Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 99/100 (1932)

Heft: 12

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

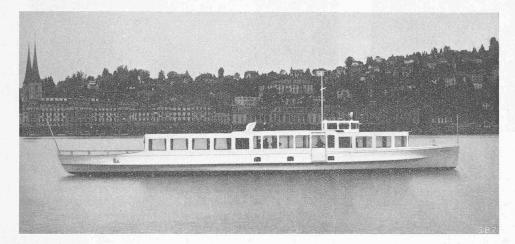
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch


INHALT: Das Vierwaldstättersee-Motorschiff "Mythen". — Umbau des Dampfers "Wädenswil" auf dem Zürichsee in ein Motorschiff. — Wettbewerb für die Erweiterung des Krankenasyls Wädenswil am Zürichsee. — Ueber die Frequenz der E. T. H. 1931/32. — Mitteilungen: Prüffelder für hydraulische Maschinen. Die Festigkeit von Stahlguss bei tiefen Temperaturen. Die 59. Jahresversammlung des schweiz. Vereins von Gas und Wasserfachmännern. Die Jahresversammlung des Schweiz.

Werkbundes. Basler Rheinhafenverkehr. Die neue Markthalle in Budapest. Der Lahaywa-Tunnel in Aegypten. Das höchste Haus Europas. — Nekrologe: Jean Zweifel. — Wettbewerbe: Wettbewerb über Lichtanlagen. Schulhaus mit Turnhalle in Muttenz. Erweiterungs- und Neubauten für die Banque Cantonale Vaudoise in Lausanne. Schulhausanlage und Hallenschwimmbad in Altstetten-Zürich. — Mitteilungen der Vereine.

Band 100

Der S.I.A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 12

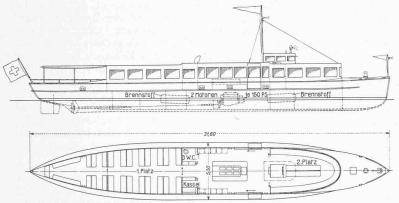


Abb. 1 u. 2. Ansicht, darunter Aufriss samt Decksplan. - Masstab 1:300

Das Vierwaldstättersee-Motorschiff "Mythen". Von RUD. A. FURRER, Ing., Luzern.

Auf dem Vierwaldstättersee ist im Sommer 1931 ein neues Zweischrauben-Passagierschiff in Dienst genommen worden, das hinsichtlich einiger Spezialkonstruktionen allgemeines Interesse beanspruchen dürfte, insbesonders weil diese hierzulande eine Erstausführung darstellen (Abb. 1 u. 2).

Bei der Konstruktion wurde auf harmonische Formgebung, Bequemlichkeit für die Passagiere, Betriebsökonomie, Kraftreserve der Maschinenanlage und insbesonders auch auf über die Vorschriften hinausgehende Sicherheitsmassnahmen Rücksicht genommen. Das Schiff ist von der Werft der Dampfschiffgesellschaft des Vierwaldstättersees gebaut worden unter Zugrundelegung folgender neuzeitlicher Gesichtspunkte: der Schiffsrumpf wurde in Lehrspanten gebaut; zur Verbindung sämtlicher Stahl- und Eisenteile wurde ausschliesslich Lichtbogenschweissung verwendet; sämtliche Stahl- und Eisenteile wurden mit der Schoop-Pistole verzinkt; die Decks und alle Aufbauten sind aus hochwertigem Leichtmetall hergestellt.

Schleppversuche, Leistungen.

Die Schiffsform unter der Wasserlinie wurde auf Grund von Modellschleppversuchen in der Hamburgischen Schiffbauversuchsanstalt festgelegt. 1) Es wurden drei Modelle geschleppt: 1. Spitzgatheck. Diese für derartige Schiffe allgemein übliche Bauart, gewöhnlich nur Normalform ge-

1) Es war uns nicht möglich, den Linienplan zu erhalten, weshalb wir bezügl. der Schalenform auf Abb. 3 bis 6 verweisen müssen. Red.

nannt, hat U-förmige Spanten mit tiefliegender Kiellinie. Im Hinterschiff ist der Kiel hochgezogen und endet in einem Spitzgatheck. - 2. Flachheckform. Das Vorschiff weist völlige U-Spanten auf. Der Kiel liegt vorn tief und wird nach hinten allmählich bis zur Wasserlinie hochgezogen. Die Spanten werden nach hinten mehr und mehr rechteckig mit scharfer Kimm. — 3. Kreuzerheckform. Die Spanten des Vor- und Hinterschiffs sind V-förmig, jene des Mittelschiffs trapezförmig mit abgerundeten Ecken. Der hinten ansteigende Kiel geht in ein Kreuzerheck über.

Ein Teil der Versuchsergebnisse ist in Abb. 10 wiedergegeben. Der Einfachheit halber sind die Widerstandskurven nicht eingezeichnet, sondern nur die zur Ueberwindung der Widerstände erforderlichen PS, und zwar umgerechnet

auf die wirkliche Schiffsgrösse.

Die Spitzgatheckform erforderte die grösste Schleppleistung (Kurve H). Die Flachheckform war am günstigsten bei Geschwindigkeiten über 28 km/h (Kurve K), während unter 28 km/h mit der Kreuzerheckform die geringsten Widerstände erreicht wurden (Kurve J). Beispielsweise war bei einer Geschwindigkeit von 24,5 km/h die Schleppleistung der Flachheckform 8,6 % und der Spitzgatheckform 11,3 % grösser als jene der Kreuzerheckform. Auf Grund von Beobachtungen, die während der Versuche mit der letztgenannten Schiffsform gemacht wurden,

glaubte man diese noch verbessern zu können. Nach einigen Aenderungen wurde nochmals geschleppt mit dem Ergebnis, das in Kurve L wiedergegeben ist, d. h. einer Leistungsver-

minderung von noch rd. 7 % bei 24,5 km/h.

Darnach legte man dem Neubau die Kreuzerheckform zugrunde, und baute an das Modell die notwendigen Unter-

Hauptdaten.

nunpiuuten.		
Länge über alles	31,6	m
Länge zwischen den Perpendikeln	30,0	m
Grösste Breite im Hauptspant	4,1	m
Grösste Breite über die Scheuerleiste	5,0	m
Kleinstes Freibord (beladen)	0,7	m
Tragfähigkeit 200 Personen oder	15	t
Mittlerer Tiefgang über Oberkante Kiel		
leer	0,805	m
Mittlerer Liefgang über Oberkante Kiel		
beladen	1,003	m
Völligkeitsgrade:		
Verdrängung $\delta = 0,40$		
Wasserlinienareal (CWL) $\alpha = 0.65$		
Hauptspantareal $\beta = 0.7$		
Verdrängung beladen und voll ausgerüstet	49,3	t
Metazentrische Höhe, leer	0,85	m
Metazentrische Höhe, beladen	0,54	m
Grösste Motoren-Leistung 2 \times 150 PS $_{\rm e}$.	300	PS _e
Grösste Geschwindigkeit, leer	29	km/h
Grösste Geschwindigkeit, beladen	27	km/h
Fahrplangeschwindigkeit	24,5	km/h