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Die giinstigste Form von Kesselbdden. Gt = (o = vautliese pn SRS s
1

Von Dr, sc. techn. FRITZ SCHULTZ-GRUNOW, Kassel.

[Entwicklung einer Methode zur Bestimmung der giinstigsten Bodenform von
Kesseltrommeln, deren Anwendung auf einen bestimmten Fall und Berechnung der
hierbei auftretenden Spannungen.]

Als giinstigste Bodenform in Bezug auf Materialaus-
niitzung wird bis jetzt das abgeplattete Drehellipsoid mit
dem Axenverhiltnis 2:1 (Abb. 1) angesehen, denn bei
dieser Form sollen sowohl im Boden als auch im Zylinder
gleich hohe Maximalspannungen auftreten. Zu dieser Aus-
sage gelangte Geckelert) mit Hilfe seiner leistungsfiahigen
Niherungstheorie des Elastizitdtsproblems dinner, axen-
symmetrischer Schalen. Inzwischen ist diese Theorie weiter
entwickelt worden?), wodurch sich neue Einblicke in die
Festigkeit von Bdden ergeben, welche die genannte Form
nun nicht mehr als die giinstigste erscheinen lassen.

Fir die Festigkeitsrechnung sieht man nach dieser
Theorie jeden Breitenkreis, in dem eine Unstetigkeit in der
Wandstirke, Krimmung oder in der Richtung der Meridian-
tangente auftritt, als Schalenrand an, d.h. man denkt
sich die Schale lings dieses Kreises aufgeschnitten. Bei
Kesseln tritt eine Unstetigkeit in der Kriimmung am Ueber-
gang vom Zylinder zum Boden auf (Abb. 1), an welchem
der Meridiankrimmungsradius R; von dem Werte unendlich
im Zylinder auf den endlichen Wert im Boden sprunghaft
tbergeht, und bei dem Kessel in Abb. 2 tritt noch eine
Unstetigkeit in der Richtung der Meridiantangente am
Uebergang hinzu. Demnach hat man sich den Boden vom
Zylinder abgetrennt zu denken.
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Abb.2

Die Festigkeitsberechnung setzt sich dann aus zwei
Teilen zusammen: Zuerst errechnet man die Membran-
spannungen aus den bekannten Formelns3)

0 * = %; 02*=61*(2—£) (1)
o, bedeute Meridian-, o, Ringspannung, /% die halbe Wand-
starke, R; den Meridiankrimmungsradius, R; den zweiten
Hauptkriimmungsradius (Abb. 3a, b). Man erhalt die For-
meln unter Vernachlissigung der Biegung rein aus den
Gleichgewichtsbedingungen fir eine allseits geschlossene,
durch den Druck p belastete Schale, die einen einfach
zusammenhingenden Raum bildet, und deren Meridian
keinen Wendepunkt besitzt. Am Kesselboden, der eine
nicht geschlossene Schale dieser Art darstellt, erfordert
dieser Spannungszustand die Randspannung ;¥ denn
dann ist er ebenso belastet wie als Teil einer geschlos-
senen. Entsprechend ist auch am Zylinderrande die Span-
nung o;* anzubringen. Der Membranspannungszustand
verlangt also eine ganz bestimmte Randbedingung, némlich
die alleinige Wirkung der genannten Randspannung. Am
Kessel ist sie aber nicht erfiillt, denn unter der Wirkung
des Druckes p und der Randspannung o,* (Abb. 4) wiirde
sich der Bodenrand um

) J. Geckeler, Forsch.-Arb. Ing. Wes. (1926), Heft 276.
2) F. Schultz-Grunow, Ing.-Arch, (1933), Bd. IV, Heft 6, S. 339.
3) Siehe etwa L. Foppl: Drang und Zwang.

und der Zylinderrand um

&* = %%(2 — )
ausweiten; beide Rinder wiirden sich also um verschiedene
Betrige dehnen, was der Wirklichkeit nicht entspricht.
(Index I soll sich im Folgenden stets auf den Rand mit
der grosseren Dehnung &* beziehen, II aul den andern.
E = Elastizititsmodul fur Zug.) Diese unwirkliche Rand-
bedingung kann man aber der tatsichlich auftretenden,
die aussagt, dass sich beide Réander gleichartig defor-
mieren, dadurch angleichen, dass man eine Randbelastung
durch Momente (G;), und durch Krifte 77 ohne Kom-
ponente in Axenrichtung (Abb. 3b) tiberlagert, welche
die anschliessenden Rénder wechselseitig aufeinander aus-
tiben. Wie hierbei vorzugehen ist, und wie die Grosse
dieser Belastung ermittelt wird, habe ich letzthin?) gezeigt.
Es ergab sich damals, dass beide Rénder, wenn sie wie
in Abb. 1 tangential anschliessen, bemerkenswerterweise
nur eine Kraft 7 und kein Moment aufeinander ausiiben.
Dieses Resultat gilt auch, wenn der Randwinkel ¢, (Abb. 1)
einen andern Wert als 9o° besitzt, aber nicht kleiner als
300 ist, denn bei g, < 300 stimmen die Voraussetzungen
der Niherungstheorie nicht mehr gut genug. Im Falle des
nicht tangentialen Anschlusses ergaben sich so hohe
Randbelastungen und damit Beanspruchungen, dass eine
Bodenform nach Abb. 2¢) hier ausser Betracht fallt. Fir
die Errechnung der Randkraft mit dem Betrage 7 pro

Abb. 3b \

Langeneinheit des Randes wurde im Falle des tangentialen
Anschlusses die Formel

T=
4 B — S—
8% sin ¢, H/% (1 —2?) (l/%)o — 17 ctg (ﬁo]
abgeleitet?), ferner die Beziehung

ogr* — oprr*

£
Go1™ — Gorr™

2—v—0t—g A0 I
J2a—» U=

((72)0 =

5 ()

welche die von 7 verursachte Randspannung o, liefert.
Es bedeutet » den reziproken Wert der Querdehnungszahl #;
Index o kennzeichnet jene
(e5-e2)¢  Randgrossen, die an den an-
o w i schliessenden Réndern gleiche

X | p " 7 Werte haben.

Im zweiten Teile der Fes-
tigkeitsrechnung  hat man
dann die Spannungen, die
7 verursacht, zu errechnen

ﬁ“@? Y gx

4) Diese Bodenform ist bereits
von J. Geckeler, jedoch unrichtig,
berechnet worden.
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und tber die Membranspannungen zu superponieren. Dies
geschieht mit Hilfe des in Abb. 5 dergestellten Spannungs-
Diagrammes, das bereits den Verlauf aller Spannungen,
die 7 erzeugt, lings eines abgewickelten Meridianes dar-
stellt. Das Diagramm ergab sich?) aus den Eigenschaften
des Spannungsverlaufes, dass jede Spannungskurve die
gleiche Funktion bis auf Masstabsfaktoren darstellt und
dass die Phasenverschiebungen der einzelnen Kurven unter-
einander stets gleich sind. Man erkennt auch im Diagramm
das charakteristische rasche Abklingen der Spannungen,
die daher nur in einer schmalen Randzone auftreten. 7°
beansprucht also #ur diese Zone. Zeichnet man in das
Diagramm den richtigen Ordinatenmasstab ein, so kénnen
sofort die einzelnen Spannungen, die 7 verursacht, ab-
gelesen werden, denn an jeder Kurve ist angeschrieben,
welchen Wert sie darstellt. Die Abszisse £ w bezieht sich
auf gekrimmte, die Abszisse 20 auf gerade Meridiane.
Es bedeutet dort (vgl. Abb. 3b) ¢ die vom Rande aus
gemessene Bogenlinge des Meridians, w = ¢y — ¢, op, die
maximale Biegungsspannung in einem Schnitt durch einen
Breitenkreis, op, desgleichen in einem Meridianschnitte,
9 die Verdrehung der Meridiantangente infolge der De-

bei krummlinigen Meri-

b ooy e el Ut |
. R,
formation, £ = ]/i( L — 92 1
% V[\’2 h

4
o I . o qe
dianen, k:l/i(r —»?) —— bei geraden Meridianen.
4 [ &y 2

k ist eine Abklingungszahl, denn die Spannungen klingen
umso rascher ab, je grosser % ist, was man daraus ersieht,
dass als Abszisse % § aufgetragen ist. Fir R,, R, sind bei
der Berechnung von 2 Mittelwerte in der beanspruchten
Randzone zu nehmen. Der richtige Ordinaten-Masstab ist
offenbar jener, mit dem das Diagramm die aus (2) errechnete
Randspannung (o,), bei 2w = o angibt.

Nimmt man nun als Bodenform das Drehellipsoid mit
dem Axenverhiltnis 2:1 so besteht der Einwands), dass
bei der verhaltnismissig grossen Kriimmung an seinem
Aequator die Belastung durch Druck p und die Rand-
spannung o;* eine Biegungsbeanspruchung bewirkt, die
nicht mehr vernachldssigbar ist. Es ist also fraglich, ob
der Membranspannungszustand eine gentigend gute An-
niherung ist, und ob deshalb in Wirklichkeit nicht hohere
Spannungen auftreten, als sie Geckeler errechnete. Daher
wird hier eine neue giinstigste Bodenform entwickelt, bei
der dieser Einwand nicht besteht. Das erfolgt in der Weise,
dass der Boden aus Schalen zusammengesetzt wird, in
denen die Belastung durch Druck p und Randspan-
nungen o, * tatsichlich den Membranspannungszustand her-
vorruft. Die Meridianformen solcher Schalen geniigen der
Gleichungs)

Ctggy(i+%—4> i

R,
WOl — =

und ¢ = j—; bedeutet. Von konstanten Werten
°) Hierauf, wie auch auf die nachfolgende Methode zur Ermittlung
der giinstigsten Bodenform, wurde ich von Herrn Prof. £. Meissner, Zirich,
freundlichst aufmerksam gemacht,
8) R. Zoelly: Ueber ein Knickungsproblem an der Kugelschale. Diss.
E.T. H., Ziirich 1915.

Bd. 103 Nr. 12
geniigen /=1 (Kugel) und 7= 3 dieser Relation. Die
allgemeine Losung der Differentialgleichung lautet:

sing \2  (¢—3)®
(csinq;o) = )

Die Konstante ¢ bestimmt sich aus dem vorgegebenen
Randwerte von 4 Mit Ausnahme der Kugel haben diese
Schalen den Nachteil, dass sie im Scheitel zur Platte aus-
arten, die unverhiltnism#ssig hoher als eine Schale be-
ansprucht wird, wie schon die Anschauung sagt und wie
ich an der angefithrten Stelle in einer numerischen Be-
rechnung gezeigt habe. Es soll deshalb eine dieser Schalen
den Wulst des Bodens bilden und eine tangential anschlies-
sende Kugelhaube die Mitte des Bodens (s. Abb. 8). Prak-
tischen Ausfihrungen entsprechend soll die Hoéhe des
Bodens etwa halb so gross als der Radius seines Aequators

. . a .
sein. Ferner w1rd7 =100 vorausgesetzt (¢=Kesselradius).

Es sei gleich vorweggenommen, dass man der giin-
stigsten Bodenform, bei der in Zylinder, Wulst und Kugel
gleiche Hochstwerte der Spannungen auftreten, genitigend
nahe kommt, wenn der Meridian des Wulstes das einfache
Gesetz ¢ = 3 befolgt, wie sich durch Probieren ergab. Die
Abb. 8 zeigt diese Form fiir den Kesselradius ¢ =3 cm.
Sie wurde in der Weise konstruiert, dass man vom Aequator
aus fortschreitend Bogenstiicke der Krtimmungskreise an-
einander fiigte. Am Aequator wurde zunichst ein Kreis-

bogenstiick mit R,

= I cm gezeichnet

-~ (s. Abb. 6) im Win-
A kelraum von 1o0°.
Am Ende desselben

wurde R, abgegrif-
fen, mit dem erhal-
tenen Werte aus der

|
;
10° }
|

Relation % = g
1

dann R; ermittelt,
mit dem neuen Werte von R, das zweite Bogenstiick
gezeichnet, usw. alle folgenden. Eine analytische Berech-
nung der Kurve wire zu umstindlich.

Nun die Festigkeitsberechnung des in Abb. 8 dar-
gestellten Kessels (Massystem kg und cm).

Da am Anschlusse von Wulst und Kugelhaube R;
eine Unstetigkeit besitzt, hat man sich ebenfalls Wulst
und Kugelhaube getrennt zu denken. Am Aequator des
Wulstes (¢ = 909) errechnet man mit » = 0,3

& R
k = 0,909 V‘E SR

an seinem oberen Rande (p=40°) ist R, =4,1 und k=3,52.
% andert sich demnach lings des Meridianes wenig. Es
wird mit dem arithmetischen Mittel £ = 3,27 gerechnet.

Abb.6

Zunichst sollen die vom Aequator aus abklingenden
Spannungen im J#ulste ermittelt werden. Aus (2) kann man
die Spannung (oz), am Aequator errechnen. Da bei g =90°

nach (1) im Zylinder 0,¥=p -3, im Wulste 05" =— 0,75~
ist, folgt (g)o = 1,127 hi Wie gesagt, gibt das Diagramm

in Abb. 5 den gesuchten Spannungszustand an, wenn
dessen Ordinatenmasstab so gew#hlt wird, dass bei kw=0°
die o,-Kurve den eben errechneten Wert annimmt. Im
vorliegenden Fall sind die Ordinaten des Diagramms mit

= 1,127 -ﬁ_

324 4
verschiedenen Winkeln w folgende Spannungen:

zu multiplizieren, und man erhilt dann bei

Bei ko =o:
b7
Es ist w =0, @ = 90% d!=0, Rs— 3, fu—IT; Tg-—_-xoo,
£ 33,3. 6, die vom Aequator aus gemessene Meridian-
I

lange, berechnet sich zonenweise aus § = R, w. R, bedeutet



SCHWEIZERISCHE BAUZEITUNG

139

24. Marz 1934
16
CHIR o B e e
®lo
NS -
> 08
N
A
04
0 abgewickelte
Meridianlange
o4
§ 08
S
72

FR
H
‘s
= \
2
g,

_Zylinder ____\ #,,

%=7oo

Gesetz der Me%'z/fanfa/'m
des Wulstes: 2 _ 3
A

Abb.8

hier das arithmetische Mittel der R,-Werte am Anfang und
Ende der zu § gehorenden Winkelzone. In Abb. 5 liest
man nun ab:

0y = 1,127%, 6, =0, G =0, 0pz=o0.
Ferner erhilt man aus den Formeln (1)
oy — 0,75% , 0= — 0,75% ;
Bets ki — &
ist o = 13,80 0 —=276;2% Rp—i3,07 ~Ryu— 1,02
%: 102 %:34 R, = 1,01 0 = 0,242

ctg o = 0,246.

Der Wert von R, wurde einer genauen Zeichnung

; Ry
des Bodens entnommen und R; aus der Beziehung ——3
1
bestimmt. Der Abb. 6 entnimmt man:
? ?
6220,359’%, @G = @, 031:0.657’ ﬁE=7,27,
3 ? : ?
02 = 0,175 %, 0" =0,752-, 0¥ = — 0,752 —

Bei ko = ’1/2
erhilt man auf dem gleichen Wege

O — O,

0y = 0, 03120)396%) ﬁE:2y34%v

/7

Z 01*20,81%, G — — O

B2 = 0,107 * -, 5
Die Spannungen sind bereits so weit abgeklungen, dass

sich die Rechnung fiir hohere Werte von % w eriibrigt.

Die im Zylinder, in der Kugelhaube und vom oberen
Woaulstrande abklingenden Spannungen ergeben sich auf
die gleiche Weise.

- /N ~
m};} CmEm—— Z 17 e
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== ==0y — =0
Abb. 10

Den errechneten Spannungen ist noch das richtige
Vorzeichen zu geben. Hierzu betrachte man Abb. 7, in
welcher die getrennt gedachten Schalenteile durch Druck p
und Randspannungen ¢,* belastet und in dem zugehdrigen
deformierten Zustande gezeichnet sind. Danach dehnt sich

der Zylinder, und zwar nach (1) um &* = %%, der
Wulst zieht sich zusammen, am Aequator um &* = 0’275 %,

am oberen Rande um &* = und der Kugelrand

dehnt sich um &* = 0’3517 %
verursachten Spannungen gleichen den Unterschied dieser
Randdehnungen aus. Daher ist am Zylinderrande o, eine
Druckspannung, ebenfalls 6p; an der Zylinderinnenwand,
da der Rand nach innen gebogen wird. An der Aussen-
wand ist also op eine Zugspannung. Der aus o5 sich
bestimmende Teil von ¢g, hat nach der Formel in Abb. 5
das gleiche Vorzeichen wie op, der aus ¢ sich bestim-
mende das entgegengesetzte. In den Wulstrindern ist o
eine Zugspannung, und ebenfalls 05 an der Innenwand
des Wulstes. ¢; ist am Wulstrande ebenfalls eine Zug-
spannung, wenn dies, wie die Theorie aussagt, auch o, ist.
Am Kugelrande ist o, wieder eine Druckspannung, infolge-
dessen auch ¢, und an der Kugelinnenwand op,. Die oben
errechneten Werte sind mit dem richtigen Vorzeichen ver-
sehen im Diagramm der Abb. 9 aufgezeichnet. Man erkennt
dort, dass im Wulste die von einem Rande aus abklin-
genden Spannungen am anderen Rande bereits ver-
schwinden, wie in der Rechnung schon vorausgesetzt
wurde. Durch Superposition dieser Spannungen und der
aus (1) sich bestimmenden erhilt man die in Abb. 10 auf-
gezeichneten totalen Spannungen. Es bestitigt sich dort,
dass die untersuchte Bodenform der glnstigsten recht
nahe kommt, da in allen drei Schalenteilen praktisch gleich
hohe Maximalspannungen auftreten. Sie Giberschreiten die

133 2
E *

Die zu iiberlagernden, von 7°

Kesselringspannung 6, = % um 22 9/,. Dieses Resultat

gilt fir jeden geometrisch dhnlichen Kessel. Die Koordi-
naten des Diagrammes in Abb. g sind so bezeichnet, dass
die Spannungen fiir alle derartigen Kessel abgelesen wer-

o = = 5 a
den kénnen. Fir andere Verhaltmsse7 kann man auf

die genannte Art von Fall zu Fall ebenfalls giinstigste
Kesselbodenformen entwickeln.

Wenn Geckeler angibt, dass bel seiner giinstigsten
Bodenform die Kesselringspannung um 13/, iiberschritten
wird, so diirfte dieser Wert nach obigen Resultaten zu
niedrig sein, da diese Form am Aequator schirfer ge-

R 075

. R
kriimmt ist (a = Z

als die neue Bodenform (7=%)
und sich unter der Druckbelastung in eine Meridianform

zu verbiegen trachtet, die der GI. (3) genigt.
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