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Nr. 13

Schwingungen von Maschinenfundamenten.
Von Ing. J. BACHTOLD, bei Locher & Cie., Ziirich.

Erfahrung, Versuche und theoretische Erwiagungen
haben gelehrt, dass fir den Bestand und die Qualitdt von
Bauwerken, die periodischen Impulsen ausgesetzt sind,
nicht allein Standsicherheit und Materialbeanspruchung
massgebend sind, sondern dass fast ebensogrosse Be-
deutung den Vibrationen zukommt. Diese konnen, je
nachdem die Eigenfrequenzen der Konstruktion in der
Niahe der Maschinenumlaufzahl liegen oder geniigend weit
von dieser abweichen, gefdhrlich oder unbedeutend sein.
Eine vollstindige statische Berechnung von Bauwerken
dieser Art enthilt daher neben den {iblichen statischen
Untersuchungen die Bestimmung der Eigenschwingungs-
zahlen.

Fir die praktisch vorkommenden Fille ist es sehr
oft erlaubt, sich die schwingende Masse in einem Punkt
konzentriert zu denken. Unter dieser Annahme gestaltet
sich das Problem sehr einfach. Die Differentialgleichung
der Schwingung eines Massenpunktes lautet:

d?y - p »

dr?
wenn m die schwingungsfiahige Masse, y die Auslenkung
aus der Ruhelage und P’ die Kraft, die der Auslenkung 1
des Massenpunktes entspricht, bedeuten;

oder:
dy P P
e m - P gy
?,——6_ Durchbiegung oder Verschiebung infolge der
Kraft P an der Stelle des Massenpunktes,
b aty g
somit 1st i

und integriert: e
y =24 cos (]/—é{ t)

hieraus ergibt sich die minutliche Schwingungszahl

bk 60T n, 300
BRI o V() )

Diese Formel, die als Geigersche Formel bekannt ist
und auch bei der Berechnung biegungskritischer Dreh-
zahlen verwendet wird, dient heute, dank ihrer Einfachheit
in der Praxis fiir zahlreiche Schwingungsprobleme. Der
Genauigkeitsgrad, der mit dieser Anpniherung erreicht
werden kann, hingt von der wirklichen Verteilung der
Massen ab.

Dampfturbinenfundamente, fiir die wegen ihrer immer
weitergehenden Auflosung die Kenntnis der Eigenschwin-
gungszahlen besonders wichtig ist, haben sich allm&hlich
zu einem Normaltypus entwickelt. Sie bestehen in der
Regel aus mehreren Querrahmen, die durch zwei Langs-
trager unter sich verbunden sind. Das Problem besteht
nun darin, diejenigen Schwingungsformen herauszugreifen,
die das gesamte dynamische Verhalten der Konstruktion
zu Gberblicken gestatten. Der vollstindige Schwingungs-
vorgang ist bestimmt, sobald die Schwingungen in den
Hauptschwingungsrichtungen bekannt sind. Ein rdumliches
System besitzt im allgemeinen, bei beliebiger Impulsrich-
tung drei Hauptschwingungsrichtungen mit drei verschie-
denen Frequenzen, entsprechend den drei Freiheitsgraden.
Fir die Dampfturbinenfundamente geniigt es, die Schwin-
gungen senkrecht zur Maschinenaxe zu untersuchen,
da, wie Erfahrung und Versuche gezeigt haben, die

n= d in cm.

Impulse in Richtung der Axe praktisch bedeutungslos
sind. Die Aufgabe reduziert sich somit auf ein ebenes
Schwingungsproblem mit zwei zueinander senkrechten
Hauptschwingungsrichtungen, namlich die vertikale und
die horizontale.

Auf die Schwingungen in horizontaler Richtung
mochte ich im Folgenden nicht naher eintreten, da fir
diesen Fall die Genauigkeit der obigen Formel fir die
Praxis durchaus geniigend ist. Dieses erklart sich ohne
weiteres, wenn man bedenkt, dass fiir die horizontale
Schwingungsrichtung die Verteilung der Lasten auf dem
Riegel und Liangstrager belanglos ist, indem es ja nur auf
die Hohenlage des Schwerpunktes dieser Massen ankommt.
Die Ungenauigkeit besteht dabei nur in der Schitzung
des Einflusses der Stitzenmassen, die aber in der Regel
von untergeordneter Bedeutung ist.

Fir die Vertikalschwingungen hingegen kann die
Formel nur solange befriedigen, als die Maschinenlast je
in einem Punkte eines Trigers angreift, und die verteilte
Belastung im Verhiltnis zu jener klein ist. Sind diese
Forderungen nicht erfillt, so wird es winschenswert er-
scheinen, die Eigenfrequenz genauer zu kennen, wenn sie
in der Niahe der Maschinenumlaufzahl liegt. Fiir solche
kompliziertere Fille sind bereits verschiedene Verfahren
angegeben worden, die gestatten, die Eigenfrequenzzahl,
meist unter erheblichem Aufwand von Rechenarbeit zu
ermitteln.

Nachfolgend méchte ich anhand einiger Beispiele
auf ein solches Verfahren hinweisen, das mir insofern
sehr geeignet scheint, als es verhiltnismissig wenig Rechen-
arbeit erfordert und sich tberdies auf jedes beliebige sta-
tische System anwenden lasst.

Prof. Hahn hat in seinen Abhandlungeninder,S.B.Z.“1)
einen Weg gezeigt, die Eigenschwingungen beliebiger
Konstruktionen mit guter Annaherung zu bestimmen mit
Hilfe der Theorie der Integralgleichungen. Auf die Wieder-
gabe des ganzen Losungsweges, der rein mathematisches
Interesse hat, verzichte ich. Prof. Hahn findet fir die
Eigenfrequenz 1 in erster Annaherung die Formel:

I
. Oy My —+ Oxx O) dx
J.( )

aye = Ausbiegung an der Stelle x infolge P=1 in x
d¢x = Drehung des Querschnittes bei x infolge / = 1 in «.
Ist die Kurve der a,, gefunden, so ergibt sich diejenige
der d,, aus der Beziehung

=

a? oy
dx?

()x.\‘ =

O, = Massentrigheitsmoment des Massenelementes von der
Lange dx in «x.

Der Einfluss der Drehungstrégheit darf in der Regel
vernachldssigt werden, besonders bei geraden Staben,
sofern sie nicht durch Massen mit aussergewdhnlichen
Massentrigheitsmomenten belastet sind. Die Formel, deren
Anwendungen in folgenden Beispielen gezeigt werden soll,
lautet dann

I

"

A= —
4
/ , Oyy My dx
) E. Hahn, Prof. & I'Université de Nancy:  Note sur la vitesse
critique des arbres et la formule de Dunkerley”, Bd. 72, S. 191% u. 206%
(9. u. 16. Nov. 1918). | Détermination des fréquences critiques d’une pitce
élastique®, Bd. 87, S. 1** (2. Jan, 1926).
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LErsles Beispiel. Ein zweistieliger eingespannter Rah-
men (Abb. 1), wie er bei den bereits erwahnten Turbo-
fundamenten gewohnlich vorkommt, sei durch Einzellasten
und beliebige verteilte Lasten beansprucht. Es soll die
Frequenz der freien Vertikalschwingung ermittelt werden.

F, P
q
__g‘wrrn'rrrrr"rrr!‘ M P
N St J
i [ 4
4l Abb.1 2.

Wir bestimmen die Kurve der a,, (Abb. 2), indem wir
in verschiedenen Schnitten des Riegels die Last P =1
anbringen und die zugehorigen Durchbiegungen in diesen
Schnitten als Ordinaten auftragen. Die Ordinaten der ay,-
Kurve berechnen sich nach der folgenden Formel, deren
Ableitung ich hier nicht durchfiibhren will (wenn fir x=ga;
far (/ — x) = b gesetzt wird):

/ A
Uy = EI_,[ {? (Ma? = Mp?) (1 +34) + MaMp —
a8
+ My [VA ((12—— =2 +VD———H/z (/e+1)}

+MD[VD(62—?7)—+—VA?7—H1zl(k+1)}
+ H? /121(1 + /;) — Hh(Vaa*—Vp b2
ad Al
Ve 4o el
VA g 3)

ab sk—1-4+20(k42) ab 7k+43—209 (k-4 2) .

Ma=5 (k+2)\0/z—§—|) » Mp = (A——z)(é/e-{—x) d

v b 6k 1+ 0—202 | Ve — a.6k+30—2092
A=7 6%+ 1 i D_z [ 1
BAWSEE - op B, g @

H= 2hl (k4 2) /"‘A/,,z’ ‘3_1'

Die Formel konnte durch Einsetzen obiger Werte etwas
umgeformt werden. Viel vereinfachen lisst sie sich jedoch
nicht, weshalb ich bier eine weitere Verarbeitung unter-
lassen habe. Es geniigen einige wenige Werte, um dic
Kurve, die bei konstantem / zur Mitte symmetrisch ist,
o=

festzulegen. Fir die Riegelmitte wird a = b = é; =

d ! o i3 3 12
ond ass = omm = 5557 |8 — g

Ist die a,, Kurve bestimmt, so werden ihre Ordinaten
in jedem Schnitt mit dem entsprechenden m, — ‘/—‘ = iy

multipliziert und die Flache F ermittelt (Abb. 2),° Es ist
dann
I o I

A2 = =
P P Dy
b2 ‘oc F+g‘a“—{—lg'a

F43

ay1, 0ga = Ordinaten der ay.-Kurve bei P, bezw. Ps.
Die Schwingungszahl pro Minute betrigt 1 60/2 7 ; dabei
ist allerdings der Einfluss der Stiitzenmasse, die in hori-
zontalem Sinne mitschwingt, vernachlissigt worden. Soll
auch dieser Beitrag beriicksichtigt werden, so hat man
das Verfahren einfach auf die Stiitzen zu erweitern, indem
man sich den Riegel unverschieblich denkt, in verschie-
dener Hohe die Kraft 2 = 1 horizontal anbringt und so
die ay.-Kurve der Stiitzen konstruiert (Abb. 2). Die Fliche F
erhdlt man wie vorher. Sie ist fiir beide Stiitzen gleich.
Die Summe 2 /" ist dann zum Beitrag des Riegels zu

addieren. Sind die Stiitzen nicht unverhiltnismissig hoch,
d. h. ist ihre Masse verglichen mit derjenigen des Riegels
samt Belastung klein, so darf ihr Einfluss ohne weiteres
vernachldssigt werden. Diese Vereinfachung ist umso eher
‘gerechtfertigt, als der Verdrehungswiderstand der Langs-
triger in obiger Formel fiir 1 ebenfalls unberiicksichtigt
bleibt; dieser Beitrag hat aber das umgekehrte Vorzeichen
wie jener der Stiitzenmassen. Weit mehr Beachtung muss
unter Umstdnden der Verkiirzung bezw. Verlingerung der
Stitzen infolge der Tragheitskriafte der schwingenden
Massen geschenkt werden. Der Beitrag dieser Deformation
zur Summe infolge der Riegelausbiegung betriagt bei sym-
metrischer Belastung des Rahmens
Qr
2fEg’
0= ZP—-l—fq dx =
f = Stiitzenquerschnitt,
/i = Rahmenhohe.

Ist die Lastverteilung sehr stark unsymmetrisch, so ist
wieder eine Kurve zu bestimmen, indem in verschiedenen
Schnitten des Riegels die Last P = 1 aufgebracht und die
lotrechte Verschiebung derselben infolge der Stiitzenver-
kirzung als Ordinate tber dem Angriffspunkt der Last
aufgetragen wird. Durch Multiplikation mit u, erhdlt man

die Fliche F” (Abb. 3), die zusammen mit 2% ayy  den

totale Belastung,

Beitrag der Stiitzenverkiirzung ergibt. Die Ordinaten ayy

berechnen sich zu

b VR
Oxx gEf <VD+ 4 Db)
worin
64+ 30—20° Tk
r e : e
Vb Z 6% 1 ) k Tn ik
b 6ht1L0—2 a
7 = . Y.
Va ] 6%+ 1 J é 7!

Der genauere Wert von 1 ergibt sich nun aus der Gleichung

1= I

2 P
F_’_Zaxxj"%]r”"%—za.\c\'“;
=
und hieraus
A 60 .
n = min~—*
27

Auf dem selben Weg lésst sich nun auch die Frcquenz
der horizontalen Schwingungen berechnen. Die Horizontal-
kraft P =1 wird sukzessive lings des ganzen Rahmens

R, (L
ai, { v —]
e st it S RS T Mgt
’ Jh,
b Abb.3 Abb. 4 b

angebracht und die ay.-Kurve konstruiert (Abb. 4). Die

erweiterte ay,-Fliche und 12 ergeben sich wie bisher.

Zuweiles Beispiel. Eine Konstruktion, die sehr oft in
kleineren oder grdsseren Ausmassen an Maschinenfunda-
menten vorkommt und gelegentlich schon zu Stdrungen
infolge unzuldssiger Vibrationen Anlass gegeben hat, ist
die konsolartige Ausladung des Maschinentisches. Als wei-
teres Beispiel fiir die Anwendung der Methode von Prof.
Hahn moge eine solche Ausladung auf ihre Vertikal-
schwingungen, die hier allein in Frage kommen, unter-
sucht werden.

Die Konsole habe verinderliche Stirke (Abb. 5) und
trage eine verteilte Last (Eigengewicht, Gewicht der Platte
und eventuell Nutzlast), sowie beliebige Einzellasten (Lings-
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Abb. 1. Hochhaus Bel-Air Métropole in Lausanne, Ende Oktober 1931.

trager, Apparate u.dgl.). Zur Ermittlung der a,,-Kurve der
Konsole setzen wir:

Je .
5, = (@ A4cdp
. 1 ([l v
fir &£ =/ wird *— (1 +cl)3 somit ¢ ——T(E—I) (gilt
auch geniigend genau fiir Plattenbalken). Nach dem Prinzip
der virtuellen Arbeit ist:
E=1

1
(:—=x)? I (=2,
a”:f EJg @t = EJy J (14c5)3’
¢: x

die Integration ergibt:
1 L4cl cx—ecl X (1 + cx)™)
Uex = 3, E {‘g (1 —}—cx) + 2( PR )""7[[”*(1 +:1)2]|

mﬂlIII||||||“M|““||
a

9

d‘ll ul

Abb.6

. . . Iz .
Die Ordinaten der ay,-Kurve werden mit 7= multi-

pliziert, die Fliche / bestimmt (Abb. 6) und daraus 1 be-
rechnet nach:
pLp—

F 4 £ op
n ist dann = };6:— minsa,

Zur Feststellung der Genauigkeit, die mit dem vor-
liegenden Verfahren erreicht werden kann, soll die Schwin-
gungszahl # noch fir den Spezialfall einer Konsole mit
konstantem Querschnitt und gleichmassig verteilter Last
ermittelt werden (Abb. 7). Es ist

1
= NS ] — %)%
T T f‘- — 2" e o U=
EJ
Abb.7 “x

3 EJ

1 1

2= =

fl [1—‘51')3 L y.[:* ;
o =oLYEE 12EJ

__ k60 EJ 9
n=sz—=3mt o (k=7)

der genaue Wert von # = 33,59 VEJ

it K

Die Formel # = ]‘};O, entspricht
EJ
n=271 |/

Fiir den Langstrager wollen wir die Schwingungszahl
bestimmen unter der Annahme, es handle sich um einen
einfachen Balken, oder, was dasselbe ist, um einen konti-
nuierlichen Balken, wobei die aufeinanderfolgenden Felder
je mit einer Phasenverschiebung von 180° schwingen, d. h.
die Ausschlige entgegengesetztes Vorzeichen haben.

Bei konstantem / berechnen sich fiir den einfachen
Balken die Ordinaten der a,,-Kurve nach der Formel:

e x% (I — 2)?
%t =T EJI 3EJL
Ist / variabel, der Trager eingespannt, oder durchlaufend
bei ungleichmissiger Felderbelastung, so werden am besten
einige ¢,,-Ordinaten graphisch bestimmt.

Es soll wiederum vergleichsweise die Eigenfrequenz
des einfachen Balkens mit konstantem / und gleichmissig
verteilter Belastung nach der Theorie der Integralgleich-

ungen, nach der Formel 2°2 und mit Hilfe der Differen-

m

tialgleichung fiir die Schwmgung des geraden Stabes be-
rechnet werden. Da

(%2 — lx)2 =

T
Uxx =277 (x? — [ x)?
ist 2= ! = d
fl d wit
. oaxx My Cx 90 £J
und . IR %
2z Vo,85 O
Die Differentialgleichung des schwingenden Stabes lautet:
dby, o 0%y
Oxt T T EJ o

deren Losung: y =9 (x) sin(w?);

darin ist ¥ =c¢ sin a% o
wenn ad 256
s @ EJ
o?a?]/E S
daraus W= — l/
/3 w

fir die Grundschwingung ist a = 1

— w6bo  mbo £ J 300
LR T CXTY

300

Vou
Die Platte wird, sofern sie nur auf zwei Seiten ge-
lagert ist, wie der einfache Balken behandelt. Im vorlie-
genden Beispiel ist sie ringsum abgestiitzt (bei Kontinuitit
denken wir uns wieder wie beim Balken entgegengesetzte
Ausschlige aufeinanderfolgender Felder). Nach Dr. Ing.

A. Nadai erbdlt man die Frequenz der Grundschwingung
nach der Formel:

nach der Formel von Geiger ist » =

__ 6ox (a4 &) ] N

2 a? b* “w
% Edd
darin bedeuten: Ne——— p= et
12 (1 — %) g
— Poisson’sche Zahl, a und & = Seiten der recht-

eckigen Platte, d = Dicke der Platte.

p—
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