/, +4) + Ci + C2,

Abb. 2

- n) +1 4- ct.
die Endwerte <p und

lfu (Xi-{- X2) (4 -4- j-l) + Ci + C2.

Da nun gemäss (3) Xx und d sich aus &i und xlt X$
und Ct aus den entsprechenden Werten 0t und x% für
das andere Pendel linear zusammensetzen, so sind auch <p

und u lineare Verbindungen dieser Grössen, sogar, wie
nicht anders zu erwarten, der Summengrössen

NR

NH

a @i + @t, z Xi -4- xt:
cp Qz-\- Ra, u — Hz-\- Ka,

'(/,+4)*tb*/,-(

/, +— l\xthxli

^=^[>-4i-(/'+
mit %

2/1

ch x lj] % '

ct~xTj\x'

* J.
Gli l

(10)

m

(12)

(13)

In praktischen Ausführungen ist x h von der Grössen-
ordnung 1. Die eingangs angedeutete Bedingung über
Steife und Länge des Probestäbchens für das Zustandekommen

von Schwebungen wird folgendermassen zu
präzisieren sein:

X«h
welche Voraussetzung die Kleinheit der Grössen (12),
gemessen an 1, h und i/A nach sich zieht:

|#|«i, |/?|«i, |A-|«/i, Ißl« 1//,. (14)
Da z und 1% a von der selben Grössenordnung sind, ist
somit gemäss (n)

M«lal> l"l«lel (J5)

4. Die sympathischen Pendel. Der Schwerpunkt S der
schwingenden Masse nt etwa des rechten Pendels bewegt
sich gemäss Newton:

9t=»*pa (16)
Die Kraft 91 setzt sich aus dem Gewicht © der Masse
und der von der Feder auf dieselbe ausgeübten Kraft von
den Komponenten —XXt. — G zusammen (Abb. 3); pa ist
die absolute Schwerpunktsbeschleunigung. Die Bewegung
von S ist besonders einfach relativ zu dem Verbindungsstück

A A (Abb. 4) zu beschreiben, da die Relativ-

ymwxa»

r~<
r

K /c

M<P

Abb. 4Abb. 3

beschleunigung pr demselben merklich parallel gerichtet
ist. Das Verbindungsstück führt eine horizontale Translation

von der Geschwindigkeit u, verbunden mit einer
Drehung um seinen Mittelpunkt von der Winkelgeschwindigkeit

<p aus. Nach Coriolis ist

P/ Fortführungs-, pc Coriolisbeschleunigung. Produkte
der kleinen Elongationen, Geschwindigkeiten und Beschleunigungen

seien vernachlässigt. Dann fällt pc weg, von p/
verbleiben nur die drei in Abb. 4 eingezeichneten
Komponenten, und (16) zerfällt in die beiden Gleichungen

— X1 — G(P m[xi-\-h©i-\-ü+(li-\-k)<p] (17)
— Yi-\-G — md<p (18)

(d halbe Länge des Verbindungsstücks). Gl. (18)
rechtfertigt auch hier die Annäherung (2). Zieht man von (17)
die entsprechende Gleichung für das linke Pendel ab, so
kommt, in Erinnerung an (3), die Differentialgleichung (7)
heraus, wenn man darin 0 und x durch die Differenzen

ß 0j — 0a, w Xi — Xt (19)
ersetzt. Eine weitere Beziehung gewinnt man aus dem
Drallsatz. Er lautet für die rechte Masse (Abb. 4 und 2):

— Ci — G h 0i 4- Xi h me* (©i + ^). (20)
Die Subtraktion der analogen Gleichung für das linke
Pendel führt, unter Berücksichtigung von (3), für die
Differenzen (19) auf Gl. (8). ß und w sind also harmonische
Schwingungen von der „natürlichen" Pulsarion co und der
Form (9) (0 durch ß, x durch w ersetzt). Indem man zu
(17) und (20) die entsprechenden Gleichungen addiert,
statt sie, wie soeben, abzuziehen, erhält man mit Bedacht
auf (n) auch für die Summen a und 0 zwei Differentialgleichungen

:

(i+ei)« + £±i* + (* + *)«-:^a=oI (al)

eaz
D + hB

z -f (1 +es)a F+h{D + G)
a o, (22)

(»3)
f, =2 [//H-(/t-f-A)0], ea 2GQ,
e8 2 [AT + (/i +h)R], £i — 2GR,
et 2 Q e6 2 R.

h ist mit li, und, wie gesagt, auch 1//, mit x praktisch
von der selben Grössenordnung, sodass, in Anbetracht
von (14) und (4), die Grössenverhältnisse

|ei|«i, H«5, |«»| «*, \
| e* | « D, | et | « l/hi | e» | « 1, J

zu beachten sind. Die Differentialgleichungen (21) und (22)
für 0 und a unterscheiden sich also nur wenig von jenen,

(24)
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(7) und (8), für w und ß. Auch s und a werden daher
aus einer schnellen, bald verklingenden, und einer
langsameren Schwingung zusammengesetzt sein, diese etwa
von der Form

a ctr, cos coi t, z Xi a (25)
Wie bei festem Pendelanfang können auch hier, bei zitterndem

Aufhängepunkt, die schnelleren Schwingungen ganz
unterdrückt werden, siehe unten. Wie die „natürliche"
Pulsation co aus der charakteristischen Gleichung von (7) und (8)

B I D

« + '

— h,
D + hB F + h'D+G)

m q'
abgekürzt: a coi -f- b co"- -+ c o,
gezogen werden kann, so die „aufgeprägte" Pulsation coi
aus der charakteristischen Gleichung von (21) und (22)

B + «2 Siit Wk D + e,— 0)^(1 + e,) + '(A + e8)

- aija e6

abgekürzt:

D + hB
tt>!3 (l-f-£6) F+h(D + G)

ax coi* +- bi coi2 -\-Ci o. (26)
coi ist als Wurzel von (26) eine differenzierbare Funktion der
Koeffizienten ax, bit cx: cox=f(ax, bx, cx), und unterscheidet
sich von co f(a, b, c) nach Taylor in erster Annäherung
durch eine lineare Kombination der Differenzen ax — a,
bi — b, Ci — c:

coi—co=fa («i — a) -+fb (bx — b) -+fc (cx — c). (27)
Hierin bedeutet z. B. fa den Wert der partiellen Ableitung
nach ax von f (ax, bx, cx) für die Argumente a, b, c. Da
diese Argumente Kombinationen von Grössen sind, die
sich einzig auf die Pendel beziehen, gilt dies auch von
fay fb\ fc Nun ist (Bemerkung (24)!) bei Vernachlässigung
kleiner Grössen zweiter Ordnung z. B. ax— a eine homogene
lineare Verbindung von ex bis e6:

«1 — a 2et Ei,
wobei die Koeffizienten ei wiederum nur von den Pendeldaten

abhängen. Das gleiche gilt von den Differenzen
(bx — b) und (ci — c). Hieraus folgt, bei Einsetzen der
Ausdrücke für die e/ aus (23), (12) und (13) in (27):

co — a>i=—, (28)
m

worin die Abkürzung p ausser von den Pendeldaten nur
noch von der Stablänge / abhängt.

5. Erzwungenes Gleichgewicht. Die rechte Pendelmasse

werde durch äussere Einwirkung, etwa von Hand,
aus ihrer natürlichen Ruhelage in die Lage 0X, xx gebracht.
Welches sind bei Gleichgewicht die entsprechenden
Lagekoordinaten des sich selbst überlassenen linken Pendels?
Bei Verschwinden der Beschleunigungen folgt aus (17)
und (20) : X% — G cp, Ca — G h (0a + cp), welche
Werte, in (3) eingesetzt, zwei lineare Beziehungen zwischen
Xt, 02 und cp, und damit die Ausdrücke liefern:

+ hxthxlx
<Pi0a ch xlt

X»

1 + * h th x /,
th x 1, hl...Ix/, th xlx +'k '1 ch y.li

1¦I + ¦/. ii th x /,

Wegen (15) ist somit | 02 | « \a\, \xz\ « h \a\ \z\,
und daher | 0t \ « | ©1 |, \xt\ <C<C Ix' I •

In erster Annäherung bewirkt somit das Festhalten
des einen Pendels in einer künstlichen Ruhelage keinerlei
Lagenveränderung des andern Pendels.

6. Die Schwebungen. Da a>t von co wenig abweicht,
unterscheiden sich auch l und Xx kaum voneinander:

h-x ¦ ¦ Sil • ¦ • (29)
Man versetze nun die rechte Pendelmasse derart, dass
(Abb. 4) der Schnittpunkt F der Endtangente mit der
Vertikalen zum Verbindungsstück durch den Aufhängepunkt

A um X vom Endpunkt E entfernt ist. Von dieser
erzwungenen Ruhelage xx x0, 0X Xo/X, ©2 — x3 o
ausgehend, überlasse man das System zur Zeit t=o durch
Loslassen des festgehaltenen Pendels sich selbst. Nach
(10) und (19) ist

Xt ©i « + 0a
¦P

(30)

Für / o ist also erstens wegen 0 +¦ w z — w — a + ß

a — ß o: a=/?=0 w o, zweitens wegen x2
©2 o: a ß x0jX z w x0. Nach (9) ist w
x0 cos co t, ß w/X eine mögliche Schwingung, und, mit
Rücksicht auf (29), nach (25) auch 0 ^0 cos cox t, a= zJX.
Da diese Schwingungen allen Anfangsbedingungen genügen,
schildern sie (in erster Annäherung) die unter den
bezeichneten Umständen wirklich eintretende Bewegung.
Gemäss (30) ist somit

Xi — I COS COi t -+• cos CO /

x2 — t cos coi t — co s co t

¦ü)1 CO + (üx—-1 COS t,

xQ sm -

'jl+ai

Abb.

festen Strahl OX liegen, so ist xt
Summenvektors OB vom Betrag x0 Icos

—i/ sin =-J—S t.
2 2

Abb. 5 gibt diesen

Sachverhalt auf
die in der Elektrotechnik

übliche
Weise wieder. Der
Vektor OA vom
Betrag #0/2 rotiere mit
der Drehschnelle
coi um O, der gleich
lange Vektor AB mit
der Drehschnelle co

um A. Wenn zur
Zeit t 0 die
beiden Vektoren
gleichgerichtet in dem
die Projektion des

-/, Xt

diejenige des Differenzvektors OC vom Betrag x0 |sin 1 \

auf OX. Da im vorliegenden Fall für Kleinheit der
relativen Drehschnelle co — cox des zweiten gegenüber dem
ersten Vektor gesorgt ist, verändern die Dreiecke OAB und
OAC, während ihre gemeinsame Seite OA (mit coi) um O
rotiert, ihre Gestalt nur langsam: xx und x% sind sozusagen
harmonische Schwingungen von der Kreisfrequenz —' Ml

;

die Amplitude der einen nimmt im selben langsamen Rhythmus

ab, in welchem die Amplitude der zweiten anschwillt;
im Augenblick, wo jene (bei Koinzidenz von B mit O)
verschwindet, erreicht diese ihren Höchstwert x0, und
umgekehrt. Bei einem solchen periodischen Erlöschen der
Amplitude einer Schwingung wird als Dauer einer „Schwebung"

die zwischen zwei sukzessiven Nullamplituden
verstreichende Zeit r bezeichnet. % ist mit andern Worten
die Zeit, die der gegenüber dem Vektor OA mit der
relativen Drehschnelle co—cox rotierende Vektor AB zu einem
vollen Umlauf (relativ zu OA) zwischen zwei Koinzidenzen
von B mit O benötigt:

Werden also mit zwei Probestäbchen aus verschiedenen
Metallen, jedoch von gleichen Dimensionen auf die geschilderte

Art Schwebungen bewerkstelligt, so verhalten sich
zufolge Gl. (28) die gemessenen Schwebungsdauern wie
die Steifen der Stäbchen oder wie deren Elastizitätsmoduln

E und E':
x : t E': E.

Die vorstehenden Erörterungen stützen sich auf die
schöne und gründliche Abhandlung von Le Rolland und
Sorin „Etüde d'une methode utilisant le couplage entre
deux systemes oscillants pour la determination de la resis-
tance mecanique des constructions et la mesure des modules
d'filasticit^"1), wo (S. 146 fg) der Fall der aufrechten (statt
hängenden) Pendel durchgerechnet und die allgemeinere
Verwendbarkeit sympathischer Pendel zu Steiügkeitsproben,
etwa von Flugzeugkonstruktionen, dargelegt ist. K. H. G.

') Publications scientifiques et techniques du miniatere de l'air,
n° 47, Paris 1934.
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