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Die günstigste Form von Kesselböden.
Von Dr. sc. techn. FRITZ SCHULTZ-GRUNOW, Kassel.

[Entwicklung einer Methode zur Bestimmung der günstigsten Bodenform von
Kesseltrommeln, deren Anwendung auf einen bestimmten Fall und Berechnung der
hierbei auftretenden Spannungen.]

Als günstigste Bodenform in Bezug auf Materialaus-
nützung wird bis jetzt das abgeplattete Drehellipsoid mit
dem Axenverhältnis 2 : 1 (Abb. 1) angesehen, denn bei
dieser Form sollen sowohl im Boden als auch im Zylinder
gleich hohe Maximalspannungen auftreten. Zu dieser Aussage

gelangte Geckeier') mit Hilfe seiner leistungsfähigen
Näherungstheorie des Elastizitätsproblems dünner, axen-
symmetrischer Schalen. Inzwischen ist diese Theorie weiter
entwickelt worden2), wodurch sich neue Einblicke in die
Festigkeit von Böden ergeben, welche die genannte Form
nun nicht mehr als die günstigste erscheinen lassen.

Für die Festigkeitsrechnung sieht man nach dieser
Theorie jeden Breitenkreis, in dem eine Unstetigkeit in der
Wandstärke, Krümmung oder in der Richtung der Meridiantangente

auftritt, als Schalenrand an, d. h. man denkt
sich die Schale längs dieses Kreises aufgeschnitten. Bei
Kesseln tritt eine Unstetigkeit in der Krümmung am Ueber-
gang vom Zylinder zum Boden auf (Abb. 1), an welchem
der Meridiankrümmungsradius Rt von dem Werte unendlich
im Zylinder auf den endlichen Wert im Boden sprunghaft
übergeht, und bei dem Kessel in Abb. 2 tritt noch eine
Unstetigkeit in der Richtung der Meridiantangente am
Uebergang hinzu. Demnach hat man sich den Boden vom
Zylinder abgetrennt zu denken.

«211* (0211* — r er, h*) F

und der Zylinderrand um

P A211

v)

ausweiten; beide Ränder würden sich also um verschiedene
Beträge dehnen, was der Wirklichkeit nicht entspricht.
(Index I soll sich im Folgenden stets auf den Rand mit
der grösseren Dehnung e2* beziehen, II auf den andern.
E Elastizitätsmodul für Zug.) Diese unwirkliche
Randbedingung kann man aber der tatsächlich auftretenden,
die aussagt, dass sich beide Ränder gleichartig
deformieren, dadurch angleichen, dass man eine Randbelastung
durch Momente (£1)0 und durch Kräfte T ohne
Komponente in Axenrichtung (Abb. 3 b) überlagert, welche
die anschliessenden Ränder wechselseitig aufeinander
ausüben. Wie hierbei vorzugehen ist, und wie die Grösse
dieser Belastung ermittelt wird, habe ich letzthin2) gezeigt.
Es ergab sich damals, dass beide Ränder, wenn sie wie
in Abb. 1 tangential anschliessen, bemerkenswerterweise
nur eine Kraft T und kein Moment aufeinander ausüben.
Dieses Resultat gilt auch, wenn der Randwinkel <p0 (Abb. 1)
einen andern Wert als 900 besitzt, aber nicht kleiner als
300 ist, denn bei cp0 <j 3°° stimmen die Voraussetzungen
der Näherungstheorie nicht mehr gut genug. Im Falle des
nicht tangentialen Anschlusses ergaben sich so hohe
Randbelastungen und damit Beanspruchungen, dass eine
Bodenform nach Abb. 24) hier ausser Betracht fällt. Für
die Errechnung der Randkraft mit dem Betrage T pro

Abb.1 Abb.Z

Alerid'3"

Die Festigkeitsberechnung setzt sich dann aus zwei
Teilen zusammen: Zuerst errechnet man die
Membranspannungen aus den bekannten Formeln8)

02* öi*(2-4T) • • • (I)
er, bedeute Meridian-, a2 Ringspannung, h die halbe Wandstärke,

Ri den Meridiankrümmungsradius, den zweiten
Hauptkrümmungsradius (Abb. 3 a, b). Man erhält die
Formeln unter Vernachlässigung der Biegung rein aus den
Gleichgewichtsbedingungen für eine allseits geschlossene,
durch den Druck p belastete Schale, die einen einfach
zusammenhängenden Raum bildet, und deren Meridian
keinen Wendepunkt besitzt. Am Kesselboden, der eine
nicht geschlossene Schale dieser Art darstellt, erfordert
dieser Spannungszustand die Randspannung c^*, denn
dann ist er ebenso belastet wie als Teil einer geschlossenen.

Entsprechend ist auch am Zylinderrande die Spannung

d* anzubringen. Der Membranspannungszustand
verlangt also eine ganz bestimmte Randbedingung, nämlich
die alleinige Wirkung der genannten Randspannung. Am
Kessel ist sie aber nicht erfüllt, denn unter der Wirkung
des Druckes p und der Randspannung oj* (Abb. 4) würde
sich der Bodenrand um

4) J. Geckeier, Forach.-Arb. Ing. Wes. (1926), Heft 276.
2) F. Schultz-Grunow, Ing.-Arch. (1933), Bd. IV, Heft 6, S. 339.
s) Siehe etwa L, Föppl : Drang und Zwang.

Abb. 3a

Abb. 3 b

Längeneinheit des Randes wurde im Falle des tangentialen
Anschlusses die Formel

7=- <T«I a2n!f

8h sin ,[|/A (|/f)o-L etg<p0]

abgeleitet2), ferner die Beziehung

(02)0
a2i* a2u

ctg Vv

F (i v<i)
(Fä

' 0)

\ 1 M / ' /

welche die von T verursachte Randspannung o2 liefert.
Es bedeutete den reziproken Wert derQuerdehnungszahl m;

Index o kennzeichnet jene
Randgrössen, die an den
anschliessenden Rändern gleiche
Werte haben.

Im zweiten Teile der
Festigkeitsrechnung hat man
dann die Spannungen, die
T verursacht, zu errechnen

*) Diese Bodenform ist bereits
von J, Geckeier, jedoch unrichtig,

Abb.4 berechnet worden.

p5 c?
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Gekrümmten Meridian Gerader Meridian
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formation, k - 1 — r2) ''
_ bei krummlinigen Meri-

[ R%

dianen, k — r — r2) —
4 VA-, h

bei geraden Meridianen.

k ist eine Abklingungszahl, denn die Spannungen klingen
umso rascher ab, je grösser k ist, was man daraus ersieht,
dass als Abszisse k <5 aufgetragen ist. Für i?,, i?2 sind bei
der Berechnung von k Mittelwerte in der beanspruchten
Randzone zu nehmen. Der richtige Ordinaten-Masstab ist
offenbar jener, mit dem das Diagramm die aus (2) errechnete
Randspannung (oä)0 bei k co o angibt.

Nimmt man nun als Bodenform das Drehellipsoid mit
dem Axenverhältnis 2:1 so besteht der Einwand6), dass
bei der verhältnismässig grossen Krümmung an seinem
Aequator die Belastung durch Druck p und die
Randspannung 0j* eine Biegungsbeanspruchung bewirkt, die
nicht mehr vernachlässigbar ist. Es ist also fraglich, ob
der Membranspannungszustand eine genügend gute
Annäherung ist, und ob deshalb in Wirklichkeit nicht höhere
Spannungen auftreten, als sie Geckeier errechnete. Daher
wird hier eine neue günstigste Bodenform entwickelt, bei
der dieser Einwand nicht besteht. Das erfolgt in der Weise,
dass der Boden aus Schalen zusammengesetzt wird, in
denen die Belastung durch Druck p und Randspannungen

ai* tatsächlich den Membranspannungszustand
hervorruft. Die Meridianformen solcher Schalen genügen der
Gleichung6)

ctg 4) t'

wo t A
Rx

und t' dt
dcp

bedeutet. Von konstanten Werten

5) Hierauf, wie auch auf die nachfolgende Methode zur Ermittlung
der günstigsten Bodenform, wurde ich von Herrn Prof. E. Meissner, Zürich,
freundlichst aufmerksam gemacht.

6) R. Zoelly: Ueber ein Knickungsproblem an der Kugelschale. Diss.
E. T. H., Zürich 1915.

genügen t 1 (Kugel) und t 3 dieser Relation,
allgemeine Lösung der Differentialgleichung lautet:

(sin
cp \ 2

c sin cp0 J
U-3 )3

(3)

und über die Membranspannungen zu superponieren. Dies
geschieht mit Hilfe des in Abb. 5 dergestellten Spannungs-
Diagrammes, das bereits den Verlauf aller Spannungen,
die T erzeugt, längs eines abgewickelten Meridianes
darstellt. Das Diagramm ergab sich2) aus den Eigenschaften
des Spannungsverlaufes, dass jede Spannungskurve die
gleiche Funktion bis auf Masstabsfaktoren darstellt und
dass die Phasenverschiebungen der einzelnen Kurven
untereinander stets gleich sind. Man erkennt auch im Diagramm
das charakteristische rasche Abklingen der Spannungen,
die daher nur in einer schmalen Randzone auftreten. T
beansprucht also nur diese Zone. Zeichnet man in das
Diagramm den richtigen Ordinatenmasstab ein, so können
sofort die einzelnen Spannungen, die T verursacht,
abgelesen werden, denn an jeder Kurve ist angeschrieben,
welchen Wert sie darstellt. Die Abszisse k co bezieht sich
auf gekrümmte, die Abszisse k ô auf gerade Meridiane.
Es bedeutet dort (vgl. Abb. 3 b) ô die vom Rande aus
gemessene Bogenlänge des Meridians, co cp0 — cp, o,Bl die
maximale Biegungsspannung in einem Schnitt durch einen
Breitenkreis, ob2 desgleichen in einem Meridianschnitte,
û die Verdrehung der Meridiantangente infolge der De-

Die Konstante c bestimmt sich aus dem vorgegebenen
Randwerte von t. Mit Ausnahme der Kugel haben diese
Schalen den Nachteil, dass sie im Scheitel zur Platte
ausarten, die unverhältnismässig höher als eine Schale
beansprucht wird, wie schon die Anschauung sagt und wie
ich an der angeführten Stelle in einer numerischen
Berechnung gezeigt habe. Es soll deshalb eine dieser Schalen
den Wulst des Bodens bilden und eine tangential anschliessende

Kugelhaube die Mitte des Bodens (s. Abb. 8).
Praktischen Ausführungen entsprechend soll die Höhe des
Bodens etwa halb so gross als der Radius seines Aequators
sein. Ferner wird-^-= 100 vorausgesetzt (a Kesselradius).

Es sei gleich vorweggenommen, dass man der
günstigsten Bodenform, bei der in Zylinder, Wulst und Kugel
gleiche Höchstwerte der Spannungen auftreten, genügend
nahe kommt, wenn der Meridian des Wulstes das einfache
Gesetz t — 3 befolgt, wie sich durch Probieren ergab. Die
Abb. 8 zeigt diese Form für den Kesselradius a =3 cm.
Sie wurde in der Weise konstruiert, dass man vom Aequator
aus fortschreitend Bogenstücke der Krümmungskreise
aneinander fügte. Am Aequator wurde zunächst ein Kreis¬

bogenstück mit Rx
r cm gezeichnet

(s. Abb. 6) im
Winkelraum von ro°.
Am Ende desselben
wurde R% abgegriffen,

mit dem erhaltenen

Werte aus der

Abb.6 Relation 3

dann ermittelt,
mit dem neuen Werte von R} das zweite Bogenstück
gezeichnet, usw. alle folgenden. Eine analytische Berechnung

der Kurve wäre zu umständlich.
Nun die Festigkeitsberechnung des in Abb. 8

dargestellten Kessels (Massystem kg und cm).
Da am Anschlüsse von Wulst und Kugelhaube R1

eine Unstetigkeit besitzt, hat man sich ebenfalls Wulst
und Kugelhaube getrennt zu denken. Am Aequator des
Wulstes (cp 90°) errechnet man mit v 0,3

^ 0'909l/-^4L 3.°3

an seinem oberen Rande (93 40°) ist =4,1 und £ 3,52.
k ändert sich demnach längs des Meridianes wenig. Es
wird mit dem arithmetischen Mittel k 3,27 gerechnet.

Zunächst sollen die vom Aequator aus abklingenden
Spannungen im Wulste ermittelt werden. Aus (2) kann man
die Spannung (o2)o am Aequator errechnen. Da bei 93 90°

T e
<

<f)

nach (r) im Zylinder o2* />-^-, im Wulste o2* =—°,75~
ist, folgt (aä)0 1,127 — Wie gesagt, gibt das Diagramm

in Abb. 5 den gesuchten Spannungszustand an, wenn
dessen Ordinatenmasstab so gewählt wird, dass bei kco 0°
die ai -Kurve den eben errechneten Wert annimmt. Im
vorliegenden Fall sind die Ordinaten des Diagramms mit

M 1,127 — zu multiplizieren, und man erhält dann bei
3,24 h

verschiedenen Winkeln w folgende Spannungen :

k co o :

Es ist co

Rx

R,
o, 93 90°, (5 o, Rz 3, Rx 1, ~ =100,

— 33)3- die vom Aequator aus gemessene Meridianlänge,

berechnet sich zonenweise aus ô Rx co Rt bedeutet
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P
Ol — 0,75 —

bestimmt. Der Abb. 6 entnimmt man :

02=0,359 4-, 0i —— o, oBl 0,65

öi?2 o,i75y, Ö!* 0,752^-,

B« k co */g

erhält man auf dem gleichen Wege

o2 o, a, =0, 051 0,396
P

2,34 T,

I5N

/ V
-'""A Vs / \

/ \ i w
•

XV\ / \
/

1

/VW 1 1 1

/ V! /'/' /-—-s \\
^ : •' / '
\ h '/

a\ i \ y / /Ifis\ /i \ /
'« yd / Ii
\\\ / 1 Abgewickelte

'0c a-\ \V^' Meridianlänge "
\ ' 3

-K >1 \ V /!
\ \Ji L ^ Innenwand

\,a / a ^ Aussenwand

\ /
X—.

Zylinder Wulst Kugelhaube

fiese/z fffez MeridianForm
des Wulstes : _A - 3

JA
Abb.8

hier das arithmetische Mittel der A^-Werte am Anfang und
Ende der zu d gehörenden Winkelzone. In Abb. 5 liest
man nun ab :

P
aa 1,127 — Ö!=0, OBl O, 0ß2 O

Ferner erhält man aus den Formeln (1)

Abb. 10

Den errechneten Spannungen ist noch das richtige
Vorzeichen zu geben. Hierzu betrachte man Abb. 7, in
welcher die getrennt gedachten Schalenteile durch Druck p
und Randspannungen 0,* belastet und in dem zugehörigen
deformierten Zustande gezeichnet sind. Danach dehnt sich

VA ->«•

0,975 P

E h '

„ .V _ 1 >33 P
62 — ATT

0,717 p

der Zylinder, und zwar nach (1) um ea'

Wulst zieht sich zusammen, am Aequator um «2*

am oberen Rande um unj der Kugelrand

dehnt sich um g2* ^ALlljJi Die zu überlagernden, von A
h

ist co — 13,8° <p 76,2" R2 3,07 R1 1,02

=102 y 34 A, 1,01 (5=0,242

ctg cpo 0,246.

Der Wert von B2 wurde einer genauen Zeichnung

des Bodens entnommen und At aus der Beziehung 3
A'i

#B 7,24-,

02* — 0,752 4

0B2 O,IO7y, öF=0,8l j, 02" — 0,8l y
Die Spannungen sind bereits so weit abgeklungen, dass
sich die Rechnung für höhere Werte von erübrigt.

Die im Zylinder, in der Kugelhaube und vom oberen
Wulstrande abklingenden Spannungen ergeben sich auf
die gleiche Weise.

verursachten Spannungen gleichen den Unterschied dieser
Randdehnungen aus. Daher ist am Zylinderrande o2 eine
Druckspannung, ebenfalls oBi an der Zylinderinnenwand,
da der Rand nach innen gebogen wird. An der Aussen-
wand ist also ob1 eine Zugspannung. Der aus oB1 sich
bestimmende Teil von om hat nach der Formel in Abb. 5

das gleiche Vorzeichen wie oBl, der aus & sich bestimmende

das entgegengesetzte. In den 'Wulsträndern ist 0%

eine Zugspannung, und ebenfalls oBi an der Innenwand
des Wulstes, o, ist am Wulstrande ebenfalls eine
Zugspannung, wenn dies, wie die Theorie aussagt, auch o2 ist.
Am Kugelrande ist o2 wieder eine Druckspannung, infolgedessen

auch oi und an der Kugelinnenwand oB1. Die oben
errechneten Werte sind mit dem richtigen Vorzeichen
versehen im Diagramm der Abb. 9 aufgezeichnet. Man erkennt
dort, dass im Wulste die von einem Rande aus
abklingenden Spannungen am anderen Rande bereits
verschwinden, wie in der Rechnung schon vorausgesetzt
wurde. Durch Superposition dieser Spannungen und der
aus (1) sich bestimmenden erhält man die in Abb. 10
aufgezeichneten totalen Spannungen. Es bestätigt sich dort,
dass die untersuchte Bodenform der günstigsten recht
nahe kommt, da in allen drei Schalenteilen praktisch gleich
hohe Maximalspannungen auftreten. Sie überschreiten die

Kesselringspannung o2* y" um 22 %• Dieses Resultat

gilt für jeden geometrisch ähnlichen Kessel. Die Koordinaten

des Diagrammes in Abb. 9 sind so bezeichnet, dass
die Spannungen für alle derartigen Kessel abgelesen werden

können. Für andere Verhältnisse-A kann man auf
h

die genannte Art von Fall zu Fall ebenfalls günstigste
Kesselbodenformen entwickeln.

Wenn Geckeier angibt, dass bei seiner günstigsten
Bodenform die Kesselringspannung um 13 °/0 überschritten
wird, so dürfte dieser Wert nach obigen Resultaten zu

niedrig sein, da diese Form am Aequator schärfer ge

krümmt ist — ^Zi) als die neue Bodenform (— —
\a 3 / _

\a 3

und sich unter der Druckbelastung in eine Meridianform
zu verbiegen trachtet, die der Gl. (3) genügt.
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