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INHALT: Zur Berechnung der Grundschwingungszahl vollwandiger Träger.—
Kunsteisbahn und Wellenbad Dählhölzli, „Ka-We-De", in Bern. — Wasser-Reinigung
und Grundwasserfassung für das Ka-We-De Bern. — Die Eisplatte des Ka-We-De
Bern. — Die Kältemaschinen-Anlage. — Die Kompressorheizung des Ka-We-De. —
Elektro-Traktor für die Eisbahn-Reinigung. — Schweizer. Starkstromkontrolle 1933. —
Mitteilungen : Zur Physiologie des Starkstromunfalls. Das kantonale chemische Labo-

Band 104

Zur Berechnung der Grundschwingungszahl
vollwandiger Träger.
Von Dr. sc.techn. FRITZ STÜSSI, Obering. der Eisenbaugesellschaft Zürich.

1. Zur Berechnung der niedrigsten Eigenschwingungszahl,
die den Ausgangspunkt für die dynamische

Untersuchung von Tragwerken darstellt, sind für die Praxis
Annäherungsverfahren ausgearbeitet worden. So hat
Pohlhausen1) für Fachwerkträger ein Berechnungsverfahren
aufgestellt, bei dem aus der wiederholten Bestimmung von
Verschiebungsgrössen die Eigenfrequenz mit fortgesetzter
Annäherung ermittelt wird. Die praktische Eignung des
Verfahrens beruht auf der guten Konvergenz der der
Reihe nach zu bestimmenden Schwingungszahlen gegen
den genauen Wert. Eine Uebertragung der Methode von
Pohlhausen auf Vollwandträger rührt von F. Bleich2) her.
Es lässt sich leicht zeigen, dass die Grundschwingungszahl
sich hier einfacher direkt aus dem Vergleich von
angenommener und daraus berechneter Formänderungskurve
ergibt, wodurch das Verfahren Pohlhausen - Bleich im
Wesentlichen in das graphische Verfahren von Stodola8)
übergeht.

Ein anderer Weg zur Bestimmung der Eigenschwingungszahl

beruht auf der Betrachtung der Energieverhältnisse

während des Sehwingungsvorganges.4) Wie
nachstehend gezeigt werden soll, ergibt sich aus der Kombination
der ersterwähnten Berechnungsart(Stodola) mit einer
Energiebetrachtung ein sehr einfaches Berechnungsverfahren, das
in einem Rechnungsgang die Grundschwingungszahl mit
praktisch meistens genügender Genauigkeit liefert. Da
hierbei zwei Werte für die Schwingungszahl erhalten
werden, lässt sich die Güte der Approximation abschätzen.

2. Aus der Schwingungsgleichung des elastischen
Stabes :

Ô2 Ô'a\ q d'z

ch*\ ~ °
in der z die von der statischen Gleichgewichtslage aus
gemessenen Schwingungsausschläge, q die Trägerbelastung
und g die Erdbeschleunigung bedeuten, folgt unter
Beachtung, dass die zu betrachtenden Eigenschwingungen
harmonische sind, also:

s y (x) sin p t, (2)
die Gleichung

j-r*-* (3)

die den örtlichen Verlauf der Schwingungsausschläge y
umschreibt, p bedeutet die Kreisfrequenz. Gl. 3 sagt aus,
dass die durch die Belastung

u —p* y
g

hervorgerufene Biegungslinie y, des Balkens wieder mit y
übereinstimmen muss. Damit ist der zur Bestimmung der
Kreisfrequenz p, bzw. der sekundlichen Eigenschwingungszahl

v

einzuschlagende Weg gegeben : man berechnet zu einer
angenommenen Ausbiegungslinie y die Belastungskurve u

') Pohlhausen: „Berechnung der Eigenschwingungen statisch be-
stimmter Fachwerke". Z. a. M. u. M. 1921.

2) F. Bleich: „Stahlhochbauten I"f Berlin 1932.
3) A. Stodola: „Dampf- und Gasturbinen", 6. Aufl., Berlin 1922.

(zit. nach Timoshenko).
4) Eine ausgezeichnete Darstellung dieser Energieraethoden gibt

S. Timoshenko („Schwingungsprobleme der Technik", Berlin 1932), der an
ihrer Aufstellung massgebend beteiligt ist.

ratorium Luzern. Metallbälge für Schnellzüge. Die Petrolraffinerie von Port-Jérôme
bei Le Havre. Vom Bau des Basler Kunstmuseums. Die Elektrizitätsversorgung
der Türkei. Hervorragende Flugleistung. Ljungström-Turbinen-Gruppe von 50000 kW.
Schweizerische Landesausstellung Zürich 1938. — Nekrologe : Karl Sirecker. —
Literatur. — Sitzungs- und Vortrags-Kalender.
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und daraus die Biegungslinie yx. Diese ergibt sich am
bequemsten, insbesondere bei veränderlicher Belastung,
veränderlichen Trägerquerschnitten und bei beliebigen
Einspannverhältnissen, mit den bekannten Mitteln der
Baustatik : aus der Belastung u folgt die Momentenfläche
als Seilkurve, wobei die Schlusslinie entsprechend den
Auflagerbedingungen einzulegen ist, während die Seilkurve
zur durch E J dividierten Momentenfläche die Ausbiegungskurve

y, liefert. Aus der Gleichsetzung von y und yi für
irgend eine Trägerstelle, z. B. für Balkenmitte, ergibt sich
ein erster Näherungswert von p2. Da das Verfahren gut
konvergiert, ist ein genügend genauer Wert von p bzw. v
mit wenigen Wiederholungen dieses Rechnungsganges zu
erreichen.6) Zur Bestimmung der niedrigsten Eigenfrequenz,
also der Grundschwingungszahl, ist diejenige Ausbiegungskurve

y anzunehmen, die die grössten Formänderungen
ergibt.

3. Wir betrachten nun die Energieverhältnisse während

des Schwingungsvorganges: die kinetische Energie
eines ßalkenelementes der Länge dx beträgt

dEk dx (Jy)2 — dx (p y cos//)2, • (5)

wenn wir den zeitlichen Verlauf der Ausschläge z wieder
nach Gl. 2 einführen. Beim Durchgang durch die statische
Gleichgewichtslage (sin p t o, cos//=i) ist dEk und
damit die kinetische Energie des Balkens von der Länge /
ein Maximum :

1

pi fmax Et — / qy"- dx (6)
2S J

0

Gleichzeitig ist die potentielle Energie gleich null.
Wenn die Ausbiegungen z ihren Grösstwert y erreichen,

ist die Geschwindigkeit und damit die kinetische Energie
gleich null. Dagegen erreicht die potentielle Energie ihren
Grösstwert. Dieser ist gleich der Arbeit, die zur Erreichung
der maximalen Ausbiegung y aufgewendet werden musste,
also für ein Balkenelement dx :

jtr 1
ji/T J 1 M*dx E J (d*y\2 J / \maxdEp=-Mda T-ëT — \^)dxt. (7a)

oder für die Balkenlänge /:

max Ep ±f IjEJ (g)' dx (7b)
0 0

Während des Schwingungsvorganges muss, abgesehen von
Reibungsverlusten, die wir hier vernachlässigen, die
Energiesumme konstant sein:

Ek + Ep — 0 (8)
Dies bedeutet, dass die Beträge von max Ek und max Ep
einander gleich sein müssen. Daraus folgt:

/£* MS)'*
p2 —i— -—7 • • • (9)

ihy''dx iiqy'dx
0 0

In Gl. (7) wurde die potentielle Energie des
ausgebogenen Stabes als Formänderungsarbeit eingeführt.
Diese ist aber gleich der äusseren Arbeit, d. h. der Arbeit
der Belastung u bis zur Durchbiegung y, also für ein
Balkenelement dx

max dEp —uy dx (7c)

5) Auf dem gleichen Prinzip der fortgesetzten Annäherung an die

genaue Ausbiegungskurve beruht das Verfahren von Vianello zur Bestimmung
der Knicklast gedrückter Stäbe. In ähnlicher Weise ist es dem Verfasser
gelungen, die Kipplast von auf Biegung beanspruchten Balken zu berechnen.

Der S. I. A. Ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich.
Nachdruck von Text oder Abbildungen Ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.
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Führen wir diesen Wert in
Gl. (8) ein, so erhalten wir
für Gl. (9) folgende ebenfalls
gebräuchliche Schreibweise:

1

Ju y dx

P* — • (9a)

Diese Form ist für die
Auswertung gegenüber Gl. (9)
oft bequemer, besonders
wenn auch der Einfluss der
Querkräfte berücksichtigt
werden soll.

4. Wenn die genaue Form der Ausbiegungskurve y
bekannt ist, so liefert Gl. (9) auch den genauen Wert
von p2. Einen meist guten Annäherungswert erhält man
nach Lord Rayleigb6), wenn man eine den Auflagerbedingungen

gehorchende, sonst aber beliebige Kurve für y
einsetzt. Führt man nach Ritz7) die jy-Kurve als Reihe ein
und bestimmt die Parameter der einzelnen Glieder aus
der Bedingung, dass p2 minimal werde, so führt Gl. (9) auf
ein Gleichungssystem, aus dem man durch Nullsetzen der
Determinante eine sehr genaue Frequenzgleichung erhält.

Weit einfacher und deshalb für die praktische
Berechnung von Eigenfrequenzen geeigneter ist nun
folgendes Verfahren: Wir bestimmen nach Gl. (3) durch
zweimaliges Berechnen eines Seilpolygons zur Belastung u
auf Grund einer geschätzten Ausbiegungskurve y die
Ausbiegungskurve y1. Aus dem Vergleich von y und gq
erhalten wir den bereits erwähnten ersten Annäherungswert

p'. Einen zweiten, wesentlich genaueren Wert p"
erhalten wir durch Einsetzen der berechneten Ausbiegungen

jVj in die Gl. (9), wobei wir im Zähler entweder das
als erstes Seilpolygon erhaltene Biegungsmoment M oder
nach Gl. (9a) die Belastung u einführen können. Eine
Abweichung der Schwingungskurve von ihrer genauen
Form ist gleichbedeutend mit einer willkürlichen
Festhaltung, d. h. mit einer Vergrösserung der Steifigkeit
EJ; deshalb liegt p", abgesehen von Rechnungsungenauig-
keiten, stets etwas über dem genauen Wert. Da die
berechnete Ausbiegungskurve schon eine Annäherung an
die wirkliche Schwingungslinie darstellt, liegt p" in der
Regel schon sehr nahe am genauen Wert von p. Ausserdem
lässt sich aus dem Vergleich von p' und p", unter
Beachtung, dass p"Op, ein noch genauerer Wert von p
abschätzen. Eine Wiederholung der Berechnung auf Grund
der erhaltenen Ausbiegungslinie y, ist nur dann erforderlich,

wenn p' und p" um ein Vielfaches des zuzulassenden
Fehlers auseinander liegen, was nur in den seltensten
Fällen zutreffen wird.8)

5. Wir skizzieren den Rechnungsgang am Beispiel
eines über zwei Felder durchlaufenden Balkens (Abb. 1)

6) Lord Rayleigh-. „Theory of Sound" (lit. nach S. Timoshenko).
7) W'. Ritz : „Gesammelte Werke", Paris 1911 (zit.nach S. Timoshenko).
8) Es liegt nahe, auch bei der Untersuchung von StabilitUtsproblemen

eine Annäherungslösung der Differentialgleichung mit einer Energiebetrachtung

zu kombinieren, wodurch bei vermindertem Aufwand an Rechenarbeit

eine sehr gute Genauigkeit erreicht werden kann. Ueber
Energiemethoden bei der Untersuchung von Stabilitätsproblemen siehe: S.Timo¬
shenko'. „Sur la Stabilité des Systèmes Elastiques", Annales des Ponts et
Chaussées 1913.

K-m — — (um — 1 -f~ IO Um -j- um _|_,)

mit den Spannweiten k =0,4 Z, l2 0,61. Querschnitte
und Belastung seien konstant. Als Ausbiegungskurve y
nehmen wir, ziemlich willkürlich, für jedes Feld eine Sinuskurve

an, deren grösste Ordinaten sich zu einander wie
die Spannweiten verhalten. Entgegengesetztes Vorzeichen
der Ausbiegung und damit der Belastung u in den beiden
Feldern liefert die grössten Ausbiegungen y,, d. h. die
gesuchte Grundschwingungszahl. Die A/o-Momente in den
beiden einfachen Balken und /2 ergeben sich als
Seilkurve zur Belastung u. Ein Seilpolygon besitzt dann in
den Knotenpunkten die Ordinaten der Seilkurve, wenn
als Belastungen die Knotenlasten der Belastungsfunktion u
eingeführt werden. Diese Knotenlasten werden gewöhnlich
als Auflagerkräfte im Punkte m der durch die Ordinaten
Um — 1, Um und «m + i bestimmten Trapeze berechnet. Bei
stetig gekrümmten Kurven, mit denen wir es hier zu tun
haben, ergeben sich genauere Werte dadurch, dass wir
uns die Belastungsfunktion u über je zwei Felder durch
eine Parabel ersetzt denken; die Knotenlast des mittleren
Knotenpunktes m ergibt sich dann auf Grund einer
elementaren Rechnung (Abb. 2a) zu:

(10a)
Weist die Belastungsfunktion im Punkt k eine Unstetigkeit
auf (Abb. 2 b), so nehmen wir parabelförmigen Verlauf
von u je über die dem Knotenpunkt k links und rechts
benachbarten beiden Felder an und erhalten als Knotenlast:

ÂX
Kk «Ä — 2 -4- 6 -4- 7 Up -\- 7 Up-\- 6 UkJrI UpyP)

(Iob)
Das Stützenmoment Mg ergibt sich als statisch unbestimmte
Grösse aus der Elastizitäts - Bedingung (kontinuierliche
Biegungslinie über der Stütze B) zu

mb - al\
wenn wir mit «10 die Auflagerkraft der beiden reduzierten
Mo-Momentenflächen M0 : EJ und mit an die entsprechende
Auflagerkraft infolge Mß 1 bezeichnen. Diese Auflagerkräfte

werden zweckmässig als Auflagerkräfte der nach
Gl. (10) ermittelten Knotenlasten der reduzierten Momentenflächen

bestimmt. Die Momentenfläche M ergibt sich aus
der Superposition von M0 mit der Mg-Fläche. Das
Seilpolygon zur MFläche liefert die gesuchte Ausbiegungskurve

gq. Aus der Gleichsetzung von y und yl in der Mitte
des grösseren Feldes /2 erhalten wir:

q L*
7p2 ; p'1,0 0,9540 IO-3L- 32,376] /EJg

EJr ' f L2 (/ q
-

Zur Berechnung von p" benötigen wir nach Gl. (9)
die bestimmten Integrale über die Balkenlänge der M2:EJ-
und der 79^-Flächen, die wir mit praktisch ausreichender
Genauigkeit als Flächeninhalte bestimmen. Dabei nehmen
wir wieder näherungsweise parabelförmigen Funktionsverlauf

über je zwei Felder an (Abb. 3) und erhalten nach
der Simpsonschen Regel die Fläche zwischen m — 1 und
»ij-i zu

E'm'ï! — " («m — I + 4 Um -)- Mm_j_,). (na)
Zur Berechnung der Fläche zwischen m und m-\- 1 nehmen
wir je den Funktionsverlauf von m — 1 bis m 4- 1 und
von m bis m -(-2 als Parabel an und erhalten als Mittelwert

/ix
F"»^1

"TT + r3 um + "m+. — «/»+.). (IIb)
Die Flächenberechnung kann somit bei gerader oder
ungerader Felderzahl einfach durchgeführt werden.
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Abb. 4. Abb. 5.

Im Beispiel der Abb. 1 wurde auf diese Weise nach
GL (9) erhalten: (unter Aufteilung der Länge L in nur
10 Felder Ax)

_ 9872.5 E Jg _ 33,608 I EJ g
8,7406 q L* ' " L- [/ q

Für dieses Beispiel gibt Federhofer6) den genauen Wert
von p, den er als Wurzel einer transzendenten Frequenzgleichung

bestimmt, zu

Der Fehler von p" beträgt somit rd. 0,5 °/0 ; darin
äussern sich die Einflüsse der willkürlichen Annahme von y
(schlechte Uebereinstimmung von y und yx im Feld 4)
und die Ungenauigkeiten des Rechnungsverfahrens (Fläcben-
berechnung statt Integration). Immerhin dürfte diese Genauigkeit

für alle praktischen Zwecke mehr als ausreichend sein.
Der Fehler von />' beträgt mit rd. -— 3,2 °/0 etwa das 6,4-
fache des Fehlers von p" ; dieses Verhältnis kann etwa als
Anhaltspunkt zur Abschätzung von p aus den Werten p'
und p" dienen.

In Abb. 4 ist der Verlauf von y und M für einen
über drei Felder durchlaufenden Balken konstanten
Querschnitts mit gleichmässiger Belastung q und den Spannweiten

4=4 0,5 4 dargestellt. Abb. 5 gibt die Werte
der sekundlichen Grundschwingungszahl v bei veränderlichem

Verhältnis der Seitenfeldspannweite 4 4 zur
Mittelfeldspannweite 4, wobei der Grenzfall 4 o dem
beidseitig starr eingespannten Balken entspricht.

6. Wir haben bisher stillschweigend schlanke Träger
vorausgesetzt, bei denen der Einfluss der Schubspannungen
auf die Formänderungen gegenüber dem Einfluss der
Biegungsmomente vernachlässigt werden darf. Der Einfluss
dieser Vernachlässigung ist noch zu untersuchen.

Infolge der Schubspannungen erfährt die Balkenaxe
eine Neigung y

y ~ (12)

E, und F' die redu-
Bei T-Querschnitten

aus zwei Beiträgen, yß und yq, zusammen. Aus der
Gleichsetzung von y und y, yß -1- yq ergibt sich ein gegenüber
Berücksichtigung nur der Biegungsmomente verminderter
Wert von p'. Zur Berechnung von p" ist zweckmässig
Gl. (9a) anzuwenden; dabei sind auch hier die Gesamtbeträge

yß-\-yQ einzusetzen.
Zur zahlenmässigen Veranschaulichung dieses

Schubspannungseinflusses auf die Grundschwingungszahl seien
noch folgende Resultate von durchgerechneten Beispielen
mitgeteilt: bei einem einfachen Balken mit konstantem
Rechteckquerschnitt b • h und einer Spannweite l 10 h
wird p infolge der Schubspannungen um 1,6 °/o I0) ver_
mindert; ist der Querschnitt beispielsweise ein Breitflanschträger

I Din 30, so steigt bei 3,0 m Spannweite dieser
Einfluss auf —9,1 °/0. Bei einem durchlaufenden Balken
wird er noch grösser: für einen Träger nach Abb. 4 mit
4=4 0,5 4 beträgt die Frequenzverminderung für
Querschnitt T Din 30 und 4 3>° m rd- 18 °/0. Die
Berücksichtigung nur der Biegungsmomente allein ist demnach
in solchen Fällen nicht mehr zulässig.

7. Mit Gl. 9a lässt sich z. B. auch der Einfluss einer
elastischen Senkbarkeit der Auflagerpunkte sehr einfach
bestimmen; als Durchbiegungen y sind dann die gesamten
Formänderungen infolge der Momente, Querkräfte und
Stützensenkungen einzuführen.11)

Das hier vorgelegte Kombinationsverfahren zur
Bestimmung der Grundschwingungszahl vollwandiger Träger
dürfte dank seiner Einfachheit und Zuverlässigkeit dazu
beitragen, dass der dynamischen Beurteilung derartiger
Tragwerke, besonders von Brückenbauten, schon bei der
Projektierung vermehrte Aufmerksamkeit geschenkt wird.

Q

GF<

wobei G den Schubmodul, G 8/s
zierte Querschnittsfläche bedeutet,
wird für F' üblicherweise die Stegfläche eingesetzt.

Die Berechnung der durch die Winkeländerung y
verursachten Vergrösserung yq der Durchbiegung y, ist
mit den bekannten Verfahren der Baustatik (z. B. mit Hilfe
der elastischen Gewichte) recht einfach ; falls G F'
konstant ist, beträgt

— M«
1<? Qft >

wobei M0 das Moment im einfachen Balken bedeutet. Die
Querkräfte infolge der Stützenmomente haben, weil
feldweise konstant, keinen Einfluss auf yq.

Die Interpretation, die wir der Differentialgleichung
GL (3) gegeben haben, bleibt (wie aus der hier nicht
wiedergegebenen Ableitung der Gl. (1) hervorgeht) auch
dann richtig, wenn neben den Durchbiegungen infolge der
Momente auch diejenigen infolge der Querkräfte
berücksichtigt werden: die Biegungslinie y, infolge der Belastung

u —— y muss wieder gleich y sein. Jetzt setzt sich aber 44

9) K. Fedtrhofer : „Grundschwingzahlen der elastischen Querschwingungen

dreifach gelagerter Träger", Bautechnik 1933.

Kunsteisbahn und Wellenbad Dählhölzli,
„Ka-We-De", in Bern.
Architekten v. SINNER & BEYELER, Bern.

Im Sommer 1932, nachdem die Dolder-Eisbahngesellschaft
Zürich als Pionier ihre Erfahrungen über den Erfolg

von Kunsteisbahnen in der Schweiz in uneigennütziger
Weise uns Bernern überlassen hatte, wurde in unserer
Stadt die „Ka-We-De"-Gesellschaft gegründet. Ihr Hauptzweck

war der Bau und Betrieb einer Kunsteisbahn. Die
Initianten stellten sich von Anfang darauf ein, dieses
volkstümliche Unternehmen ohne Inanspruchnahme von
Behörden und Subventionen auf gesunder kaufmännischer
Grundlage zu errichten. Die Baukosten einer Kunsteisbahn

mit Kältemaschinen sind aber so hohe, dass eine solche
Anlage in Gemeinden mit weniger als 50000 Einwohnern
ohne Subventionen kaum in Frage kommen kann. In Bern
ergaben die Vorberechnungen, dass eine Rendite ohne
geeigneten Sommerbetrieb zum Mindesten unsicher erschien,
sodass man gezwungen war, mit der Winteranlage ein
Freiluftbad zu kombinieren.

In Bern, das keinen See hat und dessen Badeanlagen
an der kalten Aare liegen, hatte eine Schwimmbadanlage
gute Aussichten. Immerhin war zu bedenken, dass die
Aarebäder freien Zutritt haben, was die Berechnung des
mutmasslichen Erfolges für eine Anlage hinter Kassa
erschwerte. Es musste noch etwas hinzukommen, was anderswo

noch nicht zu haben ist: so kamen die Planverfasser
auf die Idee, in Verbindung mit dem zu schaffenden
Schwimmbassin eine Wellenmaschine einzubauen. Nähere
Studien ergaben aber, dass ein Wellenbadbecken allein
keine idealen Verhältnisse für Stossbetrieb versprach. Die
Erfahrung anderer Bäder in der Schweiz, dass diese Becken
im allgemeinen zu klein für die sommerlichen Stoss-

10) Dieser Wert stimmt mit dem von S. Timosheüko für das gleiche
Beispiel gefundenen überein. Timoshenko untersucht ausserdem den Einfluss
der Rotationsträgheit, der hier rd. '/* des Schubspannungseinflusses beträgt.

n) Auf gleiche Weise lässt sich auch die Grundschwingungszahl
von Rahmentragwerken wenigstens angenähert berechnen. Bei einer genauen
Berechnung tritt die Schwierigkeit auf, dass die Längskräfte, und zwar
sowohl diejenigen aus der statischen Belastung wie diejenigen infolge der
Trägheitskräfte, die Ausbiegungen yl beeinflussen.
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