Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 99/100 (1932)

Heft: 8

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Eine neue Kennziffer zur Beurteilung der Gewichte von Lokomotiven. — Architektur-Wettbewerbe. — Italienische Verkehrsverhältnisse. — Davoser Bauten von Arch. Rudolf Gaberel. — Mitteilungen: Die heutigen Leistungsgrenzen der Diesellokomotiven. Transformatoren mit Evolventenkern. Schmalspurbahn-Schiebebühne von 30 m Länge. Wasserversorgung von Paris aus dem Flussgebiet der Loire.

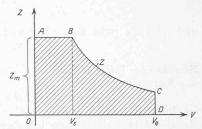
Seiltriebe mit Schraubenrillenscheiben. Materialprüfung mit Gammastrahlen. Basler Rheinhafenverkehr. Umschulungskurs für Techniker. Betonarbeiten im Frost. Seilbahn Sierre-Montana-Vermala. Windkraftwerke. Die neue Lambeth-Brücke in London. Das alte Schloss in Stuttgart. Moderne Dampfautomobile. — Nekrologe: E. Brandenberger. Alfred Müller. J. M. David. — Literatur. — Mitteilungen der Vereine.

Band 100

Der S.I.A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Nr. 8

Eine neue Kennziffer zur Beurteilung der Gewichte von Lokomotiven.

Von Professor Dr. W. KUMMER, Ingenieur, Zürich.


Zur Zeit der Erörterungen der Systemfrage der elektrischen Zugförderung machten wir in dieser Zeitschrift 1909 darauf aufmerksam, dass die in die Systemserörterung von anderer Seite hineingeworfenen Kennziffern für Lokomotiven, die deren Gewicht im Zusammenhang mit der Nennleistung der Lokomotiven verwerten, beim Vergleich von Lokomotiven von ungleichem Fahrdienst oft versagen1); als Ersatz schlugen wir eine Kennziffer vor, die das Lokomotivgewicht mit dem Lokomotivdrehmoment verknüpft. Für diese beiden Formulierungen von Kennziffern haben wir in Band I unserer "Maschinenlehre der elektrischen Zugförderung" zahlreiche Zahlenwerte mitgeteilt²). Indessen hat sich herausgestellt, dass auch die auf das Lokomotivdrehmoment bezogene Kennziffer bei Lokomotiven mit grossem Bereich der Fahrgeschwindigkeit oft zu wenig scharf ist. Deshalb hat A. Laternser 1921 eine weitere, auf eine sog. "virtuelle" Leistung bezogene Kennziffer für Elektrolokomotiven eingeführt und mit Zahlenwerten belegt8). Da nun für die seit 1925 bedeutungsvoll gewordenen Diesellokomotiven ein Bedürfnis nach einer für solche und auch für andere Lokomotiven einwandfreien Kennziffer entstanden ist, haben wir uns neuerdings mit diesem Gegenstand beschäftigt und festgestellt, dass sich auf Grund der idealen Zugkraft-Geschwindigkeits-Charakteristik der Eisenbahn-Triebfahrzeuge eine solche Kennziffer bilden lässt. Dieses Idealdiagramm weist im Axenkreuz

1) Vergl. Seite 300 von Bd. 54, am 20. Nov. 1909.

3) Vergl. Seite 49 von Bd. 77, am 29. Jan. 1921, und Seite 253 von Bd. 86, am 21. Nov. 1925.

 $Z \cap V$ eine konstante Zugkraft Z_m für Geschwindigkeiten V von o bis V_s auf; anschliessend folgt eine derart abnehmende Zugkraft, dass das Produkt ZV, d. h. die Leistung, konstant bleibt. Dieses in der Abbildung veranschaulichte Diagramm wird von keiner Lokomotivart genau eingehalten. Dampflokomotiven, Diesellokomotiven und elektrische Lokomotiven weisen hauptsächlich folgende Ab-

weichungen auf: Statt der horizontalen Geraden AB tritt oft eine Zickzacklinie entsprechend einer endlichen Zahl von Regulierstufen auf, für die die Gerade AB als Mittelwertslinie in einem Geschwindigkeits-Intervall von o bis V_s brauchbar ist. An-

stelle der gleichseitigen Hyperbel BC treten flachere, nach oben meist konkav gekrümmte und stärker abfallende Kurven auf, für die etwa eine analytische Formulierung:

 $Z(V^2+aV+b)=c$ brauchbar ist. Je mehr sich diese Kurven derjenigen des denkbar einfachsten Gleichstrom-Seriemotors nähern, umso mehr sind die Konstanten a und b dem Werte Null nahe und c dem Werte $Z_nV_n^2$, wobei die der Maximalleistung, d. h. der Nennleistung Z_nV_n entsprechenden Faktoren Z_n und V_n als Kurvenordinaten zwischen $V=V_s$ und $V=V_e$ auftreten. Misst man die Nennleistung N_n in PS, so ist:

$$N_n = \frac{Z_n V_n}{270},$$

Kennziffern für Diesel-Lokomotiven.

Bahnanlage		Тур	Jahr	Art des Antriebes	G	G_0	N_n	k	K
				10 H 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t	t	PS	PS/t	PS/t
Preussische Staatsbahn		2 B 2	1912	Unmittelbarer Kurbelantrieb, Sulzer-Klose-Borsig	95	46	I 200	13	15
Russische Staatsbahn		2 E I	1926	Zahnrad-Wechselgetriebe, MAN-Hohenzollern .	131	88	1200	9	16
Postbahnhof Zürich		B	1930	Zahnrad-Wechselgetriebe, SLM	23	23	150	7	10
Versuchslokomotive		ı B	1938	Flüssigkeitsübertragung Schwartzkopff-Huwiler .	44	32	200	4,5	7
Deutsche Reichsbahn	del di	2 C 2	1929	Druckluftübertragung MAN-Esslingen	128	55	1200	9	10
		I E ₀ I	1925	Elektrische Uebertragung MAN-BBC	125	95	1200	10	15
Canadische Nationalbahn	: :	2 D ₀ I	1928	Elektrische Uebertragung Westinghouse	148	109	1330	9	12

Kennziffern für Dampf-Lokomotiven.

Bahnanlage	Тур	Jahr	Art des Dampfes	G	G_0	N_n	k	K
				t	t	PS	PS/t	PS/t
Deutsche Reichsbahn	2 C I mit Tender	1926	Heissdampf von 16 kg/cm ²	170	66	2500	15	25
	2 D I mit Tender	,	Hochdruckdampf von 60 kg/cm ²	170	74	2500	15	27

Kennziffern für elektrische Lokomotiven.

Bahnanlage	Тур	Jahr	Stromart	G	G_0	N_n	k	K
**************************************			The state of the s	t	t	PS	PS/t	PS/t
Schweiz. Bundesbahnen	1 C ₀ 2	1921	Einphasenstrom	92	55	1950	2 I	32
	$1 C_0 + C_1 1$		Einphasenstrom	142	115	3700	26	40
	2 B ₀ + B ₀ 2			110	72	1840	17	36
Great Indian Peninsular Ry	2 C ₀ 2	1930	Gleichstrom	111	60	1890	17	40

²⁾ Besprechung der zweiten Auflage auf Seite 191 von Bd. 86, am 10. Okt. 1925,