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Ueber einige Methoden der Nicht-linearen
Mechanik in ihren Anwendungen auf die
Theorie der nicht-linearen Resonanz.
Von Prof.Dr.NIKLAUS KRYLOFF u. Dr.NIKLAUS BOGOLIUBOFF, Kieff.

(Schiusa von Seite 257.)

271p

§ 7. Beschränken wir uns der Einfachheit halber auf
den für die Anwendungen besonders wichtigen
quasilinearen Fall und machen wir ausserdem folgende in
praktischen Problemen gewöhnlich erfüllten Voraussetzungen : so bekommen wir:
Die äussere erregende Kraft und die Reibungskraft sind
so klein (oder dann die Frequenz a/p so gross), dass im

if{jyw') y° dt ^ ff(jyw)ydw -
0

jyjf (—y a sin cos w dw
0

ni sin w

[ff (- Ja 0 #] dw °>

Laufe einer Zeitspanne von der Grössenordnung
271 p die

a^Q={m"--aj)vÂp«'* dw ~ F cos 0dg, («1

da

Grössen 0 und a sich nur sehr wenig verändern können, 2ß y a — — Fgp (a) sin ®

da ja unter der gemachten Voraussetzung co — auch die wobei

0(a)

t
(33)

®(a) yff(j-yw')yw'dw (34)
0

Immer im Rahmen der quasi-linearen Theorie kann man

ausserdem - a und

auf der rechten Seite von (32) figurierende Differenz
«s

co3 klein ist.

Dank der Quasi-Linearität haben wir in erster
Annäherung y a cos w, sodass wir in den Gl. (32)

yw ywa yw? ya &

setzen können. Mitteln wir nun die Gl. (32) über den

Zeitabschnitt —yy- 1
indem wir (auf Grund der getroffenen

Annahme) bei der Integration die Grössen a, 0, a, 0 als setzen. Die Gl. (32) nehmen dann folgende endgültige
Form an:

I ö

2 71 da fyj2 dw

st

<F> (a) — Jf {jy a sinwjrt sin w dw (35)

konstant behandeln :

271 p

a~Q
P2

a
2 71p

a

f{(m'l-y)y^"+Fcosa(-/[-j-yw^ya dt,

2 a~6=(oF- iL_f%wW0p2) da

a — \ Fgp (a) sin 0 0 all (36)

271p

u.

aja ^J{{coi-j^y^'+Fcosat~f{jy«)\y*! dt.

Da y (w, a) definitionsgemäss Gl. (22) befriedigt, gelten
dabei die oben abgeleiteten Formeln:

a t + 0

gi (d) a, gp (a)
p=2,3 '

4 — \ p a cos w) cos p
)z — n 7t J

w dw <

Tauschen wir die Integrationsvariable t gegen w
r

und beachten wir die folgenden, aus (20) fliessenden
Beziehungen :

271p 271

——r— p (a cos w) cos p w dw.
0 n 71 J

2 71P
j*yw2 y'w dt — J%yw2 y-w dw —

(pi-
Indem wir zur Ermittlung der stationären Lösungen in
den Gleichungen (36) a konst, © konst, setzen,
erhalten wir :

- dgp (a
cos © o • (37)

a a a

p* y* dt h Iy* y° dw - vÀP'* dw<00 0

2Tlt>

a 2 71

ygy Jyà F cos atdt=F jyâ F COs (pw — 0) dw
0 0

^%^cos0,
271 p

U. -4SI

pyj f y-w F cos at dt ^ j"yw' F cos {pw — ©) dw —

Fpgp{à) sin 0-4- 0{d) o (38)

Die diesen Lösungen entsprechenden stationären Schwingungen

erscheinen demnach, wie oben angezeigt, in der
Gestalt ungedämpfter Eigenschwingungen von der
Frequenz a//>, deren Amplitude und Phase sich aus (37) und
(38) bestimmen. Wir sehen also, dass die stationären
Schwingungen mit einem Unterton der erregenden
Frequenz synchronisiert sind und demgemäss die Perioden
2 np/a besitzen.

Bemerken wir übrigens, dass in Gl. (38) die Grösse
27t

Wi — 71 p gp /'sin 0 j~Fcos(p w — Q)yw' (w, a) dw —

27t p 27t p

—tP gp (a) sin ®- j-JF cos a t-yw' ^-cc—~— aj dt j Feos al-x dt

Berücksichtigen wir noch, dass im Rahmen der quasi- die von der erregenden Kraft während der Schwingungslinearen

Theorie période geleistete Arbeit ist.
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Die Grösse — n Q (a)
•271p 271p

[/(jyw'^yw dw Jl"f(jyw'^)yw' dt J/(x) x dt
0 0 0

aber stellt die in der selben Zeitspanne verbrauchte
Energie dar. Die in der Form W) W% darstellbare
Gleichung (38) drückt somit nichts anderes aus als die Energiebilanz.

Ebenso kann die Gl. (37) als die Bedingung der
Phasenbalance angesehen werden.10)

§ 8. Die Wichtigkeit des Studiums der stationären
Schwingungen wird durch den Umstand verdoppelt, dass
in allen jenen wichtigen Fällen, wo die Charakteristik der
Reibung keine „fallenden'1 Teile hat, d. h. wenn die
Reibungswärme <P (a) zusammen mit der Schwingungsamplitude
wächst, jede Schwingung sich der stationären asymptotisch
nähert, wie man mathematisch, von den Gl. (36) ausgehend,
beweisen kann. Ausserdem kann man zeigen, dass wenn
das System sich bei Wirkbeginn der erregenden Kraft in
Ruhe befindet, die geweckte Schwingung sich jenem stabilen
stationären Regime nähern wird, das die kleinste Amplitude
aufweist. Dies geschieht in grossen Zügen folgendermassen :

Die Schwingungsamplitude selber führt eine
Schwingbewegung mit einer gewissen „langsamen" Schlagfrequenz
um ihren stationären (den kleinstmöglichen stabilen) Betrag
aus, wobei sich die Schwingungsausschläge dank der
dämpfenden Wirkung der Reibung ständig vermindern ;

die Schwankung der Amplitude erlischt sozusagen ; das
selbe geschieht mit der Phase. In dieser Beziehung vollzieht
sich der Uebergangsprozess qualitativ wie im linearen Fall.

Es ist indessen zu bemerken, dass das soeben Gesagte
nur dann richtig ist, wenn die Reibungscharakteristik keine
fallenden Teile hat; andernfalls können die
Amplitudenschwingungen bei der Resonanz überhaupt nicht erlöschen,
sondern werden im Gegenteil erzeugt. Dieser Umstand
allein gibt eine klare Vorstellung von der Gefährlichkeit
der Resonanz in Konstruktionsteilen von fallender
Reibungscharakteristik. Uebrigens werden in der Radiotechnik,
Akustik und einer Reihe anderer angewandter Disziplinen,
wo die Resonanzerscheinungen als nützlich angesehen
werden, fallende „Reibungs"charakteristiken in weitem
Masse ausgenützt, wobei in gewissen Amplitudenbereichen
die „Reibung" sogar negativ wird.11)

§ 9. Indem wir uns nun der Betrachtung der Gl. (37)
und (38) zuwenden, bemerken wir, dass

0(a)
FPgp(a)

Dem entsprechen zwei Werte für den cosinus :

sin 0 (39)

cos 0 IM- 0(a)
FP gp (")

— u (a) und

cos 0 -}— 1/ 1 —
0(a)

u (a), (40)
FP gp (a)

die, in Gl. (37) eingesetzt, zwei Gleichungen liefern :

(7)' — CO
F ôfifp {à)

a da u (a),

2_fi
a da

(41)

(42)

Die Wurzeln dieser beiden Gleichungen sind die stationären
Amplituden. Ihr Sinn wird sich am leichtesten aus einer
Skizze erschliessen, in der wir a in Funktion von a
auftragen. Wir erhalten so die sogenannten „krummen
Resonanzen", die den Zusammenhang zwischen der stationären

Amplitude und der erregenden Frequenz a darstellen
(Abb. 4 und 5).

10) Diese aus der Radiotechnik übernommene Ausdrucksweise rührt
davon her, dass © in den Anwendungen, z. B. in dem unten angeführten
Beispiel, gewöhnlich als Differenz zweier Winkel auftritt.

n) Die Anwendung der Methoden der Nicht-linearen Mechanik auf
Probleme dieser Art bildet den Gegenstand einer im Technisch-Theoreti?chen
Staatsverlag, Moskau, erschienenen Abhandlung der Verfasser: „Méthodes
nouvelles de la Mécanique Non-Linéaire dans leur application à l'étude
du fonctionnement de l'oscillateur à lampe, Partie première". 250 S.

Zur Untersuchung
der Stabilität irgend
einer bestimmten
stationären Amplitude
verfahren wir wie üblich.
Sei 0O die a0 entsprechende

Phase. In den
Gl. (36):

-»

/&

Abb 4

2 aß-Ö Q(a,0), Q(a, 0)=(aP-^-)
2 a^ja=R{a,Q), R{a,6) =— Fgp sin 0-

a - F'fid- cos 0
oa

0(a)
(43)

p ~~ % ' ' "" P

setzen wir a a0 S s, 0 0O -f- <5,

wo s und (5 gewisse, von erster Ordnung unendlich kleine
Grössen sind, und erhalten bei Vernachlässigung von
Gliedern höherer Ordnung:

Qd «

Rj f — 2 a

Qd à-

Rn à

à o

Die Stabilitätsbedingung fordert, dass die Wurzeln
der charakteristischen Gleichung

-v2 — {Ra -f Qu x "T {Ra Rq — Qa Rai o

negative Realteile haben, dass also erstens — [Rj Qd)

o ist —was wegen der als steigend vorausgesetzten

Reibungscharakteristik zutrifft — und dass zweitens

Rj Qd - Qd Rj > o. • • • (44)
Diese Bedingung lässt sich anders formulieren. Die Gl. (43)
besagen nämlich für a — a0 und 0 0O :

Q (a0, ©0) 0, R (a0, ©o) o.
In der ersten dieser Gleichungen tritt die unabhängige
Variable a, der a0 und 0O entsprechen, explizite auf. Die
Differentiation der beiden Gleichungen nach a liefert:

Q,
da

1 da
n ' d0 -Qe AT- Qd

Qd Re) Sr Qd Rd Fgp cos 0 2Fa.{Rj Qd — v« "0 )~^p — V« "8 — -<-api

Die Stabilitätsbedingung (44) ist somit folgender Bedingung
äquivalent :

d-F <0, wenn gp cos © <0 ; o, wenn gp cos 0 > o. (45)

§ 10. Betrachten wir den Fall der Hauptresonanz
(p 1) genauer. Setzen wir

71

k (a) ~— 0 (a) —2— / f(a a sin w) sin w dw.w a2 a w naa JJ x

0

Bei linearer Reibung

/ (.x) — k x
wird k (a) offenbar der konstante Reibungskoeffizient k sein.

Bemerken wir nun, dass die beiden Gl. (41) und (42)
in eine einzige vereinigt werden können :

[(eu2 — a2)2 -P k* a2] a2 F*, (46)
die formal die selbe Gestalt wie die entsprechende
Gleichung für das bekannte lineare System hat. Der prinzipielle

Unterschied wird durch die Abhängigkeit der
Frequenz co von der Amplitude a hineingebracht.

Nehmen wir als Beispiel den Fall, wo mi n2-\-l a2, 2>o.
Dann erhalten wir bei Abwesenheit von Reibung (£ 0):

p
a2 112 -(- l a2 -) cos 0 — 1

und la2- F
cos 0 1.

Wir haben demgemäss die „krumme Resonanz" von Abb. 4;
die dick ausgezogenen Teile entsprechen stabilen
Amplituden.

Da sich die Schwingung mit der kleinstmöglichen
stabilen Amplitude einstellen wird (wenn, wie vorausgesetzt,
das System sich vorher in Ruhe befand), so wird, wie aus
Abb. 4 hervorgeht, die Amplitude sogar bei Abwesenheit

von Reibung begrenzt sein.
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Zur Bestimmung des kritischen Wertes au haben wir
die Gleichungen

Û n* + b + —) p
-5- — 0, ak2 n2 X a2 + —.

Aufgelöst: ak2 n2 + 3 l (-^J
3

(47)

Die maximale Amplitude bei Resonanz wird

«max (4)1'3 (48)

Was die Reibung betrifft, so beschränken wir uns darauf,
ihren Einfluss in Abb. 5 anzudeuten.

Derartige Fälle, wo die Amplitude sich sogar bei
Abwesenheit von Reibung allein kraft der Nicht-Linearität
beschränkt, werden wir Fälle aktiver Nicht-Linearität nennen.
Offenbar ist es bei der Konstruktion nicht-linearer
Kupplungen äusserst vorteilhaft, wenn sich die Nicht-Linearität
als aktiv erweist, denn dann wird es nicht nötig sein, die
Reibung zu vergrössern. Die Fälle hingegen, wo die Nicht-
Linearität für sich allein ohne Reibung die Schwingungsamplituden

nicht zu beschränken vermag, werden wir
Fälle passiver Nicht-Linearität nennen.

Passiv-nicht-linear ist z.B. dieFeder von Abb. 1 (S.256).

In der Tat ist für sie, wie wir sahen, m- »2+ ir -,

(n2 — a2) a -)-

- h (»2 — a2)

-hJ2 + • a2 a2 F2.

a
p 2 ± H2 (rea — a2)2

-i h
T

w +
h

7C

~F~ — / I F

Ist speziell f—V<T<Ti>
\2»/

so bekommen wir die vereinfachten Formeln:

b —hß na —— (TüVwmax nh \ n

In diesem Fall besteht somit die Rolle der Nicht-Linearität
bloss in einer Verschiebung der kritischen Resonanzfrequenz
und nicht, wie vorhin, in einer Verminderung der
Resonanzamplitude.

§ Ii. Wie die erhaltenen Ergebnisse anzuwenden
sind, sei etwa am Beispiel der Drehschwingungen der
Kurbelwelle eines Flugmotors kurz angedeutet. Schematisch

ist das Schwingungssystem auf Abb. 8 skizziert.
Bezeichnen T und I2 die Trägheitsmomente der Kurbel-, bzw.
Propellerwelle, M (0) das von der relativen Verdrehung
0=0, — 02 abhängige Drehmoment der Kupplung, y
den Koeffizienten der zu 0 proportional vorausgesetzten
Dämpfung, Aj (/) und A2 (7) die störenden Kräfte, so folgt aus

Ii 0i + /0 + M(0) E1 (,t)

und

mit

I2 02

h + h
z 0—M(0) £2 (0

/, h
k und h + h

y, h M (0) =p{&):

sodass die Gl. (41), (42) liefern:

a2 n2 -T (— h -}- a) — cos 0 — 1
\7t J a

und a1 n2 -f- (f h — a) f, cos 0 -f- 1.

Folglich werden für F T> — h
71

die krummen Resonanzen die Gestalt von Abb. 6 annehmen,
ganz wie im linearen Fall. Die maximale Amplitude wird
unendlich und bei

a2 n2 „erreicht".
Untersuchen wir jetzt den Einfluss der Reibung, die

wir der Einfachheit halber linear annehmen wollen. Wir
erhalten auf Grund der Gl. (46)

(«2— a2)2 -f~ a2 \ (ri*— et2)2 -f- k1 a2 [(»2 — a2)2-|-/£2a2]2

Die krumme Resonanz wird die in Abb. 7 schematisch
dargestellte Form haben. Zur Bestimmung von und amax
haben wir die folgenden Beziehungen:

ömaxS
Y" J+ f (49)

«„•=»» + (50)
& jl amax

Gl. (49), welche die maximale Amplitude bestimmt, ist
übrigens genau die selbe wie bei den gewöhnlichen linearen
Schwingungen. Aus (49) und (50) folgt:

(4r)" -*(è)'r
(51)

— 1 + F

0 -+- k 0 + p (0) F cos a t,
E E

wenn von —1 -p nur die Grundschwingung F cos a t
L -^2

berücksichtigt wird. Für die „L. Z. Kupplung" der
Luftschiffe „Graf Zeppelin" hat das Moment M in Abhängigkeit
von 0 den Charakter von Abb. 2 (S. 256). Wir haben also
den Fall der nicht-linearen Feder von Abb. 1, die, wie wir
sahen, den für die Arbeit der Welle ungünstigen Charakter
der passiven Nicht-Linearität aufweist. Die Einsetzung der
Wellen- und Kupplungsdaten des im Jahre 1929 zu Schaden
gekommenen „Graf Zeppelin"12) in die Formeln (51) und
(49) wäre von Interesse.

Zum Schlüsse weisen wir auf die Möglichkeit hin,
mit Hilfe der dargelegten Methode den passenden Typ einer
nicht-linearen Kupplung zwecks Abschwächung der Resonanz
rationell auszuwählen, was sich als ein sehr aktuelles
Problem der modernen Technik erweist.

Als Arbeiten der Verfasser auf dem Gebiete der
Nicht-linearen Mechanik und ihrer Anwendungen seien im
Anschluss hieran noch folgende erwähnt:

1. Quelques exemples d'oscillations non linéairesComptes rendus
des séances de l'Académie des Sciences de Paris, 1.194, p. 957 (14/III, 1932).

2. nSur le phénomène de Ventraînement en radiotechnique". Ebendaö

t. 194, p. 1064 (21/III, I932)-
3. lets phénomènes de démultiplication de fréquence en radiotechnique".

Ebenda, t. 194, p. 1119 (29/III, 1932).

4. fur quelques propriétés générales des résonances dans la mécanique

non linéaire". Ebenda, t. 197, p. 903 (23/X, 1933)

5. MProblèmes fonda7nentaux de la Mécanique non Linéaire". Revue

générale des Sciences (N° du 15/I, 1933).
6. „Recherches sur la stabilité dynamique des machines synchrones"

(russisch, mit einem französischen Résumé), 100 S., KiefF 1932.

7. MRecherches sur la stabilité longitudinale des avions" (russisch, mit
einem französischen Vorwort), 60 S., Kieff 1932.

8. „Recherches sur la stabilité statique et la stabilité dynamique des

machines synchrones". Rapport N° 14 à la 3me Section du Congrès
International d'Electricité, Paris, 1932.

9. Problèmes fo?idamentaux de la Mécanique non Linéaire" (russisch).
Bulletin de l'Académie des Sciences de l'URSS, N° 4, 1933.

10. fundamental Problems of the non linéar mechanics. Congrès
International des Mathématiciens, Zurich, 1932.

11. Méthodes nouvelles de la Mécanique non Linéaire dans leur
application a l'étude du fonctionnement de Voscillateur a lampe. Partie
première. Etude des régimes stationnaires dans le cas de l'absence des forces
extérieures périodiques". N° 7 der Sammlung wissenschaftlicher Abhand-

12) Vgl. Zeitschrift für Flugtechnik und Motorluftschiffahrt 1929,
18. Heft, S. 465 fg.
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Abb. 7. Modellansicht der Lorrainhalde mit Viadukt über die Talwegmulde (links), geschlossenem Bauwerk (Mitte, vergl. Querschnitt B)
und Aareübergang (rechts), dahinter die Lorraine-Strassenbrücke.

lungen von Prof. Dr. N. Kryloff und Dr. N. Bogoliùboff (russisch, mit einem
französichen Vorwort), 250 S., Moskau (im Druck).

12. „Méthodes nouvelles de la Mécanique non Linéaire dans leur
application a Vétude de la perturbation des mouvements périodiques et de

divers phénomènes de résonance s'y rapportant". 100 S. (im Druck).
13. „Les méthodes symboliques de la Mécanique non Linéaire dans

leur application a l'étude de résonance dans Voscillateur" (russisch, im Druck),
Bulletin de l'Académie des Sciences de l'URSS, 1934.

14. Theory of Vibrations from the standpoint of the Non-linear
Mechanics with Applications to some Engineering Problems (in Vorbereitung).

Die Verlegung der Bahnlinie Wylerfeld-Bern
an die Lorrainehalde.
Von Ing. A. BÜHLER, Sektionschef für Brückenbau der S.B.B., Bern.

Bei der Abstimmung am 20. November 1932 über die
Botschaft des Stadtrates an die Gemeinde Bern, betreffend
die neue Zufahrtslinie der S. B. B. vom Wylerfeld zum
Hauptbahnhof Bern, wurde die Vereinbarung zwischen der
Generaldirektion der S. B. B. und der Einwohnergemeinde
Bern vom 15. Juli 1932 gutgeheissen ; der Verwaltungsrat
der S. B. B. hat ihr am 26. Juni 1933 zugestimmt. Darnach
wird der Bau einer neuen viergeleisigen Linie in Aussicht
genommen, die bei der alten Waffenfabrik auf dem Wyler
von der jetzigen Linie abzweigt, sich hierauf gegen den
Rand des aareseitigen Lorraineplateau hinzieht und
sodann über die Aare und Schützenmatte hinweg zum
gegenwärtigen Hauptbahnhof führt. Dies ist mit wenigen Worten
umschrieben das Ergebnis langjähriger Vorstudien, sowie
der zwischen Bahnverwaltung und städtischen Behörden
gepflogenen Verhandlungen. [Vergl. frühere Studien in
„S.B.Z." Bd. 96, S. 4 u. S. 288, Juli u. Nov. 1930. Red.]

Im Sinne der genannten Vereinbarung oblag es der
Bahnverwaltung, die Brückenbauten so auszugestalten, dass
sie in städtebaulicher Beziehung sich möglichst gut in die
gegebenen Verhältnisse einpassen werden; die Linienverlegung

stellt sich nämlich in der Hauptsache als eine
ununterbrochene Folge von Brücken mit einer Länge von
1100 m dar. Mit diesen Studien wurde die Sektion für
Brückenbau bei der Generaldirektion der S. B. B. betraut
und ihr als Berater Arch. H. Klauser (Bern) beigegeben.
Zur Abklärung einer Reihe baulicher Fragen und Einzel¬

heiten wurden einige Ingenieurbureaux und Stahlbaufirmen
beigezogen, sodass die Voranschläge in kurzer Zeit so
eingehend ausgearbeitet werden konnten, wie dies bei
derartigen Linienverlegungen kaum oft geschehen ist.

Aber auch in ästhetischer Beziehung sind alle
Anstrengungen unternommen worden, um zu einem Ergebnis
zu kommen, das den gestellten Anforderungen gerecht
wird. Aus rund 50 verschiedenen Brückenanordnungen
wurden diejenigen ausgewählt und in Bildern und Modellen
dargestellt, bei denen die technischen, wirtschaftlichen und
ästhetischen Forderungen als am besten erfüllt angesehen
werden durften.

Die massgebenden Organe der Bahnverwaltung haben
schliesslich nach eingehenden Erwägungen einem massiven
Bauwerk den Vorzug gegeben. Bei diesem kann das
erforderliche Schotterbett auf die ganze Brückenlänge ohne
weiteres durchgeführt werden, was auch zur Schalldämpfung
nötig ist. Diesen Vorschlägen haben der Gemeinderat der
Stadt Bern, die Stadtausbau - Kommission und auch der
Baudirektor des Kantons Bern
einhellig beigestimmt. Die als
beste Lösung der Linienverlegung
an die Lorrainehalde angesehene
Anordnung sieht eine kleine
Verschiebung des Tracé gegenüber
dem Vorprojekt der Vereinbarung
mit der Stadt Bern vor, und
zwar in dem Sinne, dass die
Linie von der eigentlichen
Steilhalde weg und etwas mehr auf das
Lorraineplateau gelegt würde. Im
Hinblick auf die umfangreichen
Vorarbeiten und die für
schweizerische Verhältnisse grossen
Bauwerke rechtfertigen sich einige
Angaben über die zu erstellenden

Brücken. Eine allgemein
gehaltene Darstellung der Entwürfe
dürfte ferner darum erwünscht
sein, weil bei einer spätem
Ausschreibung der Arbeiten auch
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Querschnitt A
Abb. 2. Querschnitt durch den
Viadukt über die Talwegmulde.
Masstab 1 : 500.
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Gerade 235,16 m Gerade 182.13m

R-tsom. 252,70m

Abb. 1. Projektierter Viadukt über die Talwegmulde, Masstab 1 : 2500, mit Terrainlinien je 7,5 m rechts und links der Axe.
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