Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105/106 (1935)

Heft: 10

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Beitrag zur Berechnung der Geschiebeführung und der Normalprofilbreite von Gebirgsflüssen. — Vollautomatische Oelfeuerungsanlagen. — Versuche über die Wirkung von Kaminaufsätzen. — Mitteilungen: Städtische Miethäuser in Gent Neuerungen im Dampfturbinenbau. Korrosionsermüdung. Das italienische Baugewerbe im Jahre 1934. Wasserenthärtung durch Permutitverfahren. Photoelektrisches Trü-

bungsmessgerät. Ein Mangelberuf. 4. Internationaler Krankenhaus-Kongress in Rom. Die vatikanische Eisenbahn. Die Lyoner Messe. — Nekrologe: Alex Alder. Karl Gabriel. Carl v. Linde. Benjamin Person. Ernest Deluermoz. — Literatur. — Eidg. Patentschriften-Sammlung der "SBZ". — Inhaltsverzeichnis der "SBZ". — Mitteilungen der Vereine. — Sitzungs- und Vortrags-Kalender.

Band 105

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 10

Beitrag zur Berechnung der Geschiebeführung und der Normalprofilbreite von Gebirgsflüssen.

Von Prof. Dr. E. MEYER-PETER, Dr. HENRY FAVRE und Dipl. Ing. ROBERT MÜLLER, E. T. H. Zürich.

(Schluss von Seite 99.)

III. ÜBERPRÜFUNG DER BERECHNUNGSMETHODE AN HAND VON AUSGEFÜHRTEN MODELLVERSUCHEN.

Die beste Methode der Ueberprüfung der beschriebenen Berechnungsmethode besteht in der direkten Geschiebemessung, worauf schon im oben zitierten Aufsatz in der "SBZ" vom März 1934 hingewiesen worden ist. Leider bestehen noch zu wenige derartige Messungen, um schlüssige Folgerungen zu ziehen. Eingehende Versuche der Versuchsanstalt für Wasserbau am Modell im Masstab 1:100 einer regulierten Flusstrecke können an Stelle von direkten Messungen in der Natur für diese Prüfung herangezogen werden. Aus der grossen Reihe dieser Versuche wurden die nachstehend mit a bis e bezeichneten ausgewertet.

Als Geschiebe wurde wegen des Modellmasstabes Braunkohlengrus in zwei verschiedenen Mischungen verwendet; das spezifische Gewicht des Materials beträgt 1,25. Besondere systematische Versuche, ähnlich denen, die im Aufsatz der "SBZ" vom März 1934 beschrieben sind, haben das für Modellversuche in kleinem Masstab unter Anwendung dieses Materials wichtige Ergebnis gebracht, dass das Geschiebetriebgesetz nach Gleichung (3) auch für Braunkohlengrus gilt. Die Konstanten a und b ändern sich mit dem spezifischen Gewicht. Für die beiden verwendeten Gemische ergeben sich folgende charakteristische Werte:

Gemisch	Korngrössen	Massgebender Durchmesser	Konstanten des Geschiebetriebgesetzes	
Nr.	mm	mm	a	b.
I	ı bis 3	1,3	1,65	0,268
2	0,5 bis 11,6	1,2	1.50	0,275

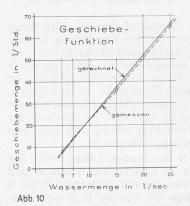
Die Feststellung, dass die beiden Konstanten a und b für die beiden Gemische etwas von einander abweichen, erklärt sich durch die kleinen Korndurchmesser, die, gemäss früheren Mitteilungen, auch nach den Versuchen von Gilbert eine gewisse Abweichung gegenüber dem Verhalten der grossen Durchmesser zeigen. In Bezug auf den Wert g in der Gleichung (3) ist noch darauf hinzuweisen, dass er aus versuchstechnischen Gründen unter Wasser gewogen wurde. Das den Versuchen zu Grunde gelegte Normalprofil der Flusstrecke geht aus Abb. 9 (S. 110) hervor, in der auch die für den Versuch e aus den Aufnahmen der Flusssohle, gemäss den Abb. 9A und 9B, ermittelte hypsographische Kurve, d. h. der massgebende Querschnitt eingezeichnet ist. Abb. 9 C stellt eine Aufnahme einer Modellstrecke bei NW dar; zum Vergleich wird in Abb. 9D eine Fliegeraufnahme des Rheines unmittelbar oberhalb des Diepoldsauer Durchstiches wiedergegeben. Die vier Versuche a bis d sind mit der Mischung Nr. 1 ausgeführt, aber mit verschiedenen Wassermengen, der Versuch e mit dem Gemisch Nr. 2.

Versuch	Wassermenge	Gefälle	Geschiebemenge 1/sec		
Nr.	1/sec	0/00	Berechnet	Gemessen	
a	5	0,99	7,21	8,0	
b	7	1,00	13,6	14,1	
С	15	1,00	37,8	36,0	
d	25	1,039	66,7	65,4	

Die vier erhaltenen Resultate gestatten nun die Aufzeichnung der Geschiebefunktion (Abb. 10).

Der Versuch e wurde mit variabler Wassermenge ausgeführt, entsprechend einem gegebenen Beobachtungsjahr. Die Geschiebefunktion war durch Vorversuche annähernd ermittelt worden, wobei jeder Wassermenge eine besondere Geschiebemischung zugeordnet war. Dabei variierte der massgebende Korndurchmesser von 0,87 mm für einen Abfluss von 1 l/sec bis 1,65 mm für einen Abfluss von 15 l/sec. Das während eines Versuchsjahrs im Ganzen eingeführte Geschiebe hatte aber im Mittel den bereits genannten massgebenden Durchmesser von 1,2 mm.

Es konnten hier nur die jährlichen Geschiebefrachten miteinander verglichen werden und zwar wurden dabei bei der Rechnung das eine Mal die mit den Wassermengen variierenden Durchmesser, das andere Mal dagegen der Durchmesser des Mittels der Mischungen eingeführt. Die Resultate sind die folgenden:


Versuch Nr.	Wassermenge	Gefälle	Geschiebefracht, Liter		
		Mittel	berechnet mit variablen Korn-	berechnet mit mittl, Korn-	ge- messen
	l/sec	0/00	durchmessern	durchmesser	
e	variierend von 1 l/sec bis	1,00	93,7	97,5	94
	15 1/sec	0.71015	attin otsiius	nen der Ro	

Der Vergleich der Resultate der Berechnung mit denen der Messsung darf also wohl als sehr befriedigend bezeichnet werden. Er zeigt auch, dass bei der Anwendung auf die natürlichen Verhältnisse, bei denen eine Differenzierung der Geschiebemischungen je nach den Wassermengen nicht möglich ist, mit genügender Genauigkeit mit dem massgebenden Korndurchmesser des mittleren Geschiebes, das auf den Kiesbänken leicht analysiert werden kann, gerechnet werden darf.

IV. BERECHNUNG DES LÄNGSPROFILS BEI GEGEBENER NORMALPROFILBREITE.

1. Generelle Beschreibung des Berechnungs-Ganges. Durch die Entwicklungen in Abschnitt II sind die Grundlagen für diese Aufgabe gegeben. Es handelt sich darum, die praktische Anwendung der Theorie auf konkrete Fälle kurz zu besprechen.

Bisher ist gezeigt worden, wie für einen geschiebeführenden Gebirgsfluss die jährliche Geschiebefracht berechnet werden kann, wenn gegeben sind: das Querprofil, das Gefälle, die Rauhigkeit, der massgebende Geschiebe-

durchmesser und die jährliche Wasserfracht. Es ist ohne weiteres einzusehen, dass aus der Beziehung zwischen diesen sechs Variabeln jede beliebige, so insbesondere das Gefälle berechnet werden kann, wenn die fünf andern gegeben sind. Die explizite Ermittlung des Gefälles ist allerdings nicht möglich, weshalb man so vorzugehen hat, dass, gemäss den in Abschnitt II entwickelten