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Nr. 22

Ueber einige Methoden der Nicht-linearen
Mechanik in ihren Anwendungen auf die

Theorie der nicht-linearen Resonanz.
Von Prof.Dr. NIKLAUS KRYLOFF u. Dr.NIKLAUS BOGOLIUBOFF; Kieff.1)

Schwingungstihige Systeme, bei denen die ,elastische Kraft nicht dem Hooke-
schen Gesetz gehorcht, oder die Reibung der Geschwindigkeit nicht proportional 1st)
erlangen in der Technik immer gréssere Bedeutung. Der folgende Aufsatz ist ein erster
Versuch, die von den Verfassern zur Untersuchung derartiger Schwingungen aus-
gearbeiteten Methoden der Nicht-linearen Mechanik anhand des einfachsten Falls
eines harmonischen Stérungen unterworfenen nicht -linearen Systems von einem
Freiheitsgrad zu popularisieren. Es werden Verfahren angegeben zur Auffindung der
ungeddmpften Eigenschwingungen solcher Systeme, sowie der erzwungenen Schwing-
ungen in der Nihe der Resonanz. Diese tritt nicht nur, wie im linearen Fall, bej
Uebereinstimmung der Eigenfrequenz mit der Storfrequenz selber ein, sondern zudem
bei Koinzidenz mit einem Unterton der harmonischen Stérung. Fiir die stationidren
Lésungen wird eine Stabilitdtsbedingung hergeleitet. Die Wichtigkeit der folgenden
Merkmale wird erldutert: steigende und fallende Reibungscharakteristik, aktive und
passive Nicht-Linearitdt. Verschiedene ,krumme Resonanzen* werden gezeigt. Als
Anwendungsbeispiel wird zum Schluss auf einen Flugmotor hingewiesen, dessen
Kurbelwelle, mit der Propellerwelle durch eine ,L Z“-Kupplung verbunden, gefdhrlichen
Drehschwingungen ausgesetzt sein kann.

§ 1. Die nicht-linearen, in verschiedenen Problemen
der Technik angetroffenen Schwingungen ziehen in der
letzten Zeit besondere Aufmerksamkeit auf sich.2) Dies ist
einer Reihe von Umstinden zu verdanken, wie z. B. der
Verwendung von elastischen Systemen in der Technik,
bei denen die riicktreibende Kraft der Deformation nicht
proportional ist. Elastische Systeme solcher Art mit ,nicht-
linearer* Charakteristik treten bei der Verwendung von
Stoffen auf, die dem Hooke'schen Gesetz offenkundig nicht
gehorchen (Gummi, Beton, Gusseisen usw.), ferner bei der
Einfihrung spezieller Konstruktionen, die in die Charak-
teristiken ein Element der Nicht-Linearitit tragen (z. B.
die sog. nicht-linearen Federn) usw. Ausserdem erscheint die
Nicht-Linearitdt mechanischer Systeme oft als nicht-lineare
Abhéngigkeit der Reibungskrafte von der Geschwindigkeit
(trockene Reibung).

Die Eigenschaften der nicht-linearen mechanischen
Systeme sind im allgemeinen sehr wenig erforscht, was die
Moglichkeiten ihrer praktischen Anwendung einengt. Dies
gilt besonders hinsichtlich eines so wichtigen technischen
Phinomens, wie der Resonanz, die bei nicht-linearen
Systemen unter vollig anderen Bedingungen verlduft und
sich tief von der Resonanz linearer Systeme unterscheidet.

Der Grund fir die verhiltnismissig geringe Erforscht-
heit der nicht-linearen Schwingungen liegt am Fehlen eines
passenden mathematischen Apparates, was sich seinerseits
aus den Schwierigkeiten erklart, die bei den Versuchen
einer auch nur qualitativen Auflésung der nicht-linearen
Differentialgleichungen auftauchen, denn die beziiglichen
numerischen und graphischen Verfahren sind im All-
gemeinen aus verstindlichen Grinden nicht zu gebrauchen.

Die Ausarbeitung von dieser schwierigen und wich-
tigen Frage angemessenen mathematischen Methoden er-
scheint deshalb unerlisslich, umsomehr als auch die expe-
rimentelle Erforschung gestiitzt auf eine vorgéngige Theorie
produktiver wird, die es erlaubt, das zu untersuchende
Phanomen, wenn auch nur grosso modo, vorherzusehen.
Diese Methoden sind von den Verfassern des vorliegenden
Aufsatzes in einer Reihe von (teilweise noch ungedruckten)
Arbeiten?) gegeben worden. Zusammen machen sie die

!) Aus dem Russischen iibersetzt von K. H. Grossmann.

2) Vgl. z. B. den Aufsatz ,Forced vibrations with non-linear spring
constants® von J. P. Den Hartog und S. J. Mikina, Transactions A.S.M. E.
1932, APM-54-15, S. 157 fg.

%) Vgl.'den Literaturnachweis am Ende des Aufsatzes.

Darstellung der LLehre aus, der die Verfasser die Bezeichnung
yNicht-Lineare Mechanik“ darum beilegten, weil diese
Methoden speziell im Hinblick auf nicht-lineare Schwin-
gungen verschiedener Art geschaffen worden sind und
deshalb in einer Reihe von angewandten Wissenschaften
Verwendung finden,

Es ist klar, dass diese Methoden auch auf verschiedene
Probleme der Bau-Mechanik anwendbar sind, insbesondere
auf die Theorie der Fundamente, das Studium von Rahmen-
Konstruktionen usw. In diesem Aufsatz werden die Me-
thoden der Nicht-linearen Mechanik in ihrer Anwendung
auf Systeme von einem Freiheitsgrad auseinandergesetzt,
wobei die Darstellung, fir Ingenieure bestimmt, als ein
Versuch der Popularisierung dieser Methoden erscheint
und darum recht elementar gehalten ist, mitunter sogar
zum Schaden der mathematischen Strenge.

§ 2. Indem wir uns dem Studium der Resonanz-
erscheinungen in Systemen mit einem Freiheitsgrade zu-
wenden, wollen wir uns der Einfachheit halber auf den
Fall einer harmonischen Stérungsfunktion (einer sinusoi-
dalen #usseren Kraft) beschrinken. Dann wird der Gegen-
stand unserer Untersuchung eine Differentialgleichung der
folgenden allgemeinen Gestalt sein?):

x4p(x)=Fcosat—f(®), . . . . (1)
worin p (x) die riicktreibende Kraft und f(x) die Reibung
— irgend eine Funktion der Geschwindigkeit — bedeuten.
Hierbei beschrinken wir uns auf den Fall, wo im Augen-

blick des Storbeginns das System sich in einem der Rube
nahen Zustand befindet, d. h. wo die anfanglichen Werte
von x, % ...sehr klein sind.5) Wie aus den Untersuchungen
der Verfasser hervorgeht, findet (wie auch physikalisch
einleuchtet) Resonanz bei ,ann#hernder“ Uebereinstimmung
der Storfrequenz und der Frequenz einer der Harmonischen
der Eigenschwingung statt, d. h. wenn w (die Eigenfrequenz)
sich a/p nihert, wo p eine ganze Zahl ist. Der linearen
Theorie zufolge, auf die man sich in Ermangelung eines
passenden mathematischen Apparates hiufig beschrankt,
tritt Resonanz nur bei p = 1 auf.

Indessen hat die Praxis trotzdem gewisse Vorstel-
lungen tiber das Auftreten von Resonanz beim Zusammen-
fallen der Storfrequenz mit Frequenzen der héheren Har-
monischen.6) Dieser, iibrigens streng begriindbare Vorgang
wird durch die Bemerkung unmittelbar klar, dass die von
der Storkraft geleistete Arbeit von der Form

(O Eicos o tidt TR (2)
ist, sodass die {iber eine hinreichend lange Zeitspanne
gemittelte zugefiihrte Arbeit nur dann von Null verschieden
ist und so den Reibungsverlust nur dann zu kompensieren
vermag, wenn ¢ angendhert mit einer der harmonischen
Frequenzen der Funktion x (f) zusammenfallt. In der Tat

wird, wenn x (f) = 2 A, sin (A, t+ @), offenbar
n

sin [(A, — @) 7=+ ¢,] — sin ¢,

T
I 3
?fx(t)cosatdt:;'lnfl,l e -+
sin [, + o) 7+ ¢,] — sin g,
2 A Ay 20t o) T .

n

%) Punkte bedeuten Ableitungen nach der Zeit.

5 Es wird sich eine stabile Amplitude einstellen, auch wenn diese
Anfangsbedingungen nicht erfiillt sind. Sind sie erfiillt, so wird sich die
kleinste stabile Amplitude einstellen (siehe weiter unten). Der Beweis dieser
Behaupiung wiirde hier zu viel Raum beanspruchen.

%) Davon spricht z. B. J. Baker, Transactions A.S.M.E., L. c. S. 162,
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Infolgedessen kann bei grossem 7 der ,mittlere“ Wert = o = )

des Ausdrucks (2), d. h. e { —+h, x<o e
- z Zur Zeit 4y nehme x den positiven Hochstwert 4 an.
fo () cos a tdt, (t—=ty:x=A, x=o0). Dann schreibt sich die Lésung

. S i . ' von (I1):

nur dann nicht sehr klein sein, wenn o sich einer der

Frequenzen 1, nahert. Wenn also nicht eine dieser Fre- x=——[1—cosn(t—t)]+ A cosn(t—t), solange

quenzen wenigstens annihernd mit der Stérungsfrequenz

zusammenfillt, d. h. bei Abwesenheit von Resonanz, wird cos # (¢ — to) >A 2+h’

im Mittel jene Arbeitszufuhr nicht vorhanden sein, die im d, B colanpalyl e < i s By ST SRR R

Resonanzfall das Anwachsen der Schwmgungsamphtude e o t="m e, An24h’

ermoglicht.

Sagen wir nun, im Hinblick auf die Untersuchung
der Gl (1), Einiges iber die ungedimpften Eigenschwin-
gungen

tLp@=0_ . . . . . . (3

In vielen praktisch wichtigen Fallen?) bietet die Unter-
suchung solcher Schwingungen keine Schwierigkeit und
ist bekannt.

§ 3. Nehmen wir z. B. den in der Praxis sehr hiu-
figen Fall, wo die Stoérkraft mit geniigender Genauigkeit
durch ein kubisches Polynom dargestellt werden kann:

P =matfartyas . . . . (4)
Mit den Ansatz x =2 (w), @w=w¢—-+ v, = konst,
wobei die Funktion z (w) hinsichtlich der Variablen w die
Periode 27 besitze, bekommen wir offenbar:

e T () o bR )

Benutzen wir zur Bestimmung der Funktion # und der
Frequenz o die folgenden Zerlegungen:

g=azy+a?z a3z, ..., wl=vo+t+av,+atv,+..., (6)
wobei wir den Funktlonen gp (=0, 1, 2...), die Be-
dingung der Periodizitdt (mit der Periode 2 x) auferlegen.
Bei Einsetzung der Reihen (6) in der GI. (5) und Gleich-
setzung der Koeffizienten gleicher Potenzen von a erhalten
wir die folgenden Beziehungen:

vy %o ——n2zy = o0, AR AL )

vo# +ntzs = —fe —nmz" . . . . (8
Der Gleichung (7) geniigen 2, = cosw; v, = n2.
Eingesetztin (8): (z,” + 2,)n? =— g (1+-cos 2 w)—y, cosw.
Dieser Beziehung geniigen die Werte: g = — % -+
%cosz w, v, = o.

Auf diese Weise kann man beliebig viele Glieder der
Reihen (6) bestimmen. Hért man z. B. bei der dritten
Potenz von ¢ auf, bekommt man:

x=—ma2+acos(wt—§—w)—l—6 5 a%cos 2 (w!—+y)
(Lt ) arcos3 @i+ w), - (9

— %g:—) a?, 1 = konst (10)

Analog verfahrt man offenbar, wenn p (x) eirn Polynom von
hoherem als dritten Grade ist.

§ 4. In andern, prak-
tisch wichtigen Fallen
erscheint p (x) als eine
gebrochene Linie. p (x)
hat z. B. fiir die in
Abb. 1 skizzierte nicht-
lineare Feder den in
Abb. 2  gezeichneten
Verlauf. Es ist
fir x >o0:p(®)=h+ntx, fir x < o:p@x)=—h-+n2x,
und aus der Differentialgl. (3) der ungedampften Eigen-
schwingung wird:

worin
w?=n2 | (i
i\

Abb. 1 Abb. 2

") Die von den Verfassern ausgearbeiteten Methoden sind auf
freie Schwingungen allgemeiner Art anwendbar, worauf hier jedoch nicht
eingetreten werden kann.

Fir x <o ist die Bewegung offenbar ein Spiegelbild der-
jenigen fiir x>>o:

x(t)=—x(28,+ 24— 1.
x ist also eine periodische Funktion von # mit folgender
Periode 7 und Frequenz w:
2w T 7

= —=

4 B
= 4Sn = REETE e ~

2 arccos Th‘f»h
Nun sei die Funktion y (w, @) folgendermassen definiert:
5 (@, @)= =t +2).

» ist also eine periodische Funktion von w mit der Pe-
riode 2. Offenbar gilt: y (w, a) > o, fiir —%< w <%

y(w a) <o, fir = <w< 3% y@,e)=—y@—w, a)
Bemerken wir noch, dass
Y (wv a) == (_ w, IZ) . (12)
und
max [y (w, &) = ¥ (o, a) = 4. (13)

olw<2n
Da der Zusammenhang zwischen x und y auch so for-
muliert werden kann:
x()=ywt+vy, a), p =— wib,
so wird aus (11)8):
— = % <<l %
- i (14)
/l, ? < w < 7
Betrachten wir nun die Fourier-Entwicklung von ¥ (w, a).
Wegen (12) enthilt sie nur cosinus-Terme:

w?y" (w, a) + Aty (w, a) =

¥ (w, a) :izw'(fy (w, a) cosmwdw) cosm w.

T

m=1 o
Zur Bestimmung der Fourier-Koeffizienten multiplizieren
wir Gl (14) mit cosm w. Partielle Integration ergibt, da

¥ (0, @) =¥ (m, a) = o:

(n2 — m? a)ﬂ)fy cosm w dw =

”m 7T

——h{fi%mwdw —fcosmwa’w} St

0 7|2

Hieraus erhalten wir, wenn wir ?fy cosw dw = a

setzen:
V.
O il (15)
und
hi
4 (—1) * cosmw
Yy =a cosw +;h2 o (16)

m=3,57...
Die Eigenfrequenz o ist somit grésser als # und nimmt
mit wachsendem @ monoton ab.

Nach (13) nimmt y den maximalen Wert 4 fiir w=o0
an. A lisst sich daher unmittelbar aus (16) unter Beriick-

sichtigung von (15) berechnen, oder, einfacher, aus der

COSnn
Anith 2z !

die aus dem Verschwinden von x fiir ¢ = # -+ 7/4 folgt.

Beziehung:

8) Striche bedeuten Ableitungen nach .
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A:niz{ Inn—q}:%{—x—{—l/x—ktgz%}. (17)

cos —
20

Ohne bei den ungedidmpften Eigenschwingungen zu
verweilen, deren Erforschung durch die in Abb. 3 erliu-
terte Energiegleichung

%952 ~+V () = H = konst,

~Z

a0
| |

(18)

V(x):fp(x)dx

besonders erleichtert wird, wollen
wir jetzt zum Grundthema dieses
Abb. 3 Aufsatzes, dem Studium der nicht-
linearen Resonanz, ibergehen.
§ 5. Hierbei werden wir voraussetzen, dass die
Eigenschwingungen schon bekannt und durch bestimmte
Ausdriicke folgender Gestalt gegeben sind:

27 =) (wi—‘_wr a)v w::w(a)! (19)
wo ¥ (w, @) durch eine Fourier-Reihe dargestellt werden kann:

(20)

Es empfiehlt sich, den Parameter @ positiv und so zu
wihlen, dass die positiv grosste Abweichung von der
Gleichgewichtslage
A = A4 (a) = max |y (w, a)
o=w=27
mit wachsendem ¢ wichst und zusammen mit ¢ verschwindet.
Z. B. ist fur die nicht-lineare Feder von Abb. 1 nach (17)

und (15) in der Tat 4 (o) = o, —0(9;> o.

Natiirlich steht uns die Wahl des in Gl (19) figurie-
renden Parameters durchaus frei; statt des einen kdnnen
wir einen andern Parameter nehmen, der mit dem ersten
irgendwie verkniipft ist. In gewissen Fillen ist es z. B.
zweckmissig, als Parameter direkt die Schwingungsampli-
tude zu wéhlen.

©

y(w, @)= > gm(a) cosmw

m=o

Diese Bemerkung betrifft insbesondere jene in praxi
hiufig vorkommenden Falle, wo man die Eigenschwingung
mit geniigender Annéiherung als harmonisch ansehen kann:

= acos(wt 4+ ) (21)

Betrachten wir kurz diese wichtigen Fille, die wir
aus verstdndlichen Griinden quasi-linear nennen wollen.

Sei #2y das lineare Anfangsglied in dem Ausdruck
fir die ricktreibende Kraft p(y). Man kann offenbar
schreiben?):

oyt olent y =l = p (), (22)
Beniitzen wir diese Gleichung zur Bestimmung der Eigen-
frequenz o und nebstbei auch zur Prazisierung von For-
mel (21), indem wir auf (22) das Mittel der sukzessiven
Approximationen anwenden. Der Grundidee dieses Ver-
fahrens entsprechend setzen wir auf der rechten Seite
von (20) die erste Approximation ein: y = a cos w.

Zur Bestimmung der zweiten Anniherung erhalten wir
dann die folgende Beziehung: w?yq:"” 4 7n2y=n? a cosw —
2 (a cosw).

Setzen wir darin y = acosw — g -+ ga cos2w
g5 cos3w ..., so bekommen wir offenbar:

2
(— aﬂ—[—n?)aznza——;fp (a cosw) cosw dw, . (23)
n? gy = —%fp(acosw) dw,
(— w2k2+”2)gk=—%fﬁ (a cos w) cos kw dw.

9) Striche bedeuten von nun an, je nach dem beigefiigten Index,
Ableitungen nach w oder a.

In zweiter Annsherung wird sonach

I

fp (@ cosw) dw +

0

=
2 k
%2%/}) (@ cosw) cos kw dw, . (24)
k=2 b

— @ COSwW —
¥ nx

worin wegen (23)

2

T
w? :ﬁfp(a cos w) cos w dw
0

(25)

Uebrigens liefern die Formeln (24) und (25), auf den oben
behandelten Fall der nicht-linearen Feder von Abb. 1 an-
gewandt, unmittelbar die Lésungen (16) und (r5). Ebenso
liefert die Anwendung der Formel (24) auf den Fall der
polynomischen Charakteristik (4) direkt die oben abgeleitete
Reihe (9).

§ 6. Wenden wir uns nach allen diesen Vorbemer-
kungen iber die Eigenschaften der ungedimpften Eigen-
schwingungen der Betrachtung der fundamentalen Dif-
ferentialgleichung (1) zu, und zwar unter Voraussetzung
angeniherter Resonanz (w o< a/p). Dabei nehmen wir einen
geeigneten Wechsel der Veridnderlichen vor, indem wir
statt & und x die beiden Grossen @ und a als neue un-
bekannte Zeitfunktionen durch folgende Definitionsglei-
chungen einfiithren:

% — (W) @), (26)
P Z%}’w, (w, a), (27)
w= “jg e e e (2 8)

Hierin bezeichnet y (w, ) die in der als bekannt voraus-
gesetzten ungedampiten Eigenschwingung (19) auftretende
Funktion von der Gestalt (20).

Physikalisch bedeutet dieser Wechsel der Verinder-
lichen, dass wir die ,erzwungene“ Schwingung in die
Form der ungedidmpften Eigenschwingung kleiden, deren
Amplitude und Phase wir als unbekannte Funktionen der
Zeit ansehen; dabei ersetzen wir die Eigenfrequenz durch
einen Unterton der Erregerfrequenz,

Unter Benutzung der differenzierten Gl. (27) erscheint
Gl.(1) in folgender Gestalt:

G s N - ef®
7.3’1@2 (7 O‘*’;)‘r},}’wn a+p(y)=F cosat f(p J’w) (29)

Da y (w, @) andrerseits definitionsgemass Gl. (22) befriedigt,
folgt hieraus:

o . 2
P%ywz”@+ %ywau a:(aﬂ—%)ywa” +Fcosat—f (%yw) (30)

Ferner ergibt der Vergleich der differenzierten GI. (26)
mit (27):

S0 O+yia=o. (31)
Losen wir (30) und (31) nach @ und a auf:
(Yo' Ywa' — Yw" Yd) I,ie 0=
o2+ memses—s(Es i |
32)

’ ” ”" G
(Yo Ywa — Vw2 J’a)? O =

2

(o~ S)oe+ Fossas—1 )
Auf diese Gleichungen sind die Methoden der nicht-linearen
Mechanik anwendbar. Da sich der gegenwirtige Aufsatz
jedoch an Ingenieure wendet, werden wir ein nicht ganz
strenges Verfahren einschlagen, das im Ergebnis die nam-
lichen Formeln liefert wie die mit Hilfe jener Methoden
erhaltene erste Approximation. (Schluss folgt.)
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