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Zwei neue Lösungen des Problems
der rotierenden Scheibe.
Von Dr. I. M ALKIN, Ing., Westinghouse Electric & Manufacturing Company,
South Philadelphia Works, Philadelphia, Pa.

Der nachstehende Artikel bringt zwei neue Scheibenprofile mit den zugehörigen
Spannungsverteilungen, gekennzeichnet durch Einfachheit der erforderlichen
Rechenarbeit.

/. Einleitung. Obwohl die Anzahl der bisher bekannten
und in der Praxis allgemein benutzten teils graphischen,
teils analytischen Verfahren zur Festigkeitsberechnung und
Konstruktion von Dampfturbinen-Laufradscheiben nicht
gering ist, sieht man sich durch Erwägungen mannigfacher
Natur häufig doch gezwungen, nach neuen Lösungen zu
forschen. Ausschlaggebend ist hierbei die Forderung, die
sonst umständlichen Rechnungsarbeiten möglichst auf ein
Minimum zu reduzieren und zu normalisieren, d. h. auf
wenige elementare Operationen mit ein für allemal
berechneten Normal-Zahlentabellen zurückzuführen. Im
Nachstehenden werden zwei neue Lösungen des Problems der
rotierenden Scheibe entwickelt, die der genannten
Forderung in hohem Masse genügen. Beide Verfahren sind
mit vergleichenden Beispielen belegt.

2. Die analytische Form des Problems. Das Problem
der rotierenden Scheibe in der von A. Stodola herrührenden

Näherungsgestalt ist verschiedener Darstellungsformen
fähig.1) Einige von ihnen sollen sogleich aufgeführt werden.

Zunächst mögen die Bezeichnungen gelten : r Radius,
y halbe Scheibendicke, u Radialverschiebung, or=
Radialspannung, at Tangentialspannung, v Poissonsche
Konstante, E Elastizitätsmodul, /.< spezifische Masse,
co Winkelgeschwindigkeit.
Dann hat man als erste Darstellungsform des Problems
das Differentialsystem
d2ar / 3 i dv \ da,. T2 4- v dv d I dy V+ rFp[j~d7)_dr2

dy\ 1
to + dy

|

dr
1

dr ^ L y dr

d(ry<3r)
dr

(3 + v) fAW2 o

- y 0/ + ,uco2 r2 y o

(1)

(2)

Eine äquivalente Form ergibt sich, wenn man die
Spannungen durch die Radialverschiebung vermöge der Gleichungen

Edu

dri—v2 \
:kt. D

d2u / Iff \y

V -
' \ E j du u\-) ' + (3)

gt di

)du
/ v dy I \ «

dr \y dr r j r

ausdrückt. Durch Einsetzen in (2) folgt dann nämlich
dy 1 \ du / v dy

dr r ] dr \y dr
/no)2 (1 - r o (4)

Eine dritte Darstellungsart ergibt sich, wenn man Gl.(2)
mit der Kompatibilitätsbedingung

dat

dr
dar .ar — at

V— (1 +")—;—dr (5)

kombiniert. Führt man dann eine gewisse Funktion S
durch die Beziehungen

S dS
y Or y a, —-f- l^m-y r2 (6)

ein, so ist Gl. (2) identisch erfüllt, während Gl. (5) die Form
d2s
dr2 + (v dy\

1 —dr dr

annimmt.2

(v
dy 1 \

y dr r
(3 -T v) l>.co2y r =0 (7)

') Siehe A. Stodola, Dampf- und Gas-Turbinen, 5. u. 6. Auflage,
Abschnitte 74 und 181.

2) Siehe z. B. A. Föppl, Vorl. über Techn. Mech. Bd. V.

Die Gleichungssysteme (3) und (4) einerseits und (6)
und (7) andererseits mögen nun folgender Behandlung
unterworfen werden :

Die variablen Koeffizienten der Grundgleichung in
einer der Formen (4) oder (7) sind von der zu ermittelnden

Funktion (ar bezw. S) frei. Gesetzt, diese
Koeffizienten seien dnrch eine Beziehung miteinander verknüpft,
die eine Integrabilitätsbedingung der in Frage stehenden
Differentialgleichung (4) bzw. (7) ist. Da die Koeffizienten
nun, wie gesagt, von der zu ermittelnden Funktion frei
sind, so ist die Integrabilitätsbedingung nichts anderes als
eine Definitionsgleichung für y. Lässt sich diese integrieren,
so hat man eine Lösung des Problems.

Diese Methode erweist sich als die Quelle zweier
wichtiger Berechnungsverfahren, die nachstehend entwickelt
werden.

j. Das Erste Exponentialprofil. Eine Integrabilitätsbedingung

der bezeichneten Art ergibt sich unter Benutzung

der folgenden elementaren Integrationsmethode von
linearen Differentialgleichungen.8)

Greifen wir zunächst Gl. (4) ins Auge, so mögen
folgende abkürzende Bezeichnungen gelten. Es seien P2,
Plt P0, P die Koeffizienten von d'lu : dr2, du : dr, u und
des von u und dessen Ableitungen freien Gliedes der
Differentialgleichung (4) :

P2= i ; Pi i dy

y dr

p fltù2 (I

Po

— r2)

(v
dy 1 \

y dr r J

- r.

Pi' — o, oder
/ I dy \ v / 1 dy \

dr J r \y dr J

Wird nun die Gleichung (4) nach den Regeln der partiellen
Integration gliedweise integriert, so folgt
\Pdr 4- J (Po — P\' + PF) udr-\-(Px —P2')u-\-P2 u — o

worin P/ dP^ : dr, usw. Somit ist die Ordnungszahl
der Gl. (4) um die Einheit erniedrigt, falls P0 — P/ +

o.
I dy

y

dr \y dr J r \y dr

Dies ist eine Differentialgleichung für die Profilfunktion y.
Die Lösung lautet

j< a^I + ' (8)
worin a und — ß die beiden Integrationskonstanten sind.
Für diese Profilkurve nimmt die ursprüngliche Differentialgleichung

(4) die Gestalt
P2 u + (Pt — Pß) u —F J Pdr o

oder
(1 -\-v)§ri + v /HO)2 (1 —v2)

~dF~^ 2 E r*= C

an, wenn man mit C eine willkürliche Integrationskonstante
bezeichnet.

Betrachtet man nun die reduzierte Gleichung
i — (i -f v) ß r" + 1'

dr ~+ C= o

und setzt für den Augenblick C — o, so findet man eines
der zwei Integrale der reduzierten Gleichung (4). Dieses
erste Integral lässt sich leicht ermitteln zu

_ e — /lrJ+r
D 7 (9)

worin D wiederum eine Integrationskonstante ist.
Das partikuläre Integral, das dem Gliede mit co2 in

der ursprünglichen Differentialgleichung entspricht, ergibt
sich jetzt durch Variation der Konstanten D im Integral
(9). Dieses partikuläre Integral erscheint in endlicher Form,

s) Siehe A. Forsyth, Differentialgleichungen, Braunschweig, 1912,
p. loi.
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falls die Konstante v gleich 1 : 3 eingeführt wird ; dann
drückt sich nämlich dieses Integral durch

1

— I — 1 (10)iE L ßr4/s ^ (ß Shy ^ (ß rV J " K >

aus. Unter Benutzung der Gl. (3) ergeben sich auch die
Spannungskomponenten, wie weiter unten angegeben. Das
letzte der vorübergehend fortgelassenen Konstanten C
entsprechende Integral wird wie folgt ermittelt.4)

Man betrachte die Differentialgleichung (1) in
reduzierter Form, nämlich

d2ar

<2

dr f

v) r —
y

r 3 + r-
dy \1 döj-

dr '~dr +
dy

dr
d
dr (y£)]*-— O

dr —Z
d
dz dr2 9 v dz2

A_

5 Ii
4-6 I
~ ~ —] y

«4 •

5.7 2

10

4 • 6 •

5 • 7 • 9 3

5 • 7 • 9 • 11 4

Dementsprechend erhalten wir das dritte Integral für or in
der Form

42 ,4.6 s2 ,4.6.82s, 4 • 6 8 • 10 24

Î1+-" <I5)

Substituiert man diese Reihe in Gl. (2), so erhält man den
Ausdruck

4-6 2n - (2n -f- 2) "I 2"

I J n ]5-7 (2» + 3) L 3 » +
als allgemeines Glied der Reihe, die das dritte Integral
für ot darstellt, sodass dieses dritte Integral die Form

42 s 4.65 s2 4-6-8 IS8
V>2 1

5 3 i 5-79
4-6-8

5-7-9 23
« „4

+ - (16)5-7-9.it 154! v y

besitzt. Führt man ferner die Integrale (9) und (10) für
die Verschiebung u in die Beziehungen (3) ein, so ergibt

4) Siehe Forsyth, 1. c., p. 573.
5) Siehe Forsyth, 1. c.

sich mit den erhaltenen Ausdrücken und unter Benutzung
von (15) und (16) die Gesamtlösung in der Gestalt

flOJ2
Or -—12

Ot
fZCÙ'

- r2f (s) + K Ç9, (z) + L <p2 0).

(z) h- K yji (z) + L y)2 (z)

(17)

(18)

worin K und L aus den Randbedingungen zu bestimmende
Integrationskonstanten sind, während g die spezifische
Masse und m die Winkelgeschwindigkeit bedeuten,

(")

/(*)=4 + w-

<P1 (s)

g (*) -f 7-

yjl (S) g8
— z -

3

Wir dürfen uns auf die reduzierte Form der Gleichung
beschränken, da das der Grösse cü2 entsprechende partikuläre
Integral in der Form (10) bereits bestimmt worden ist.
Nun führen wir das Profil (8) in die Gl. (xi) ein. Hierbei
werde s ß r4'8 als neue unabhängige Variable angesehen.
Mit den Beziehungen

erhält man die Differentialgleichung
d2 ör I d<jr

* 2(IO-4s)w—2Äffr ° (I2)
anstatt der Gl. (n). Die Behandlung dieser Gleichung in
verallgemeinerter Gestalt ist Gegenstand eines bekannten
und theoretisch gründlich durchgearbeiteten Problems.6)
Danach setzen wir das gesuchte zweite Integral als
unendliche Reihe an :

«0 —!" «1 S + «2 + «3 S3 —F «4 + • • • + «n 2" 7 • • • (l3)
Funktionentheoretischen Sätzen zufolge ist der Konvergenzbereich

dieser Reihe durch den dem Punkte z o
nächstliegenden „singulären" Punkt bestimmt, für den der
Koeffizient von d^Orjdz'1 in der Gl. (12) verschwindet. Da
dieser Koeffizient gleich z2 ist, so ist der Konvergenzradius

gleich co : Die Reihe (13) konvergiert in der ganzen
Ebene, d. h. für jeden endlichen Wert von z ß r4'8. In
der Tat, führt man die Reihe (13) in (12) ein, so folgt

Tl 17L1 (I4)
an _ n n + s/2

Dies beweist, dass unsere Reihe (13) schneller konvergiert
als diejenige für die Exponentialfunktion ez, bei der das
Verhältnis der Koeffizienten gegeben ist durch

an I
an — 1 n

Da die Exponentialreihe in der ganzen Ebene konvergiert,
so gilt das Gleiche von unserer Reihe (13) erst recht.
Führt man nun « 1, 2, 3, in Gl. (14) ein, so folgt

2°/2 T. V /

und die Funktionen <p2 und oben angegeben sind; die
Profilkurve ist durch (8) bestimmt.

4. Schema des Verfahrens beim Entwurf einer Scheibe
des Ersten Exponentialprofils. Die Ergebnisse des
vorhergehenden Abschnittes können wie folgt zusammengestellt
werden :

Für eine Scheibe des Profils
y ae~z s /jr4'8 (19)

sind die Radialspannung or und die Tangentialspannung at
durch die Ausdrücke

- /«n2 r2 / (s) + K (ft (z) -f- L cp2 (z),

at ^/mo2 r* g (s) -F Kyjx (z) + It/)2 (z)

0r V21

I (20)

(21)

gegeben, worin (siehe Abb. 1)

o __ 2-303 (h0\ß
aV,_r04/3 l0gl° UJ •

ist, während ju die spezifische Masse und co die
Winkelgeschwindigkeit bedeuten; K und L sind Integrationskonstanten,

die aus den Randbedingungen zu ermitteln
sind (siehe unten unter 4); endlich sind die Funktionen
/ 07 g (7 9?i (-s)) <?>a (7 Vi (7 ipa (2) einer ein für allemal
zu berechnenden Normal-Tabelle zu entnehmen. Eine solche
Tabelle findet der Leser in einem demnächst in den
„Transactions of the American Society of Mechanical
Engineers" erscheinenden Artikel des gleichen Verfassers.

«3=4^5 cm

^ -- a^'3

Abb.2

Das allgemeine Verfahren beim Entwurf einer Scheibe
wird demnach in den folgenden Einzeloperationen bestehen :

a) Aus den Werten von r0, a und ka, die beim
praktischen Entwurf gewöhnlich gegeben sind, und ä0,

das angenommen und variiert wird, folgt die Konstante ß
nach Gl. (21) ;

b) Mit der Konstanten ß ergeben sich die Werte von z
an der Bohrung (r r0) und am Aussenrand (r a) nach
Gl. (19) ; wir haben dann z0 ß rf^, za ß a4'8;

c) Für diese zwei Werte von z werden die
entsprechenden Werte der Funktionen /(7 g is)! 9?i (7 9?2 (7
Vi (7 V'2 (z) der Normal-Tabelle entnommen und in die
Formeln (20) eingesetzt;
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d) Aus den zwei Randbedingungen or o (bezw.
ar — —p0, worin p0 ein verhältnismässig kleiner Betrag ist,
siehe das Beispiel im fünften Abschnitt) an der Bohrung
(r r0), und ar oa, worin oa ein gegebener Betrag ist,
bestimmt durch den Zentrifugalzug der Schaufeln, für r=a,
ergeben sich mit Hilfe von (20) die Konstanten K und L ;

e) Mit den so gefundenen Werten von K und L
lassen sich die Spannungen or und at leicht berechnen
für jeden Punkt 0 mit Hilfe der Gl. (20) und der Normal-
Tabelle.

Einige weitere praktische Regeln werden im
nachstehenden Abschnitt gegeben.

Wir bemerken ferner, dass es für praktische Zwecke
von gewissem Vorteil wäre, r2 s3'2 ß~3'2 in die Glieder

^jum2 r2/(«) und ^ /um2 r2g (0) der Gl. (20) einzuführen.

Dann nehmen diese Glieder die Form ^ [xm2 ß~ F {z)

bzw. ~ lua)2 ß~ 3,2 G (ä) an, worin F und G Funktionen

von s allein sind.

j. Beispiel. Es sei eine Scheibe für r0 17,0 cm
und « 47,5 cm zu berechnen, falls die Randbreite b — iha,
durch die Schaufelabmessungen bestimmt, gleich 10,0 cm
vorgeschrieben wird; die Arbeitsgeschwindigkeit möge
n — 3600 Uml/min betragen, die Radialspannung am
Rande r a der Scheibe, durch den Zentrifugalzug der
Schaufelung ausgeübt, sei gleich 910 kg/cm2 bei 20 °/0

Uebergeschwindigkeit, die der Rechnung zugrundegelegt
werden soll.

Nach Punkt 1 des oben gegebenen Schemas findet man
ß 0,0179 lg10 (2hü : 10,0)

Für das Verhältnis 2h0 : 10,0 setze man nun der Reihe
nach die Werte 2,0; 2,5; 3,0 ein. Mit den entsprechenden
Werten von ß ergeben sich dann nach Punkt b) des Schemas

diejenigen von z0 und za, und mit den Randbedingungen
Or0 o bzw. ora 910 kg/cm2 für n0 1,2 • 3600 4320
führt dann die Rechnung nach obigem Schema auf Tan-
gentialspannungen a/ an der Bohrung, die gleich sind

4100 kg/cm2
365° »

345°

für 2h0 : 10,0 2,0

„ 2Ä0 : 10,0 2,5

„ 2I10 : 10,0 3,0

Abb.3

hoA

Differenzen auch aus dem Grunde vernachlässigbar, weil
in der Praxis die Bedingungen am Rande sowieso nicht
genau formuliert werden können.

Die auf dieser Grundlage durchgeführte Rechnung
ergibt die in der nachstehenden Tabelle zusammengestellten
Resultate :

r cm y cm ar atm at atm

16,50 12,90 —35 CO o\ 00 0

27,80 9.55 975 2400
37.70 7,06 1105 1980

43,8° 5.8° 1030 1770
48,10 4,98 910 1645

Das Profil und die Spannungen sind danach in
den Abb. 1 und 2 dargestellt.

6. Das Zweite Exponentialprofil. Wendet man die
Methode der Integrabilitätsbedingung auf Gl. (7) an, so
erhält man eine neue Lösung, gekennzeichnet durch die
Profilkurve

y a e~z z ß r2'3 (22)
die wir als „das Zweite Exponentialprofil" bezeichnen
wollen. Die Spannungen sind mit v 1 :3 durch die
Ausdrücke

0, 6 +öS - 3 02) +
^-3 (60-R 450+18 s2)

at — ~ (3 + 2 z) + M ~ (6 — 2 s — z2) +

(23)

Die hierdurch gegebene
Abhängigkeit der Tangential-
spannung an der Bohrung
vom Verhältnis 2h0 : 10,0 ist
in Abb. 3 graphisch dargestellt.

Für 2ho : 10,0 1,0
ist die Ordinate des
Diagramms aus den bekannten
Formeln für die Scheibe
konstanter Dicke berechnet
worden.

An Hand dieses Diagramms hat man sich für das
Verhältnis h0 : ha zu entscheiden. Im vorliegenden Beispiel
nehmen wir 2hQ : 10,0 2,5 an, was auf /? o,00713 führt.
Mit diesem Werte ist nun die SpannungsverteiluDg der
Scheibe zu berechnen. Während aber die Berechnung des

Diagramms Abb. 3 unter Zuhilfenahme von Interpolationen
geschehen darf, empfiehlt es sich, bei der endgültigen
Spannungsberechnung genauer vorzugehen. Bei der
Benutzung der erwähnten Interpolationen nämlich werden
die dadurch eingeführten Fehler im Laufe der Rechnungen
mit grossen Zahlen multipliziert. Dies beeinträchtigt die
Genauigkeit der Resultate erheblich. Daher ist es besser,
die gegebenen Randbedingungen derart etwas abzuändern,
dass die in der Normal-Tabelle gegebenen Zahlenwerte
ohne irgendwelchelnterpolationen gebraucht werden können.
Die hierbei entstehenden Abweichungen vom gesuchten
Resultat sind im allgemeinen kleiner, als die durch
Interpolationen erzeugten Fehler. Ausserdem sind diese durch
ungenaue Erfüllung der Randbedingungen verursachten

77p (60 + 350 +12 z2). (24)

gegeben, worin L und M die zwei willkürlichen
Integrationskonstanten sind, während ß durch das Verhältnis
ho : ha bestimmt ist, wenn man mit h0, ha die Werte vonjy
an der Bohrung (r — r0) bzw. am Aussenrande (r a)
bezeichnet.

Diese Lösung ist dadurch bemerkenswert, dass bei
ihr die Spannungen sowohl als auch das Profil durch
geschlossene Ausdrücke gegeben erscheinen. Dies verbürgt
erhebliche praktische Vorteile. Erstens kann diese Lösung
auch für solche Scheibenteile benutzt werden, die durch
steilere Profilkurven charakterisiert sind. Für solche Teile
nämlich, wie sie in der Verbindung zwischen eigentlichem
Rad und dem Radkranz vorkommen, nimmt ß einen grossen
negativen Wert an; die Formeln des „Ersten Exponential-
profils" können dann nicht benutzt werden, da die
entsprechenden Reihen zur Berechnung der Spannungen in
der Umgebung grosser /J-Werte sehr langsam konvergieren.
Ein derartiger Einwand ist natürlich ausgeschlossen bei
der Lösung (23), (24). Es ist allerdings zu bemerken, dass
das ganze der Berechnung zugrundeliegende Näherungsverfahren

desto ungenauer wird, je steiler die Profilkurve
ist. Zweitens aber lassen sich diese in (23), (24) vorkommenden

geschlossenen Funktionen sehr viel leichter
berechnen und tabulieren, und zwar in solcher
Intervalleinteilung, dass das prinzipiell immer unerwünschte
Interpolieren unnötig wird. Die Normal - Tabelle dieser
Funktionen soll später veröffentlicht werden. Es sind
dies die Funktionen

/ (0) 60 + 45 0 -f- 18 z2 ;

g (z) 60 + 350 + 1202;

<pi (z) 7?(— 6 + 6*-

(z) 7 ;

Vi (z)

3 z2) ;

3 +22

Vi (z) 73
6 — 20 — 02),

mit deren Hilfe alle Berechnungen genau in der gleichen
Weise ausgeführt werden können, wie beim „Ersten
Exponentialprofil".
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Selbstverständlich ist der Vergleich beider
Profile miteinander von praktischem Interesse.
Es mögen die beiden Profilkurven

yi ai e~A'4'8 yu an e~^r2^
die zwei Punkte r r0, y =y0 und

r a, y ya
miteinander verbinden. Dann ist

ai e~^r« '3
aji e~At,2'3

-A«''' a„__
und ai e—ri« - an e

Aus diesen beiden Gleichungen folgt

yn : yi eßÄak-r2h) (r02/s-P/s)

Diese letzte Gleichung zeigt, dass yn stets
kleiner ist als yi, wenn sich die beiden Kurven

in den Randpunkten r r0 und r—a
schneiden. Die Profilkurve I (Erstes Expo-
nentialprofil) hat in r — o eine Horizontaltangente

(Abb. 1), die Profilkurve II hat
daselbst eine Vertikaltangente (Abb. 1).

Als Beispiel behandeln wir hier die gleiche
Aufgabe, wie im Abschnitt 5, unter Verwendung

des neuen Profils. Das Verfahren ist
das gleiche wie dem Schema des Abschnitts 4
für das Erste Exponentialprofil entsprechend.

Abb. 3. Teilansicht des Laufkrans. Abb. 4 (unten). Querschnitt der Halle. 1 : 500.

So finden wir für

ß 2'3°3

K : ha 2,5:

lgl° °-26347,52/s — i7,o2/s

Nach der Formel z ß r2/=> ergeben sich die Werte
von z an der Bohrung (r r0) und am Aussen-
rand (r a). In die weitern Rechnungen führen
wir nun die abgerundeten Werte 20 0,93 und
za i,86 ein den praktischen Regeln entsprechend,

die wir oben angegeben haben. Mit
ortl — 20 kg/cm2 für s z0 0,93 und
ara 925 kg/cm2 für 0 za 1,86
erhalten wir aus unseren Gl. (23), (24)
L 374° kg/cm2 M= 2070 kg/cm2
Unter Benutzung dieser Werte von L und M
jenigen von ß
Profil bzw. die

ergibt sich die folgende Tabelle
Spannungsverteilung :

r cm y cm or atm at atm

16,90 12,90 —20 373°
18,85 12,05 327 3340
26.35 7,29 965 2550
34,55 9,35 1200 2160

43,5° 5,66 IIOO 1870
47,85 5,o8 930 1725

Das errechnete Profil und die Spannungsverteilung sind
gleichfalls in den Abb. 1 und 2 dargestellt.

Der spezifische Energieverbrauch von
Eisenbahn-Schnelltriebwagen in Stromlinienform.
Von Professor Dr. W. KUMMER^ Ingenieur, Zürich.

Dass die von der elektrischen Zugförderung in
Gebrauch gebrachte Kennziffer des spezifischen
Arbeitsverbrauchs von Eisenbahnen, die in üblicher Weise in
Wattstunden pro Tonnenkilometer (Wb/tkm) ausgedrückt
wird, nicht für alle Typen des Bahnverkehrs zweckmässig
ist, zeigten wir vor etwa fünf Jahren am Beispiel der
eigentlichen Bergbahnen, für die sich leicht eine besser
geeignete Kennziffer aufstellen liess.1)

Auch für Eisenbahn-Schnelltriebwagen in Stromlinienform
ist die übliche Kennziffer unzweckmässig, indem sie

ebenfalls der Bedingung relativer Invarianz zu wenig
entspricht. Verlangt doch die übliche, in Wh/tkm ausgedrückte
Kennziffer a eine Bezugnahme der, in kg/t gegebenen,

') Vgl. S. 293 von Bd. 93 (»m 15. Juni 1929).

Widerstandszahl w auf das Zugsgewicht, wobei dann, wenn
der Einfachheit halber eine Fahrt auf gerader und horizontaler

Bahn, mit konstanter Geschwindigkeit, vorausgesetzt
ist, a 2,724 w
gilt. Für Eisenbahn-Schnelltriebwagen in Stromlinienform
ist jedoch der, bei gegebener konstanter Geschwindigkeit
zu überwindende Widerstand mit dem Gewicht des Wagens
nur noch in mittelbarem Zusammenhang; er ist in
überwiegendem Masse an den Querschnitt des Wagens normal
zur Fahrtrichtung gebunden. Die Fortbewegungsarbeit des
Wagens (Wh) kann nämlich geradezu, als nur vom Luft
widerstand bestimmt, in der Form:

A — C F v21
2e

geschrieben werden, wobei C eine dimensionslose
Konstante, F die Querschnittfläche (m2), y das spezifische
Gewicht der umgebenden Luft (kg/m8), g die Beschleunigung

der Erdschwere (m/secs), v die Wagengeschwindigkeit

(m/sec) und l die Bahnlänge (km) bedeuten. Nun

stellt AFvi—p
2g

den sog. Statidruck der verdrängten Luft (kg/m2) dar.
Beziehen wir die Arbeit:

A CFpl
auf das Produkt p l, dem wir die Bezeichnung „Staudruck-
Kilometer" geben dürfen, so erhalten wir eine spezifische
Energieverbrauchsziffer :

/ Wh \
V km kg/m2«=7T-CF

die für Schnelltriebwagen in Stromlinienform, wo C für
aerodynamisch richtige Wagenform und F für gegebene
Spurweite der Bahn, kaum erheblichen Veränderungen
ausgesetzt sind, in genügend weiten Grenzen den Charakter
der relativen Invarianz besitzen dürfte.2)

2) Vgl. zu dieser Frage unseren Berieht „Ueber den Luftwiderstand
von Fahrzeugen", Bd. 102, S. 297* (9. Dezember 1933). Red.
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