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Nr. 17

Zur Berechnung der Grundschwingungszahl
vollwandiger Tréger.
Von Dr, sc.techn, FRITZ STUSSI, Obering. der Eisenbaugesellschaft Ziirich.

1. Zur Berechnung der niedrigsten Eigenschwingungs-
zahl, die den Ausgangspunkt fir die dynamische Unter-
suchung von Tragwerken darstellt, sind fir die Praxis
Anniherungsverfahren ausgearbeitet worden. So hat Pohl-
hausen!) far Fachwerktriger ein Berechnungsverfahren
aufgestellt, bei dem aus der wiederholten Bestimmung von
Verschiebungsgrossen die Eigenfrequenz mit fortgesetzter
Anniherung ermittelt wird. Die praktische Eignung des
Verfahrens beruht auf der guten Konvergenz der der
Reihe nach zu bestimmenden Schwingungszahlen gegen
den genauen Wert. Eine Uebertragung der Methode von
Pohlhausen auf Vollwandtrager riihrt von F. Bleich?) her.
Es lasst sich leicht zeigen, dass die Grundschwingungszahl
sich hier einfacher direkt aus dem Vergleich von an-
genommener und daraus berechneter Formanderungskurve
ergibt, wodurch das Verfahren Pohlhausen-Bleich im
Wesentlichen in das graphische Verfahren von Stodola3)
ubergeht.

Ein anderer Weg zur Bestimmung der Eigenschwin-
gungszahl beruht auf der Betrachtung der Energiever-
hiltnisse wihrend des Sehwingungsvorganges.t) Wie nach-
stehend gezeigt werden soll, ergibt sich aus der Kombination
der ersterwahnten Berechnungsart(Stodola) mit einer Energie-
betrachtung ein sehr einfaches Berechnungsverfabren, das
in einem Rechnungsgang die Grundschwingungszahl mit
praktisch meistens geniigender Genauigkeit liefert. Da
hierbei zwei Werte fiir die Schwingungszahl erhalten
werden, ldsst sich die Giite der Approximation abschatzen.

2. Aus der Schwingungsgleichung des elastischen
Stabes:

o2 0’z g 0%
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in der z die von der statischen Gleichgewichtslage aus
gemessenen Schwingungsausschlige, ¢ die Tragerbelastung
und g die Erdbeschleunigung bedeuten, folgt unter Be-
achtung, dass die zu betrachtenden Eigenschwingungen
harmonische sind, also:
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die den ortlichen Verlauf der Schwingungsausschlage y
umschreibt. p bedeutet die Kreisfrequenz. Gl. 3 sagt aus,
dass die durch die Belastung

i sy
e i
hervorgerufene Biegungslinie y, des Balkens wieder mit y

iibereinstimmen muss. Damit ist der zur Bestimmung der
Kreisfrequenz p, bzw. der sekundlichen Eigenschwingungs-

zahl »

e

S i TS (4)
einzuschlagende Weg gegeben: man berechnet zu einer
angenommenen Ausbiegungslinie y die Belastungskurve

') Pohlhausen: | Berechnung der Eigenschwingungen statisch be-
stimmter Fachwerke®. Z. a. M, u. M. 1921.

%) F. Bleich: ,Stahlhochbauten 1, Berlin 1932.

%) A. Stodola: ,Dampf- und Gasturbinen“, 6. Aufl, Berlin 1922.
(zit. nach Timoshenko).

4) Eine ausgezeichnete Darstellung dieser Energiemethoden gibt
S. Zimoshenko (,,Schwingungsprobleme der Technik®, Berlin 1932), der an
ihrer Aufstellung massgebend beteiligt ist.

und daraus die Biegungslinie y,. Diese ergibt sich am
bequemsten, insbesondere bei verdnderlicher Belastung,
veranderlichen Tragerquerschnitten und bei beliebigen
Einspannverhiltnissen, mit den bekannten Mitteln der
Baustatik: aus der Belastung # folgt die Momentenflache
als Seilkurve, wobei die Schlusslinie entsprechend den
Auflagerbedingungen einzulegen ist, wihrend die Seilkurve
zur durch £ J dividierten Momentenflache die Ausbiegungs-
kurve y, liefert. Aus der Gleichsetzung von y und y; fiir
irgend eine Trégerstelle, z. B. fiir Balkenmitte, ergibt sich
ein erster Ndherungswert von p2. Da das Verfahren gut
konvergiert, ist ein geniigend genauer Wert von p bzw. »
mit wenigen Wiederholungen dieses Rechnungsganges zu
erreichen.5) Zur Bestimmung der niedrigsten Eigenfrequenz,
also der Grundschwingungszahl, ist diejenige Ausbiegungs-
kurve y anzunehmen, die die grossten Formanderungen
ergibt.

3. Wir betrachten nun die Energieverhiltnisse wah-
rend des Schwingungsvorganges: die kinetische Energie
eines Balkenelementes der Linge dx betragt

I z\2 I
dEy, =7§dx (%) =7%dx (py cospt), . (5)
wenn wir den zeitlichen Verlauf der Ausschlige 2 wieder
nach Gl. 2 einfiihren. Beim Durchgang durch die statische
Gleichgewichtslage (sinp#= o, cosp¢= 1) ist dE, und
damit die kinetische Energie des Balkens von der Linge /
ein Maximum:

!
maxEk:%fqyzdx. 1L SR (6)

Gleichzeitig ist die potentielle Energie gleich null.

Wenn die Ausbiegungen z ihren Grosstwert y erreichen,
ist die Geschwindigkeit und damit die kinetische Energie
gleich null. Dagegen erreicht die potentielle Energie ihren
Grosstwert. Dieser ist gleich der Arbeit, die zur Erreichung
der maximalen Ausbiegung y aufgewendet werden musste,
also fiir ein Balkenelement dx:

max dE,— - Mda — ~
2 2

oder fiir die Balkenlange /:
!

l
T [iM2 dzx 1 ay\e
max L“,,_?f - ij(M) dx .
0
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22) dx,. (72)

(7b)

Wihrend des Schwingungsvorganges muss, abgesehen von
Reibungsverlusten, die wir hier vernachlassigen, die Ener-
giesumme konstant sein:

= iPE—"o S e S )
Dies bedeutet, dass die Betrige von max £, und max £,
einander gleich sein miissen. Daraus folgt:
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In GI (7) wurde die potentielle Energie des aus-
gebogenen Stabes als Forminderungsarbeit eingefihrt.
Diese ist aber gleich der Ausseren Arbeit, d. h. der Arbeit
der Belastung # bis zur Durchbiegung y, also fiir ein
Balkenelement dx

I
max dfE, = =t dx (7¢)

% Auf dem gleichen Prinzip der fortgesetzten Anniherung an die
genaue Ausbiegungskurve beruht das Verfahren von Vianello zur Bestimmung
der Knicklast gedriickter Stibe. In #hnlicher Weise ist es dem Verfasser
gelungen, die Kipplast von auf Biegung beanspruchten Balken zu berechnen,
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Abb. 2a.

Fithren wir diesen Wert in
Gl. (8) ein, so erhalten wir
fir Gl. (9) folgende ebenfalls

Diese Form ist fiir die Aus-
wertung gegeniiber GI. (9)
oft bequemer, besonders
wenn auch der Einfluss der
Querkrafte beriicksichtigt
werden soll.

4. Wenn die genaue Form der Ausbiegungskurve y
bekannt ist, so liefert GIl. (9) auch den genauen Wert
von p?. Einen meist guten Ann#herungswert erhilt man
nach Lord Rayleigh®), wenn man eine den Auflagerbedin-
gungen gehorchende, sonst aber beliebige Kurve fir y
einsetzt. Fihrt man nach Ritz?) die y-Kurve als Reihe ein
und bestimmt die Parameter der einzelnen Glieder aus
der Bedingung, dass p? minimal werde, so fiihrt Gl. (9) auf
ein Gleichungssystem, aus dem man durch Nullsetzen der
Determinante eine sehr genaue Frequenzgleichung erhilt.

Weit einfacher und deshalb fir die praktische Be-
rechnung von Eigenfrequenzen geeigneter ist nun fol-
gendes Verfahren: Wir bestimmen nach GI. (3) durch
zweimaliges Berechnen eines Seilpolygons zur Belastung
auf Grund einer geschitzten Ausbiegungskurve y die
Ausbiegungskurve y;. Aus dem Vergleich von y und y,
erhalten wir den bereits erwihnten ersten Anndherungs-
wert p'. Einen zweiten, wesentlich genaueren Wert p”
erhalten wir durch Einsetzen der berechneten Ausbiegun-
gen y; in die Gl (9), wobei wir im Zihler entweder das
als erstes Seilpolygon erhaltene Biegungsmoment A/ oder
nach Gl (9a) die Belastung # einfilhren konnen. Eine
Abweichung der Schwingungskurve von ihrer genauen
Form ist gleichbedeutend mit einer willkiirlichen Fest-
haltung, d.h. mit einer Vergrdsserung der Steifigkeit
£ J; deshalb liegt p”, abgesehen von Rechnungsungenauig-
keiten, stets etwas idber dem genauen Wert. Da die
berechnete Ausbiegungskurve schon eine Annzherung an
die wirkliche Schwingungslinie darstellt, liegt p” in der
Regel schon sehr nahe am genauen Wert von p. Ausserdem
lasst sich aus dem Vergleich von »' und p”, unter Be-
achtung, dass p” ~>p, ein noch genauerer Wert von p
abschitzen. Eine Wiederholung der Berechnung auf Grund
der erhaltenen Ausbiegungslinie y, ist nur dann erforder-
lich, wenn p" und »” um ein Vielfaches des zuzulassenden
Fehlers auseinander liegen, was nur in den seltensten
Fallen zutreffen wird.s)

5. Wir skizzieren den Rechnungsgang am Beispiel
eines {Giber zwei Felder durchlaufenden Balkens (Abb. 1)

L)
ﬁf"'“”"’“; >\L7 gebrauchliche Schreibweise :
K‘\ > ‘ j g
HgEAd e i gl
0,9540170 3 % p? ﬁ{gﬂ, i f )
I L ‘ Pr=— (9a)
I I
H A=, 2
‘ 2 ‘ 7 fqy dx
J I Y ‘ o
L | i

Abb. 1.

%) Lord Rayleigh: ,Theory of Sound* (zit. nach S. Timoshenko).

) W.Ritz: Gesammelte Werke", Paris 1911 (zit. nach S. Timoshenko).

%) Es liegt nahe, auch bei der Untersuchung von Stabilitiitsproblemen
eine Anniherungslosung der Differentialgleichung mit einer Epergiebe-
trachtung zu kombinieren, wodurch bei vermindertem Aufwand an Rechen-
arbeit eine sehr gute Genauigkeit erreicht werden kann, Ueber Energie-
methoden bei der Untersuchung von Stabilitdtsproblemen siehe: S.Z7mo-
shenko:  Sur la Stabilité des Systtmes Elastiques, Annales des Ponts et
Chaussées 1913.

k+2
L A S P >'<A.r =

Abb. 2b.

mit den Spannweiten /4 = 0,4 L, ; = 0,6 L. Querschnitte
und Belastung seien konstant. Als Ausbiegungskurve y
nehmen wir, ziemlich willkirlich, fiir jedes Feld eine Sinus-
kurve an, deren grosste Ordinaten sich zu einander wie
die Spannweiten verhalten. Entgegengesetztes Vorzeichen
der Ausbiegung und damit der Belastung # in den beiden
Feldern liefert die grossten Ausbiegungen y,, d. h. die
gesuchte Grundschwingungszahl. Die A/,-Momente in den
beiden einfachen Balken /; und /, ergeben sich als Seil-
kurve zur Belastung #. Ein Seilpolygon besitzt dann in
den Knotenpunkten die Ordinaten der Seilkurve, wenn
als Belastungen die Knotenlasten der Belastungsfunktion #
eingefiihrt werden. Diese Knotenlasten werden gewdhnlich
als Auflagerkrifte im Punkte s der durch die Ordinaten
Um—x, Wy und 2y, 4. bestimmten Trapeze berechnet. Bei
stetig gekriimmten Kurven, mit denen wir es hier zu tun
haben, ergeben sich genauere Werte dadurch, dass wir
uns die Belastungsfunktion # tber je zwei Felder durch
eine Parabel ersetzt denken; die Knotenlast des mittleren
Knotenpunktes # ergibt sich dann auf Grund einer ele-
mentaren Rechnung (Abb. 2a) zu:

Ax
K zi(umAx“F 10 Uy — tp 4 ;)

Weist die Belastungsfunktion im Punkt 4 eine Unstetigkeit
auf (Abb. 2b), so nehmen wir parabelférmigen Verlauf
von # je tber die dem Knotenpunkt % links und rechts
benachbarten beiden Felder an und erhalten als Knotenlast:

A ’ ”
Ke=""(—thp—at 604,70+ 702 6%y — tpy,)

24
(10b)
Das Stiitzenmoment Mp ergibt sich als statisch unbestimmte
Grosse aus der Elastizitats- Bedingung (kontinuierliche
Biegungslinie tber der Stiitze B) zu
@59

My = —
2 a5

wenn wir mit @, die Auflagerkraft der beiden reduzierten
My-Momentenfliachen 44, : £ J und mit a,, die entsprechende
Auflagerkraft infolge Mz = 1 bezeichnen. Diese Auflager-
krafte werden zweckmiassig als Auflagerkrafte der nach
Gl. (ro) ermittelten Knotenlasten der reduzierten Momenten-
flichen bestimmt. Die Momentenfliche A/ ergibt sich aus
der Superposition von M, mit der Mp-Flache. Das Seil-
polygon zur M-Fliche liefert die gesuchte Ausbiegungs-
kurve y,. Aus der Gleichsetzung von ¥ und y; in der Mitte
des grosseren Feldes /; erhalten wir:
]O—BZi 2. 32,376 ng

SR oA PRI P 5

Zur Berechnung von p” bendtigen wir nach GI. (9)
die bestimmten Integrale iber die Balkenldnge der M2: E J-
und der ¢ yi-Flachen, die wir mit praktisch ausreichender
Genauigkeit als Flicheninhalte bestimmen. Dabei nehmen
wir wieder niherungsweise parabelfdrmigen Funktions-
verlauf tber je zwei Felder an (Abb. 3) und erhalten nach
der Simpsonschen Regel die Fliache zwischen 7 — 1 und

m -1 zu
Fot — 4%
m—1 3 (#m —+ 4 Um 7"m+x)-

Zur Berechnung der Flache zwischen # und # -1 nehmen
wir je den Funktionsverlauf von s — 1 bis -+ 1 und
von m bis m —2 als Parabel an und erhalten als Mittelwert

N Ax
Fott = Ko (— #m—z 13 4, + 13 Um gy — Umya). (11 b)

Die Flichenberechnung kann somit bei gerader oder un-
gerader Felderzahl einfach durchgefithrt werden.

. (10a)

(11a)
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Abb. 4. Abb. 5,

Im Beispiel der Abb. 1 wurde auf diese Weise nach
Gl. (9) erhalten: (unter Aufteilung der Lange L in nur
10 Felder Ax)

> 98725 EJg . % 33,608 1/ EJg

p2:8,7406' gL R e /T

Fir dieses Beispiel gibt Federhofer?) den genauen Wert
von p, den er als Wurzel einer transzendenten Frequenz-
gleichung bestimmt, zu

p= (218 .]/zﬂ _ 33443 .]/M

iz e 72 e

Der Fehler von p” betragt somit rd. -+o0,5 9/,; darin &us-
sern sich die Einfliisse der willkiirlichen Annahme von ¥
(schlechte Uebereinstimmung von y und y; im Feld 4)
und die Ungenauigkeiten des Rechnungsverfahrens (Flichen-
berechnung statt Integration). Immerhin diirfte diese Genauig-
keit fir alle praktischen Zwecke mehr als ausreichend sein.
Der Fehler von p' betrigt mit rd. — 3,2 9/, etwa das 6,4-
fache des Fehlers von p”; dieses Verhiltnis kann etwa als
Anbhaltspunkt zur Abschatzung von p aus den Werten p’
und p” dienen.

In Abb. 4 ist der Verlauf von vy und M fiir einen
tiber drei Felder durchlaufenden Balken konstanten Quer-
schnitts mit gleichmiassiger Belastung ¢ und den Spann-
weiten /; = /5 = 0,5 /, dargestellt. Abb. 5 gibt die Werte
der sekundlichen Grundschwingungszahl » bei verander-
lichem Verhiltnis der Seitenfeldspannweite /, = /3 zur
Mittelfeldspannweite /, wobei der Grenzfall /; = o dem
beidseitig starr eingespannten Balken entspricht.

6. Wir haben bisher stillschweigend schlanke Triger
vorausgesetzt, bei denen der Einfluss der Schubspannungen
auf die Forminderungen gegeniiber dem Einfluss der Bie-
gungsmomente vernachldssigt werden darf. Der Einfluss
dieser Vernachldssigung ist noch zu untersuchen.

Infolge der Schubspannungen erfibrt die Balkenaxe
eine Neigung y % 0

g (r2)
wobei - den Schubmodul, G =3%/s £, und F’ die redu-
zierte Querschnittsfliche bedeutet. Bei I-Querschnitten
wird far F’ iblicherweise die Stegfliche eingesetzt.

Die Berechnung der durch die Winkelinderung y
verursachten Vergrosserung yo der Durchbiegung y; ist
mit den bekannten Verfahren der Baustatik (z. B. mit Hilfe

der elastischen Gewichte) recht einfach; falls G /' kon-
stant ist, betrigt

Yy =
/

M,
Yo =grr

wobei M, das Moment im einfachen Balken bedeutet. Die
Querkrafte infolge der Stiitzenmomente haben, weil feld-
weise konstant, keinen Einfluss auf y.

Die Interpretation, die wir der Dilferentialgleichung
Gl. (3) gegeben haben, bleibt (wie aus der hier nicht
wiedergegebenen Ableitung der GI. (1) hervorgeht) auch
dann richtig, wenn neben den Durchbiegungen infolge der
Momente auch diejenigen infolge der Querkrifte beriick-
sichtigt werden: die Biegungslinie y, infolge der Belastung

e '/ »? v muss wieder gleich y sein. Jetzt setzt sich aber v,

9) K. Federhofer: | Grundschwingzahlen der elastischen Querschwin-
gungen dreifach gelagerter Triger”, Bautechnik 1933.

aus zwei Beitrigen, yz und yg, zusammen. Aus der Gleich-
setzung von y und y; = yp -+ y¢ ergibt sich ein gegeniiber
Beriicksichtigung nur der Biegungsmomente verminderter
Wert von p’. Zur Berechnung von p” ist zweckmissig
Gl. (9a) anzuwenden; dabei sind auch hier die Gesamt-
betrige yz - v einzusetzen.

Zur zahlenmissigen Veranschaulichung dieses Schub-
spannungseinflusses auf die Grundschwingungszahl seien
noch folgende Resultate von durchgerechneten Beispielen
mitgeteilt: bei einem einfachen Balken mit konstantem
Rechteckquerschnitt 4 - 2 und einer Spannweite /= 10/
wird p infolge der Schubspannungen um 1,6 9/, 10) ver-
mindert; ist der Querschnitt beispielsweise ein Breitflansch-
trager T Din 30, so steigt bei 3,0 m Spannweite dieser
Einfluss auf — 9,1 9/,. Bei einem durchlaufenden Balken
wird er noch grosser: fiir einen Triger nach Abb. 4 mit
ly = l; = 0,5 /; betrigt die Frequenzverminderung fiir Quer-
schnitt T Din 30 und / = 3,0 m rd. 18?9/, Die Berick-
sichtigung nur der Biegungsmomente allein ist demnach
in solchen Fillen nicht mehr zulissig.

7. Mit Gl. ga lasst sich z. B. auch der Einfluss einer
elastischen Senkbarkeit der Auflagerpunkte sehr einfach
bestimmen; als Durchbiegungen y sind dann die gesamten
Formanderungen infolge der Momente, Querkréifte und
Stiitzensenkungen einzufihren.t)

Das hier vorgelegte Kombinationsverfahren zur Be-
stimmung der Grundschwingungszahl vollwandiger Trager
dirfte dank seiner Einfachheit und Zuverladssigkeit dazu
beitragen, dass der dynamischen Beurteilung derartiger
Tragwerke, besonders von Briickenbauten, schon bei der
Projektierung vermehrte Aufmerksamkeit geschenkt wird.

Kunsteisbahn und Wellenbad D&hlholzli,
,Ka-We-De“, in Bern.
Architekten v. SINNER & BEYELER, Bern.

Im Sommer 1932, nachdem die Dolder-Eisbahngesell-
schaft Ziirich als Pionier ihre Erfahrungen iiber den Erfolg
von Kunsteisbahnen in der Schweiz in uneigenniitziger
Weise uns Bernern iiberlassen hatte, wurde in unserer
Stadt die ,Ka-We-De“-Gesellschaft gegriindet. Ihr Haupt-
zweck war der Bau und Betrieb einer Kunsteisbahn. Die
Initianten stellten sich von Anfang darauf ein, dieses
volkstimliche Unternehmen ohne Inanspruchnahme von
Behorden und Subventionen auf gesunder kaufmannischer
Grundlage zu errichten. Die Baukosten einer Kunsteis-
bahn mit Kéltemaschinen sind aber so hohe, dass eine solche
Anlage in Gemeinden mit weniger als 50000 Einwohnern
ohne Subventionen kaum in Frage kommen kann. In Bern
ergaben die Vorberechnungen, dass eine Rendite ohne
geeigneten Sommerbetrieb zum Mindesten unsicher erschien,
sodass man gezwungen war, mit der Winteranlage ein
Freiluftbad zu kombinieren.

In Bern, das keinen See hat und dessen Badeanlagen
an der kalten Aare liegen, hatte eine Schwimmbadanlage
gute Aussichten. Immerhin war zu bedenken, dass die
Aarebdder freien Zutritt haben, was die Berechnung des
mutmasslichen Erfolges fiir eine Anlage hinter Kassa er-
schwerte. Es musste noch etwas hinzukommen, was anders-
wo noch nicht zu haben ist: so kamen die Planverfasser
auf die Idee, in Verbindung mit dem zu schaffenden
Schwimmbassin eine Wellenmaschine einzubauen. Nihere
Studien ergaben aber, dass ein Wellenbadbecken allein
keine idealen Verhiltnisse fiir Stossbetrieb versprach. Die
Erfahrung anderer Bader in der Schweiz, dass diese Becken
im allgemeinen zu klein fir die sommerlichen Stoss-

19) Dieser Wert stimmt mit dem von S. Timoshenko fiir das gleiche
Beispiel gefundenen iiberein. Timoshenko untersucht ausserdem den Einfluss
der Rotationstrigheit, der hier rd. '/, des Schubspannungseinflusses betrigt.

') Auf gleiche Weise ldsst sich auch die Grundschwingungszahl
von Rahmentragwerken wenigstens angeniihert berechnen. Bei einer genauen
Berechnung tritt die Schwierigkeit auf, dass die Lingskrifte, und zwar
sowohl diejenigen aus der statischen Belastung wie diejenigen infolge der
Trigheitskrifte, die Ausbiegungen y, becinflussen,
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