Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 99/100 (1932)

Heft: 6

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Graphische Analysis vermittelst des Linienbildes einer Funktion. -Die Grundwasserversorgung Diepoldsau. — Der neue Zentralbahnhof in Mailand. — Diplomarbeiten der Architektur-Abteilung an der E. T. H. — Ein Entscheid des Bundesgerichtes über das Bündner Motorlastwagen-Verbot. — Mitteilungen: Die heutigen Probleme der Hochspannungs Kraftübertragung. Der Gliederkeilriemen.

Bahnumformer für die algerischen Staatsbahnen. Vom Kraftwerk Kembs. Internationale Sprachnormung in der Technik. Der Durchschlag des zweiten Monte Ceneri-Tunnels. Die durchgehende Personenzug-Bremse. Neue schweizerische Flugzeuge. Prof. Dr. phil., Dr. math. h. c., Dr. phil. h. c., Dr. med. h. c., Dr. rer. nat. h. c., e. h. David Hilbert. - Nekrologe: W. Reitz. - Literatur. - Mitteilungen der Vereine.

Band 99

Der S. I. A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 6

Graphische Analysis vermittelst des Linienbildes einer Funktion.

Von Prof. Dr. E. MEISSNER, E. T. H., Zürich.

(Schluss von Seite 44.)

13. Integration der genauen Pendelgleichung.

Bedeutet l die reduzierte Pendellänge, g die Beschleunigung der Schwere, p den Ausschlagswinkel und t die Zeit, so lautet die Gleichung für ebene Pendelschwingungen bekanntlich

$$\frac{d^2p}{dt^2} = -\frac{g}{l} \sin(p)$$

Führt man die neue Veränderliche $u = \sqrt{\frac{g}{l}}t$ ein, so geht p(t) in eine Funktion p(u) über, die der Differentialgleichung

 $p'' = -\sin(p)$ genügt. Man hat das Linienbild dieser Funktion zu konstruieren. Dabei sollen nicht etwa kleine Pendelausschläge angenommen werden. Vielmehr wollen wir geradezu voraussetzen, dass anfangs das Pendel horizontal stehe und sich dort in der Umkehrlage befinde, sodass es in gestrecktem Winkel hin und herschwingen wird. Man hat

dann für
$$t=0$$
, $p=\pi/2$ und $\dot{p}=0$, bezw. für $u=0$ $p(0)=\pi/2$ $p'(0)=0$.

Der Krümmungsradius $\varrho(u)$ des Linienbildes C wird jetzt $\varrho(u) = p - \sin{(p)}.$

Demgemäss hat man in Abb. 33 zunächst eine unter 45º geneigte Linie AB und eine Sinuslinie AC aufgetragen, sodass nun zu jeder Abszisse p = AD in der Strecke EF der Wert von $\varrho = p - \sin(p)$ sofort abgegriffen werden kann. Als Längeneinheit wurde die Strecke 1 dm gewählt. Die Abbildung 34 zeigt die Konstruktion, wobei der Differenzenwinkel $\alpha = 15^{\circ}$ gewählt wurde. P₀, der Ausgangspunkt, liegt auf der Axe u=0 im Abstand $\pi/2=1,570$ von O entfernt. Die Krümmungsradien für die Punkte P₁ P₂ P₃ ... nehmen schnell ab, sodass das Liniendiagramm C in S eine Spitze aufweist. Die von O an C gehende Tangente kann daher ziemlich genau gezogen werden. Bezeichnet man mit $u^* - \pi/2$ den Winkel, den sie mit der Axe u = o einschliesst, so ist u^* der Wert, für den p(u) gleich null wird. Demgemäss erreicht das Pendel seine tiefste Lage nach der Zeit

$$t^* = \sqrt{\frac{l}{g}} u^*,$$

 $t^* = \sqrt{\tfrac{I}{g}} u^*,$ und t^* ist daher die halbe Ausschlagdauer.

Abb. 34 gibt für u^* den Wert 106,60 = 1,860 abs. In Abb. 35 ist die Konstruktion wiederholt, wobei der kleinere

Differenzenwinkel $\alpha=7^{1/2}$ 0 verwendet wurde. Sie ergab für u^* den Betrag 106,7°. Endlich wurde noch mit $\alpha=5^{\circ}$ 0 operiert, und $u^*=107,1^{\circ}$ 0 erhalten. Anderseits kann mit für u* (in Graden gemessen) leicht die Formel herleiten

$$u^* = \frac{180}{\pi \sqrt{2}} \int_{0}^{\pi/2} \frac{dp}{\sqrt{\cos p}}$$

und entweder mit Reihenentwicklung, oder besser nach der Gauss'schen Methode des arithmetisch-geometrischen Mittels den Wert des bestimmten elliptischen Integrals rechter Hand ausrechnen. Es ergibt sich der genaue Wert $u^* = 107,052^0$, sodass auch im ungünstigsten Fall der Abb. 34 der Fehler in der Ermittlung der Schwingungsdauer kleiner als $^{1}/_{2}$ $^{0}/_{0}$ ausfällt. Es ist hierbei noch zu beachten, dass die Theorie kleiner Schwingungen, auf diesen Fall ausgedehnt, an Stelle von u* den Wert 900 ergeben würde.

Unsere Konstruktion hat aber gegenüber der rechnerischen Bestimmung der Schwingungsdauer den Vorteil, dass sie uns nicht nur einen einzelnen Funktionswert, sondern den ganzen Verlauf der Funktion p gibt. Denn aus dem gezeichneten Linienbild C kann der Ausschlagwinkel p für jedes u und damit für jeden Zeitpunkt entnommen werden. Der Uebersichtlichkeit wegen ist im Koordinatensystem der Abb. 33 nachträglich noch das gewöhnliche Punktdiagramm p(u), wie es sich aus C ergibt, aufgetragen worden. Man erhält die Kurve GH, die einem elliptischen Funktionsgesetz folgt. Zum Vergleich ist die cos-Linie GJ eingetragen, die sich nach der Theorie kleiner Schwingungen ergibt. Man erkennt, dass der Ausschlagwinkel mit wachsender Zeit viel weniger abnimmt, als die Theorie kleiner Schwingungen ergeben würde.

14. Die Bahnkurven des sphärischen Pendels.

Wenn ein gewöhnliches Fadenpendel von der Länge l unter allgemeinen Anfangsbedingungen in Schwingungen versetzt wird, so beschreibt sein Endpunkt m eine Bahnkurve, die auf einer Kugel gelegen ist. Bedeutet δ die vom tiefsten Punkt dieser Kugel aus gemessene Poldistanz, φ die von einem beliebigen Anfangsmeridian aus gemessene Länge, t die Zeit, so liefert für die Bewegung des Pendels der Flächensatz die Gleichung

$$\sin^2(\delta) \frac{d\varphi}{dt} = c$$

$$\sin^2(\delta) \frac{d\varphi}{dt} = c$$
und der Energiesatz gibt
$$\left(\frac{d\delta}{dt}\right)^2 + \sin^2(\delta) \left(\frac{d\varphi}{dt}\right)^2 - \lambda \cos \delta = k$$
Hier in the same and the Integrations leaves

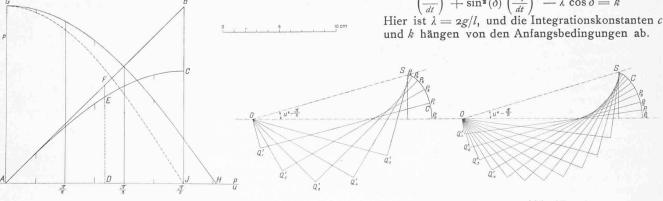


Abb. 33.

Abb. 34.

Abb. 35.