
Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 103/104 (1934)

Heft: 22

Artikel: Ueber einige Methoden der Nicht-linearen Mechanik in ihren
Anwendungen auf die Theorie der nicht-linearen Resonanz

Autor: Kryloff, Niklaus / Bogoliuboff, Niklaus

DOI: https://doi.org/10.5169/seals-83220

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-83220
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


2. Juni 1934 SCHWEIZERISCHE BAUZEITUNG 255

INHALT : Ueber einige Methoden der Nicht-linearen Mechanik in ihren
Anwendungen auf die Theorie der nicht-linearen Resonanz. — Eisen-Beton-Verbund-
konstruktionen Alpha. — Das neue Krankenhaus von Colmar. — Theoretische Wartefristen

bei einer Bausparkasse. — Mitteilungen : Die neue deutsche Wettbewerbsordnung.

Der Braunkohlen-Abbau in Hostens bei Bordeaux. Neue Wege zu billiger

Spitzenkraft. Eisenbahnfedern und ihre Fertigung. Autofähre über den Firth of
Forth, Schottland. — Nekrologe : Max Carstanjen. — Literatur. — Mitteilungen der
Vereine. — Lignum schweizerische Arbeitsgemeinschaft für das Holz. — Elektrotechnische

Abteilung der E. T. H. — Sitzungs- und Vortrags-Kalender.

Band 103

Ueber einige Methoden der Nicht-linearen
Mechanik in ihren Anwendungen auf die
Theorie der nicht-linearen Resonanz.
Von Prof.Dr.NIKLAUS KRYLOFF u. Dr.NIKLA.US BOGOLIUBOFF, Kieff.t)

Schwingungsfähige Systeme, bei denen die „elastische" Kraft nicht dem Hookeschen

Gesetz gehorcht, oder die Reibung der Geschwindigkeit nicht proportional ist
erlangen in der Technik immer grössere Bedeutung. Der folgende Aufsatz ist ein erster
Versuch, die von den Verfassern zur Untersuchung derartiger Schwingungen
ausgearbeiteten Methoden der Nicht-linearen Mechanik anhand des einfachsten Falls
eines harmonischen Störungen unterworfenen nicht - linearen Systems von einem

Freiheitsgrad zu popularisieren. Es werden Verfahren angegeben zur Auffindung der

ungedämpften Eigenschwingungen solcher Systeme, sowie der erzwungenen Schwingungen

in der Nähe der Resonanz. Diese tritt nicht nur, wie im linearen Fall, bei
Uebereinstimmung der Eigenfrequenz mit der Störfrequenz selber ein, sondern zudem
bei Koinzidenz mit einem Unterton der harmonischen Störung. Für die stationären
Lösungen wird eine Stabilitätsbedingung hergeleitet. Die Wichtigkeit der folgenden
Merkmale wird erläutert : steigende und fallende Reibungscharakteristik, aktive und
passive Nicht-Linearität. Verschiedene „krumme Resonanzen" werden gezeigt. Als
Anwendungsbeispiel wird zum Schluss auf einen Flugmotor hingewiesen, dessen

Kurbelwelle, mit der Propellerwelle durch eine „LZ"-Kupplung verbunden, gefährlichen
Drehschwingungen ausgesetzt sein kann.

§ 1. Die nicht-linearen, in verschiedenen Problemen
der Technik angetroffenen Schwingungen ziehen in der
letzten Zeit besondere Aufmerksamkeit auf sich.2) Dies ist
einer Reihe von Umständen zu verdanken, wie z. B. der
Verwendung von elastischen Systemen in der Technik,
bei denen die rücktreibende Kraft der Deformation nicht
proportional ist. Elastische Systeme solcher Art mit
„nichtlinearer" Charakteristik treten bei der Verwendung von
Stoffen auf, die dem Hooke'schen Gesetz offenkundig nicht
gehorchen (Gummi, Beton, Gusseisen usw.), ferner bei der
Einführung spezieller Konstruktionen, die in die
Charakteristiken ein Element der Nicht-Linearität tragen (z. B.
die sog. nicht-linearen Federn) usw. Ausserdem erscheint die
Nicht-Linearität mechanischer Systeme oft als nicht-lineare
Abhängigkeit der Reibungskräfte von der Geschwindigkeit
(trockene Reibung).

Die Eigenschaften der nicht-linearen mechanischen
Systeme sind im allgemeinen sehr wenig erforscht, was die
Möglichkeiten ihrer praktischen Anwendung einengt. Dies
gilt besonders hinsichtlich eines so wichtigen technischen
Phänomens, wie der Resonanz, die bei nicht-linearen
Systemen unter völlig anderen Bedingungen verläuft und
sich tief von der Resonanz linearer Systeme unterscheidet.

Der Grund für die verhältnismässig geringe Erforscht-
heit der nicht-linearen Schwingungen liegt am Fehlen eines
passenden mathematischen Apparates, was sich seinerseits
aus den Schwierigkeiten erklärt, die bei den Versuchen
einer auch nur qualitativen Auflösung der nicht-linearen
Differentialgleichungen auftauchen, denn die bezüglichen
numerischen und graphischen Verfahren sind im
Allgemeinen aus verständlichen Gründen nicht zu gebrauchen.

Die Ausarbeitung von dieser schwierigen und wichtigen

Frage angemessenen mathematischen Methoden
erscheint deshalb unerlässlich, umsomehr als auch die
experimentelle Erforschung gestützt auf eine vorgängige Theorie
produktiver wird, die es erlaubt, das zu untersuchende
Phänomen, wenn auch nur grosso modo, vorherzusehen.
Diese Methoden sind von den Verfassern des vorliegenden
Aufsatzes in einer Reihe von (teilweise noch ungedruckten)
Arbeiten3) gegeben worden. Zusammen machen sie die

') Aus dem Russischen übersetzt von K. H. Grossmann.
2) Vgl. z. B. den Aufsatz „Forced vibrations with non-linear spring

constants" von J. P. Den Hartog und S. J. Mikina, Transactions A. S.M.E.
1932, APM-54-15, S. 157 fg.

3) Vgl. den Literaturnachweis am Ende des Aufsatzes.
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Darstellung der Lehre aus, der die Verfasser die Bezeichnung
„Nicht - Lineare Mechanik" darum beilegten, weil diese
Methoden speziell im Hinblick auf nicht-lineare Schwingungen

verschiedener Art geschaffen worden sind und
deshalb in einer Reihe von angewandten Wissenschaften
Verwendung finden.

Es ist klar, dass diese Methoden auch auf verschiedene
Probleme der Bau-Mechanik anwendbar sind, insbesondere
auf die Theorie der Fundamente, das Studium von Rahmen-
Konstruktionen usw. In diesem Aufsatz werden die
Methoden der Nicht-linearen Mechanik in ihrer Anwendung
auf Systeme von einem Freiheitsgrad auseinandergesetzt,
wobei die Darstellung, für Ingenieure bestimmt, als ein
Versuch der Popularisierung dieser Methoden erscheint
und darum recht elementar gehalten ist, mitunter sogar
zum Schaden der mathematischen Strenge.

§ 2. Indem wir uns dem Studium der
Resonanzerscheinungen in Systemen mit einem Freiheitsgrade
zuwenden, wollen wir uns der Einfachheit halber auf den
Fall einer harmonischen Störungsfunktion (einer sinusoi-
dalen äusseren Kraft) beschränken. Dann wird der Gegenstand

unserer Untersuchung eine Differentialgleichung der
folgenden allgemeinen Gestalt sein4):

a: -\-p (x) F cos a t—f(x) (1)

worin p (x) die rücktreibende Kraft und f(x) die Reibung
— irgend eine Funktion der Geschwindigkeit — bedeuten.
Hierbei beschränken wir uns auf den Fall, wo im Augenblick

des Störbeginns das System sich in einem der Ruhe
nahen Zustand befindet, d. h. wo die anfänglichen Werte
von x, x sehr klein sind.8) Wie aus den Untersuchungen
der Verfasser hervorgeht, findet (wie auch physikalisch
einleuchtet) Resonanz bei „annähernder" Uebereinstimmung
der Störfrequenz und der Frequenz einer der Harmonischen
der Eigenschwingung statt, d. h. wenn co (die Eigenfrequenz)
sich ajp nähert, wo p eine ganze Zahl ist. Der linearen
Theorie zufolge, auf die man sich in Ermangelung eines
passenden mathematischen Apparates häufig beschränkt,
tritt Resonanz nur bei p — r auf.

Indessen hat die Praxis trotzdem gewisse Vorstellungen

über das Auftreten von Resonanz beim Zusammenfallen

der Störfrequenz mit Frequenzen der höheren
Harmonischen.6) Dieser, übrigens streng begründbare Vorgang
wird durch die Bemerkung unmittelbar klar, dass die von
der Störkraft geleistete Arbeit von der Form

x (t) F cos at dt (2)

ist, sodass die über eine hinreichend lange Zeitspanne
gemittelte zugeführte Arbeit nur dann von Null verschieden
ist und so den Reibungsverlust nur dann zu kompensieren
vermag, wenn a angenähert mit einer der harmonischen
Frequenzen der Funktion x (t) zusammenfällt. In der Tat
wird, wenn x (t) JN" An sin(A„ tq>n), offenbar

n

± J i COS » / i, -2 K An "• * +
0 n

j a siD [!U + a)T+ — sin cpn

4) Punkte bedeuten Ableitungen nach der Zeit.
6) Es wird sich eine stabile Amplitude einstellen, auch wenn diese

Anfangsbedingungen nicht erfüllt sind. Sind sie erfüllt, so wird sich die
kleinste stabile Amplitude einstellen (siehe weiter unten). Der Beweis dieser

Behauptung würde hier zu viel Raum beanspruchen.
6) Davon spricht z. B. J. Baker, Transactions A.S.M.E., 1. c. S. 162,

Der S. I. A. Ist fUr den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich.
Nachdruck von Text oder Abbildungen Ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.
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Infolgedessen kann bei grossem T der „mittlere" Wert
des Ausdrucks (2), d. h.

r
~ Jx (t) cos a t dt,

0

nur dann nicht sehr klein sein, wenn a sich einer der
Frequenzen Xn nähert. Wenn also nicht eine dieser
Frequenzen wenigstens annähernd mit der Störungsfrequenz
zusammenfällt, d. h. bei Abwesenheit von Resonanz, wird
im Mittel jene Arbeitszufuhr nicht vorhanden sein, die im
Resonanzfall das Anwachsen der Schwingungsamplitude
ermöglicht.

Sagen wir nun, im Hinblick auf die Untersuchung
der Gl. (1), Einiges über die ungedämpften Eigenschwingungen

x-\rp{pc)== o (3)
In vielen praktisch wichtigen Fällen7) bietet die
Untersuchung solcher Schwingungen keine Schwierigkeit und
ist bekannt.

§ 3. Nehmen wir z. B. den in der Praxis sehr
häufigen Fall, wo die Störkraft mit genügender Genauigkeit
durch ein kubisches Polynom dargestellt werden kann :

p {x) n2 x ß x2 -|- y x'ä (4)

Mit den Ansatz x — z (w), w m t -f- ip, yj konst,
wobei die Funktion z (w) hinsichtlich der Variablen w die
Periode zti besitze, bekommen wir offenbar:

®3s" -\-p (s) o (5)
Benutzen wir zur Bestimmung der Funktion z und der
Frequenz co die folgenden Zerlegungen :

z — a z0 —|— a2 z1 + a3- CO2 — Vq —I— Cl Vi —)— ü2 -

ß

6 n2
COS 2 W) Vi O.

7 1

ß Ï
\32»2 48 n4J

worin

==n2+(iy~i&]a

^ «3 cos 3 (co #+- xp), (9)

xp konst (10)

JL

Analog verfährt man offenbar, wenn (r) ein Polynom von
höherem als dritten Grade ist.

§4. In andern, prak- 0
tisch wichtigen Fällen
erscheint p (x) als eine
gebrochene Linie, p (x)
hat z. B. für die in
Abb. 1 skizzierte
nichtlineare Feder den in
Abb. 2 gezeichneten
Verlauf. Es ist

für x o : p (x) h -f- n2 x, für x <j o : p (x) — h n2 x,
und aus der Differentialgl. (3) der ungedämpften
Eigenschwingung wird :

') Die von den Verfassern ausgearbeiteten Methoden sind auf
freie Schwingungen allgemeiner Art anwendbar, worauf hier jedoch nicht
eingetreten werden kann.

Abb, 1 Abb. 2

x n2 x {+Ä, v<o * * • ' (">
Zur Zeit t0 nehme x den positiven Höchstwert A an.

{t t„ : x A, x — o). Dann schreibt sich die Lösung
von (11):

x — ~ [1 — cos n (t — /0)] -f- A cos n {t — t0), solange

cos n (t — t0) >
h

An* + h>

d. h. solange — snpßt — t0 < sn. sn — — arccos ^— — n A nl -j- h

Für x <j o ist die Bewegung offenbar ein Spiegelbild
derjenigen für xß>o:

X (t) X (2 Sn -)- 2 t0 t).
x ist also eine periodische Funktion von t mit folgender
Periode T und Frequenz co :

T 4s„ — arccos A »2 + h

2JC

co=^ h
Atfl + fl

Nun sei die Funktion y{w,a) folgendermassen definiert:

y (w, a) x

y ist also eine periodische Funktion von w mit der

Periode 2 7t. Offenbar gilt : y {w, a) j> o, für — — w <ß — ;

(6)
wobei wir den Funktionen sk {k o, 1, 2 die
Bedingung der Periodizität (mit der Periode 2 n) auferlegen.
Bei Einsetzung der Reihen (6) in der Gl. (5) und
Gleichsetzung der Koeffizienten gleicher Potenzen von a erhalten
wir die folgenden Beziehungen :

7'0 So" + «2 00 O, (7)

''0 Si H- w2 s, — ß So2 — >'1 s0" (8)
Der Gleichung (7) genügen s0 cosw; v0 n2.

Eingesetzt in (8) : (z," -f- zß)n2 (i+cos 2 w)-\-vi coszv.

Dieser Beziehung genügen die Werte : z, ß, -f-2 n

y (w, a) <ß o, für < a) <^ ; y {w, a) — —y (n — w, a).

Bemerken wir noch, dass

y (w, a) y {— w, a) (12)
und

max \y (w, a)\ =y (o, a) A. (13)
o <( w <ß 2 n

Da der Zusammenhang zwischen x und y auch so
formuliert werden kann :

x (/) =y {co t + xp, a), tp — co t0,

so wird aus (n)8j:

coîy" (w, a) -}- h2y (w, a)
n, < w <r —

o ^ o

h, O < 3 71
• (14)

Auf diese Weise kann man beliebig viele Glieder der
Reihen (6) bestimmen. Hört man z. B. bei der dritten
Potenz von a auf, bekommt man :

x — ^ a2 + a cos {co t-\~ w) H~ 7^2 ß2 cos 2 (°° { + v) +2 71 0 71

Betrachten wir nun die Fourier-Entwicklung von y (w, a).
Wegen (12) enthält sie nur cosinus-Terme:

co
71

y (w, ci) — ~ ^ fy (w, a) cos m w dulj cos m w.
m=i 0

Zur Bestimmung der Fourier-Koeffizienten multiplizieren
wir Gl. (14) mit cos miv. Partielle Integration ergibt, da
y' (o, a) y' (n, a) o :

71

(in2 —- m2 co2)Jy cos m w dw

1/
Hieraus erhalten wir, wenn wir -jj- j'y cosw dw a

T/2 71

h •! I cos m w dw — j"cos m w dw
'

— sin *
Tlj2

setzen :

und

co2 n2 —\-
7T. a

(15)

1 4 (—T) cos mw
y a cosw -\ h > ——— r— (16)

71 ' m (m2 cd 2 — n2) v /
m 3' 5/7-.

Die Eigenfrequenz co ist somit grösser als n und nimmt
mit wachsendem a monoton ab.

Nach (13) nimmt y den maximalen Wert A für w= o
an. A lässt sich daher unmittelbar aus (16) unter
Berücksichtigung von (15) berechnen, oder, einfacher, aus der

A nl 2 01
Beziehung:
die aus dem Verschwinden von x für t /0-j-F/4 folgt.

8) Striche bedeuten Ableitungen nach w.
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A :

»»
1

1 + tg2 (w)

Ohne bei den ungedämpften Eigenschwingungen zu
verweilen, deren Erforschung durch die in Abb. 3 erläu¬

terte Energiegleichung

-~x2-\-V (x) — H konst,

V (x) J p (x) dx (18)

Abb. 3

besonders erleichtert wird, wollen
wir jetzt zum Grundthema dieses
Aufsatzes, dem Studium der
nichtlinearen Resonanz, übergehen.

§ 5. Hierbei werden wir voraussetzen, dass die
Eigenschwingungen schon bekannt und durch bestimmte
Ausdrücke folgender Gestalt gegeben sind:

x y (m t-\~ ty, «), co — co (a), (19)

wo y (w, a) durch eine Fourier-Reihe dargestellt werden kann :

y (®, a) gm 0) COS m w (20)

g3 cos 3w so bekommen wir offenbar :

-JL

(— CO2 -f- n2) a n2 a — ^ Jp (a cos w) cos w dw, (23)

— ~ Jp (a cos w) dw,
0

7t

(— co2 k2 -f- n2) gk — — Jp (a cos w) cos kw dw.

In zweiter Annäherung wird sonach

7t

y a cos lo — Jp {a cos w) dw -f-
0

7t

' Ê kZ*-n- [P ^a C0S ^ C0S kW dW'
k 2

Es empfiehlt sich, den Parameter a positiv und so zu
wählen, dass die positiv grösste Abweichung von der
Gleichgewichtslage

A A (a) max \y {w, a) \

O ^ 2 7T

mit wachsendem a wächst und zusammen mit a verschwindet.
Z. B. ist für die nicht-lineare Feder von Abb. 1 nach (17)

f) A
und (15) in der Tat A (o) o, -A-j>o.

Natürlich steht uns die Wahl des in Gl. (19) figurierenden

Parameters durchaus frei; statt des einen können
wir einen andern Parameter nehmen, der mit dem ersten
irgendwie verknüpft ist. In gewissen Fällen ist es z. B.
zweckmässig, als Parameter direkt die Schwingungsamplitude

zu wählen.
Diese Bemerkung betrifft insbesondere jene in praxi

häufig vorkommenden Fälle, wo man die Eigenschwingung
mit genügender Annäherung als harmonisch ansehen kann:

y a cos {co t-\~ w) (2I)
Betrachten wir kurz diese wichtigen Fälle, die wir

aus verständlichen Gründen quasi-linear nennen wollen.

Sei n2 y das lineare Anfangsglied in dem Ausdruck
für die rücktreibende Kraft p (y). Man kann offenbar
schreiben9) :

co2ywi"-y-n2y n2y—p (y). (22)

Benützen wir diese Gleichung zur Bestimmung der
Eigenfrequenz co und nebstbei auch zur Präzisierung von Formel

(21)1 indem wir auf (22) das Mittel der sukzessiven
Approximationen anwenden. Der Grundidee dieses
Verfahrens entsprechend setzen wir auf der rechten Seite
von (20) die erste Approximation ein : y a cos w.

Zur Bestimmung der zweiten Annäherung erhalten wir
dann die folgende Beziehung : co2ywA -+- n2y — n2 a cos w —
p {a cos w).

Setzen wir darin y a cos w - £0 + £2 cos 2w

worin wegen (23)
7t

co2 ~~Jp ia cos w) cos w dw (25)
0

Uebrigens liefern die Formeln (24) und (25), auf den oben
behandelten Fall der nicht-linearen Feder von Abb. 1

angewandt, unmittelbar die Lösungen (16) und (15). Ebenso
liefert die Anwendung der Formel (24) auf den Fall der
polynomischen Charakteristik (4) direkt die oben abgeleitete
Reihe (9).

§ 6. Wenden wir uns nach allen diesen Vorbemerkungen

über die Eigenschaften der ungedämpften
Eigenschwingungen der Betrachtung der fundamentalen
Differentialgleichung (1) zu, und zwar unter Voraussetzung
angenäherter Resonanz {co c_± afp). Dabei nehmen wir einen
geeigneten Wechsel der Veränderlichen vor, indem wir
statt x und x die beiden Grössen 0 und a als neue
unbekannte Zeitfunktionen durch folgende Definitionsgleichungen

einführen :

x =y (w, a), (26)

x=~yw'{w,a), (27)f
a t -j- Q / o\W (28)

P

Hietin bezeichnet y (w, a) die in der als bekannt
vorausgesetzten ungedämpften Eigenschwingung (19) auftretende
Funktion von der Gestalt (20).

Physikalisch bedeutet dieser Wechsel der Veränderlichen,

dass wir die „erzwungene" Schwingung in die
Form der ungedämpften Eigenschwingung kleiden, deren
Amplitude und Phase wir als unbekannte Funktionen der
Zeit ansehen; dabei ersetzen wir die Eigenfrequenz durch
einen Unterton der Erregerfrequenz.

Unter Benutzung der differenzierten Gl. (27) erscheint
Gl.(i) in folgender Gestalt:

+ jywa ayp (y) F cos a t-f jP'-j) (29)/' *
1

^
jyvfi (7 0+7
Da y (w, a) andrerseits definitionsgemäss Gl. (22) befriedigt,
folgt hieraus :

^yJ'Q+jywa a (m2-J^yJ' +Fcosat-f(jjyw^j (30)

Ferner ergibt der Vergleich der differenzierten Gl. (26)
mit (27) :

~yj © yâ « ° (3O

Lösen wir (30) und (31) nach 0 und a auf:

{yjy'wa — yw"ya)^r ®

—1(®2- 7)y^" + ^cos« * — f{jyJ^yâ*

{yw y'wa yw- ya p
a

(32)

9) Striche bedeuten von nun an, je nach dem beigefügten Index,
Ableitungen nach w oder a.

j(o>2- yw" -f- Fcosa /—/(jyjjyj
Auf diese Gleichungen sind die Methoden der nicht-linearen
Mechanik anwendbar. Da sich der gegenwärtige Aufsatz
jedoch an Ingenieure wendet, werden wir ein nicht ganz
strenges Verfahren einschlagen, das im Ergebnis die
nämlichen Formeln liefert wie die mit Hilfe jener Methoden
erhaltene erste Approximation. (Schluss folgt.)
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