Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 103/104 (1934)

Heft: 21

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Beitrag zur Berechnung der Schaufelschwingungen bei Turbinen, Ueber Wärmespannungen bei Schweissungen. - Neuere Architekturen des Auslandes: I. Das Gebäude des Golf-Club in Tokio. II. Die neue Französische Schule in Prag. III. Hochhaus mit Arbeiterwohnungen in Rotterdam. -Die Zonensteuerung in der Wasserversorgungsanlage in Richterswil. — Mitteilungen Schutz des Diplom-Ingenieur-Titels in Frankreich. Wasserstoff aus elektrischer Abfallenergie für den Betrieb von Verbrennungsmotoren. Die zunehmende Sauerstoffverarmung des Zürichsees. Ein neuer Steuerapparat für parallel arbeitende Kraftwerke. Die akademischen Diskussionsvorträge der Elektrotechnischen Abteilung der E.T.H. Neue Methode zur Bestimmung von Trägheitsmomenten. — Nekrolog: Richard Leumann. — Mitteilungen der Vereine. — Sitzungs- und Vortrags-Kalender.

Band 104

Der S. I. A. ist für den Inhalt des redaktioneilen Teils seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 21

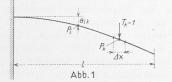
Beitrag zur Berechnung der Schaufelschwingungen bei Turbinen, Kompressoren u. a. m

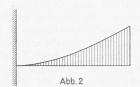
Von Dipl. Ing. W. PETER, A.-G. Brown Boveri & Cie., Baden.

Im Folgenden wird ein praktisches Verfahren zur Ermittelung der Eigenfrequenzen von Schaufeln veränderlichen Querschnittes angegeben.

Die Berechnung der Schwingungszahlen ist bei den modernen schnellaufenden Maschinen mit hochbeanspruchten Schaufeln unerlässlich geworden, weil sie uns wertvolle Aufschlüsse darüber gibt, wie die Gesamtbeanspruchungen der Schaufeln herabgesetzt und vor allem, wie die gefährlichen Resonanzerscheinungen beseitigt werden können.

An anderer Stelle1) haben wir eine Berechnungsmethode veröffentlicht, die in einfacher Weise gestattet, diese Frequenzen, ob statisch, dynamisch, frei oder gebunden, zu ermitteln. Dabei hatten wir jedoch lediglich die Schaufeln konstanten Querschnittes betrachtet, was in der Praxis nur für verhältnismässig kurze Schaufeln zutrifft. Lange Schaufeln werden aus Festigkeitsgründen meist verjüngt, d. h. ihr Querschnitt wird vom Fuss bis zum Kopf allmählich kleiner. Um die Eigenschwingungszahl einer solchen Schaufel zu berechnen, benützt man gewöhnlich die wohl bekannte und allgemein bewährte Energiemethode von Rayleigh²). Wir möchten hier eine andere Methode entwickeln, die, soweit es sich nur darum handelt, die Eigenschwingungszahl einer beliebig verjüngten Schaufel zu ermitteln, mit gleicher Genauigkeit und in erheblich kürzerer Zeit zum Ziele führt. Diese Methode stützt sich hauptsächlich auf die von Prof. E. Hahn, Nancy ("SBZ" Band 87, Seite 1, 1926) veröffentlichten Rechnungen.





Betrachten wir eine schwingende Schaufel. Wir denken uns die Trägheitskräfte in n ihrer Punkte $P_1,\ P_2\dots P_n$ konzentriert. T_k sei die k-te Trägheitskraft. Es sei a_{ik} der Einflusskoeffizient, d. h. der Ausschlag der elastischen Linie im i-ten Punkte unter dem Einflusse der Einheitslast im k-ten Punkte (Abb. 1). Dann ist der Ausschlag yi des i-ten Schaufelpunktes unter dem Einfluss aller n Trägheitskräfte

$$y_i = \sum_k a_{ik} T_k \text{ mit } i = 1, 2, ..., n$$
 . (1)

Harmonische und gleichphasige Schwingungen angenom-

$$y_k = Y_k \sin(\lambda t) (2)$$

Ist μ die spezifische Schaufeldichte, F_k der Schaufelquerschnitt im k-ten Punkte, so wird

$$T_k = -\mu F_k \ddot{y_k} \Delta x = \mu F_k \lambda^2 y_k \Delta x \quad . \quad . \quad (3)$$

Demgemäss stellt Abb. 2 den Verlauf der Trägheitskräfte längs der Schaufel dar. Wir erkennen, dass die elastische Linie hauptsächlich durch diejenigen Kräfte, die am freien Ende der Schaufel angreifen, bedingt ist.

Die verschiedenen elastischen Linien, welche die Schaufel annimmt, wenn die Einheitslast an verschiedenen Schaufelpunkten angebracht wird, dürfen mit hinreichender Genauigkeit als ähnlich betrachtet werden. Diese Annahme stimmt nämlich, sofern die verschiedenen Angriffspunkte der Einheitslast gegen das Schaufelende zu gelegen sind,

mit der Wirklichkeit überein und schadet, wenn diese Voraussetzung nicht erfüllt ist, wenig, da eine am Schaufelfuss angreifende Last, die ohnehin viel kleiner ist (Abb. 2), nur geringe Ausbiegungen bewirkt und deshalb die aus der Annahme ähnlicher elastischer Linien entstehenden Fehler nur die kleineren Einflusskoeffizienten betreffen. Wir können also setzen:

womit das Gleichungssystem (1) unter Berücksichtigung von (3) die Form annimmt:

$$y_i = \sum_k c_k a_{i1} \mu F_k \lambda^2 y_k \Delta x, \quad i = 1, 2, 3, ..., n.$$

Setzt man hierin abkürzend

$$\delta_k = \mu F_k \Delta x$$
, $d_k = \lambda^2 c_k \delta_k$, . . . (5)

so wird

$$y_i = \sum_k a_{i1} d_k y_k, \quad i = 1, 2, \dots, n$$
 (6)

Da nicht alle Ausbiegungen zu verschwinden brauchen, ist die Determinante dieses Systems

$$\begin{vmatrix} (a_{11} d_1 - 1), & a_{11} d_2, & \dots, & a_{11} d_n \\ a_{21} d_1, & (a_{21} d_2 - 1), \dots, & a_{21} d_n \\ \dots & \dots & \dots \\ a_{n1} d_1, & a_{n1} d_2, & \dots, & (a_{n1} d_n - 1) \end{vmatrix} = 0 \quad (7)$$

Da in der Determinante $||a_{i1} d_k||$ sämtliche Unterdeterminanten von höherer als erster Ordnung verschwinden, ergibt die Entwicklung der Determinante (7) nach ihrer Hauptdiagonale:

$$(-1)^n + (-1)^{n-1} \sum_i a_{i1} d_i = 0$$

oder, mit Berücksichtigung von (5) und (4)
$$\lambda^{2} = \frac{1}{\sum a_{ii} \delta_{i}} = \frac{1}{\mu \Delta x \sum F_{i} a_{ii}} (8)$$

Setzt man, wie es in der Schwingungstheorie üblich ist:
$$\beta_v^4 = \frac{l^4 \, \mu \, F_s \, l^2}{J_0 \, E} \qquad . \qquad . \qquad . \qquad (9)$$

mit F_s = Schaufelquerschnitt am freien Ende, J_0 = Trägheitsmoment des Schaufelquerschnittes am Fuss, E = Elastizitätsmodul,

so wird

$$\beta_{v}^{4} = \frac{l^{4}}{J_{0} E \Delta x \sum \frac{F_{li}}{F_{s}} a_{ii}} \quad . \quad . \quad (10)$$

aii wird nach dem Verfahren von Mohr³) wie folgt bestimmt: Bei konstantem Trägheitsmoment ist die Durchbiegung im Punkte i gleich dem 1/JE-fachen Wert des in i wirksamen Momentes, das durch die zu $T_i = 1$ gehörige M-Fläche als Belastungsfläche der Schaufel erzeugt würde. Da in unserem Fall J veränderlich ist, werden wir statt 1/JE den Wert $1/J_0E$ nehmen und statt der gegebenen M Fläche eine Fläche, deren Ordinaten = $M_c J_0/J_c$ sind. Es ist zweckmässig, die Rechnung analytisch durchzuführen. Man teilt die Schaufel in n Elemente. Wenn man

 $\frac{a_{ii}}{a_{J_0}E} a_{ii}' = a_{ii}$ setzt, bekommt man aus Abb. 3 (S. 238):

$$a_{ii}' = \sum_{c} \left(\frac{i-c}{n}\right)^2 \frac{J_0}{J_c}, \quad . \quad . \quad . \quad . \quad (11)$$
mit $c = 1, 2, \ldots, i$.

und, da $\Delta x = \frac{1}{n}$, vereinfacht sich (10) in

$$\beta_{v^4} = \frac{n^4}{\sum\limits_{i} a_{ii'} \frac{F_i}{F_s}} \qquad (12)$$

^{1) &}quot;BBC-Mitteilungen", Mai 1934, S. 179 und Juli 1934, S. 123.

²⁾ Siehe Stodola, "Dampf- und Gasturbinen", 5. Auflage, S. 946 u. f.

³⁾ O. Mohr, "Abhandlungen aus dem Gebiete der Techn. Mechanik", 3. Auflage, S. 354. Berlin 1928, W. Ernst & Sohn.